


FRACTALS and 
SCALING 

in FINANCE 



SELECTED WORKS OF BENOIT B. MANDELBROT 

REPRINTED, TRANSLATED OR NEW 

WITH ANNOTATIONS AND GUEST CONTRIBUTIONS 

COMPANION TO THE FRACTAL GEOMETRY OF NATURE 



Benoit B. Mandelbrot 

FRACTALS and 
SCALING 

in FINANCE 

Discontinuity, 
Concentration, Risk 

SELECTA VOLUME E 

With Foreword by R.E. Gomory 

and Contributions by P.H. Cootner, E.F. Fama, 
WS. Morris, H.M. Taylor, and others 

~ Springer 



Benoit B. Mandelbrot 
Mathematics Department 
Yale University 
New Haven, cr 0652~283 USA 

http://www·math.yale.edufmandelbrot 
IBM T.J. Watson Research Center 
Yorktown Heights, NY 10598-0218 USA 

Library of Congress Cataloging-in-Publication Data 
Mandelbrot, Benoit B. 

Fractals and scaling in finance: discontinuity, concentration, risk I Benoit 
Mandelbrot. 

p. cm. 
Includes bibliographical references. 
ISBN 978-1-4419-3119-1 ISBN 978-1-4757-2763-0 (eBook) 
DOI 10.1007/978-1-4757-2763-0 
1. Finance-Statistical methods. 2. Fractals. 3. Scaling (Social sciences) 

I. Title. 
HG176.5.M36 1997 
332'.01'S14742-dc21 97-37930 

ISBN 978-1-4419-3119-1 Printed on acid-free paper 

C 1997 Springer Science+Business Media New York 
Originally published by Benoit B. Mandelbrot in 1997 
Softcover reprint of the hardcover I st edition 1997 
All rights reserved. This work may not be tmnslated or copied in wbole 01' in part without the written 
permission of the publisher, Springer Science+Business Media, LLC, 
except for brief excerpts in connection with reviews or scholarly analysis. Use in 
connection with any form of information storage and retrieval, electronic adaptation, computer 
software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. 
The use in this publication of Iladc names, trademarks, service marks and similar terms, even if they 
are DOt identified as such, is DOt to be taken as an expression of opinion as to whether or not they are 
subject to proprietaIy rights. 

987654 

springeronlinc.com 



To my sons, Laurent and Didier, 

I dedicate this intellectual fruit of mine, 

their demanding sibling 



List of Chapters 

In this List of Chapters, the sources given after the titles include (in parentheses) 
the letter M followed by the year of publication and by the lower case letter that the 
Bibliography uses to distinguish different texts published in the same year. In the 
Bibliography, the items reproduced in this book and in Volumes Nand Hare 
marked by a star followed by a chapter number, which in some cases is incomplete 
or only tentative. 

Foreword by Ralph E. Comory ................................................... ix 

I. NONMATHEMATICAL PRESENTATIONS 

Preface (1996) .................................................................................... 1 

E1 Introduction (1996) ......................................................................... 13 

E2 Discontinuity and scaling: scope and 
likely limitations (1996) ................................................................. 50 

E3 New methods in statistical economics (M 1963e) .................... 79 

E4 Sources of inspiration and historical background (1996) ...... 105 

II. MATHEMATICAL PRESENTATIONS 

E5 States of randomness from mild to wild, and 
concentration in the short, medium and long run (1996) ..... 117 

E6 Self-similarity and panorama of self-affinity (1996) .............. 146 

E7 Rank-size plots, Zipf's law, and scaling (1996) ....................... 198 

E8 Proportional growth with or without diffusion, 
and other explanations of scaling (1996) . 
• Appendices (M 19640, M 1974d) ........................................... 219 

E9 A case against the lognormal distribution (1996) .................. 252 



III • PERSONAL INCOMES AND FIRM SIZES 

EI0 L-stable model for the distribution of income (M 1960i) . 
• Appendices (M 1963i, M 1963j) ............................................. 271 

Ell L-stability and multiplicative variation of income (M 1961e) 307 

E12 Scaling distributions and income maximization (M 1962q) .336 

E13 Industrial concentration and scaling (1996) ............................ 364 

IV. THE M 1963 MODEL OF PRICE VARIATION 

E14 The variation of certain speculative prices (M 1963b) . 
• Appendices (Fama & Blume 1966, M 1972b, M 1982c) ..... 371 

E15 The variation of the price of cotton, wheat, and railroad 
stocks, and of some financial rates (M 1967j) ......................... 419 

E16 Mandelbrot on price variation (Fama 1963) 
(A guest contribution by E. F. Fama) ....................................... 444 

E17 Comments by P. H. Cootner, E. Parzen & W. S. Morris 
(1960s), and responses (1996) ..................................................... 458 

E18 Computation of the L-stable distributions (1996) .................. 466 

V. BEYOND THE M 1963 MODEL 

E19 Nonlinear forecasts, rational bubbles, and 
martingales (M 1966b) ................................................................. 471 

E20 Limitations of efficiency and martingales (M 1971e) ............ 492 

E21 Self-affine variation in fractal time 
(Section 1 is by W. H. Taylor) (M & Taylor 1967, M 1973c) 513 

CUMULATIVE BIBLIOGRAPHY .............................................. 526 

INDEX ............................................................................................ 542 



Foreword 

IN 1959-61, while the huge Saarinen-designed research laboratory at 
Yorktown Heights was being built, much of IBM's Research was housed 
nearby. My group occupied one of the many little houses on the Lamb 
Estate complex which had been a sanatorium housing wealthy alcoholics. 

The picture below was taken about 1960. It shows from right to left, 
T.e. Hu, now at the University of California, Santa Barbara. I am next, 
staring at a network I have just written on the blackboard. Then comes 
Paul Gilmore, late of the University of British Columbia, then (seated) 
Richard Levitan, now retired, and at the left is Benoit Mandelbrot. 
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Even in a Lamb Estate populated exclusively with bright research­
oriented people, Benoit always stood out. His thinking was always fresh, 
and I enjoyed talking with him about any subject, whether technical, poli­
tical, or historical. He introduced me to the idea that distributions having 
infinite second moments could be more than a mathematical curiosity and 
a source of counter-examples. This was a foretaste of the line of thought 
that eventually led to fractals and to the notion that major pieces of the 
physical world could be, and in fact could only be, modeled by distrib­
utions and sets that had fractional dimensions. Usually these distributions 
and sets were known to mathematicians, as they were known to me, as 
curiosities and counter-intuitive examples used to show graduate students 
the need for rigor in their proofs. 

I can remember hearing Benoit assert that day-to-day changes of stock 
prices have an infinite second moment. The consequence was that most of 
the total price change over a long period was concentrated in a few hectic 
days of trading and it was there that fortunes were made and lost. He 
also asserted that the historical data on stock prices supported this view, 
that as you took longer and longer historical data, the actual second 
moments did not converge to any finite number. 

His thinking about floods was similar. 

Benoit's ideas impressed me enormously, but it was hard to get this 
work recognized. Benoit was an outsider to the substantive fields that his 
models applied to, for example economics and hydrology, and he received 
little support from mathematicians who saw only that he was using 
known techniques. Benoit's contribution was to show that these obscure 
concepts lie at the roots of a huge range of real world phenomena. 

Lack of recognition, however, never daunted Benoit. He stuck to his 
ideas and worked steadily to develop them and to broaden their range of 
applicability, showing that one phenomenon after another could be 
explained by his work. I was very pleased when I was able to get him 
named an IBM Fellow, and later was successful in nominating him for the 
Barnard Medal. After that the floodgates of recognition started to open 
and Benoit today is one of the most visible of scientific figures. 

Surely he has earned that visibility, both for his world-changing work, 
and for his courage and absolute steadfastness. 

Ralph E. Gomory 
President, Alfred P. Sloan Foundation 
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Preface 

PUBLIC OPINION AND THE PROFESSION know better than ever 
before that prices often change with hair-raising swiftness. In 1996, IBM 
experienced two large near-discontinuities: it fell by more than 10% and 
later rose by 13.2%. Furthermore, even in the absence of actual jumps, 
price change does not occur more or less evenly over time, but tends to 
concentrate in short "turbulent" periods. Concentration is a familiar 
concept in the study of industrial organization; it will be shown to gener­
alize to the variation of prices. Wide awareness of discontinuity and 
closely related forms of concentration is reinforced by failures of portfolios 
that claimed to be free of risk. 

This book is largely devoted to the above topics. Stock Market 
"chartists," as contrasted with the "fundamentalists," believe that charts 
embody everything needed to predict the future and devise winning strat­
egies. Irrespectively of one's position on this dispute, I believe that one 
must understand the structure of charts thoroughly, including features 
that fail to bring positive returns to the investor. The understanding 
gained by a thorough exploration is bound to bring Significant knowledge 
about the mechanisms of the financial markets and about the laws of eco­
nomics. Most importantly, this knowledge is essential for evaluating the 
unavoidable risks of trading. 

This book is symbolized on its cover by a spongiform object that can 
be admired in Paris, at the Museum National d'Histoire Naturelle (gift of 
Fondation Elf). This object is a natural fractal; as such, it exhibits holes of 
many different sizes (ranging from large down to a "lower cutoff"), just as 
financial data exhibit "cycles" of many different durations. This object is a 
polysynthetic aggregate, the end-product of ill-known natural causes that 
only randomness can describe. Finally, and appropriately, its substance is 
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almost pure gold, near-completely extracted from the white quartz within 
which it hid underground before its recent discovery in California. 

The search for winning trading strategies is a goal of every study in 
finance, but will not be addressed here. Ultimate scientific explanation is 
attractive and important, but financial engineering cannot wait for full 
explanation. In any event, this book strives towards a second best: it 
seeks a "descriptive phenomenology" that is organized tightly enough to 
bring a degree of order and understanding. Indeed, a multitude of conse­
quences that can be tested empirically will be drawn from somewhat 
abstract statistical algorithms called "scaling". They look simple, even 
simple-minded, but prove to be "creative," insofar as they generate 
unexpectedly complicated and structured behavior. This will establish 
that a wealth of features beloved by chartists need not be inserted "by 
hand", but may well follow inevitably from suitable forms of totally 
random variability. 

The word "model" shall not denote the mathematical expression of an 
economic relationship, rather a statistical algorithm meant to fulfill an 
apparently extravagant ambition that was stated eloquently by Einstein. 
"The grand aim of all science is to cover the greatest number of empirical 
facts by logical deduction from the smallest number of hypotheses or 
axioms." Thus, an ideal model of price variation is one that produces 
sample data streams that are hard to distinguish from actual records, 
either by eye or by algorithm, and achieves a good part of this goal 
without ad-hoc "patch" or "fix." 

Let us return to the word "scaling:" this book shows that many empir­
ical facts are consequences of the following property assumed as "axiom." 
Starting from the rules that govern the variability of price at a certain scale 
of time, higher-frequency and lower-frequency variation is governed by 
the same rules, but acting faster or more slowly. This axiom has several 
increasingly broad implementations, which is fortunate, because financial 
data are of such awesome variety, that no single model can fit every 
market without being too complicated in some cases. 

The preceding thoughts, combined with acceptance of the market 
maxim that it is better to be approximately right than certifiably wrong, 
led through successive innovations to several models of increasing power 
and generality; determining the model that applies helps sort out the 
markets into several distinct "states of variability." 

At this point in time, my most general model is described by the 
words "fractional Brownian motion of multifractal time;" it successfully 
accounts for the variation of foreign exchange rates. 
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The first and most specialized model I put forward in 1963 is "Levy 
stable motion;" it suffices to account for the "tail-dominated" variation of 
cotton spot prices. 

A model I put forward in 1965 is "fractional Brownian motion;" it 
accounts for prices whose variation is II dependence-dominated." 

In 1967, with H. M. Taylor, I injected the process of "subordination", 
and in 1972 armounced a more general approach involving multifractals. 

This book explains all those technical terms and motivates the broad 
family of processes that they denote. 

All my models' ambition is to provide more effective ways to handle 
relatively rare events that have very strong effects. Man tends to react by 
either overestimation or neglect, and the discussion will necessarily 
involve several specific issues of wider relevance to the understanding and 
use of statistics. 

Having been very active in finance and economics in the late fifties and 
early sixties, I longed to bring out a selection of my papers on those 
topics. The project kept being postponed, and eventually evolved into a 
hybrid: a newly-written book that is followed by long "appendices" 
reproducing old papers that give historical depth and add technical detail. 

Alternatively, this book may be said, like the clothing worn by a tradi­
tional English bride, to incorporate something old, something new, some­
thing borrowed and even something blue. 

The old refers to papers I devoted to economics in the 1960s. They are 
occasionally described as centered on "cotton prices and the Nile River," 
even though their scope was far wider. Key words that continue to be in 
use include "L-stability," "fractional Brownian motion," and 
"subordination." Key words that were superseded include "Levy 
stability," "Levy distributions," "Pareto-Levy law," and "Paretian 
phenomena." My most important, best-known and most influential old 
paper is "The Variation of Certain Speculative Prices," M 1963b{E14}. In 
the reference style explained in the first lines of the List of Chapters and of 
the Cumulative Bibliography, M stands for "Mandelbrot" and {E14} means 
"Chapter 14 of this book." M 1963b{E14} and its sequel clearly show that I 
never believed that prices follow exactly a random walk. 

The borrowed refers to Comments and a Guest Contribution. 
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As to blue, in three shades, it bears continuing witness of the official 
colors of several institutions: I worked at IBM for half a life, continued at 
Yale, and, long ago, started at the Paris laboratory of Philips. 

Last, but not least, the new refers to the fact that many significant steps 
beyond M 1963b{E14} were taken after the 1960s, some of them recently; 
hence roughly half of the chapters were specially written for this book. 
The contents of three papers by myself, Fisher & Calvet (in different per­
mutations) will be summarized, but this book could not wait for those 
papers to be completed. 

In no way does this book claim to be a balanced exposition of the 
present status of my approach to finance. Books and other publications 
that either challenge it, or adopt and expand its conclusions, are rapidly 
increasing in numbers, but I never managed to read more than a few of 
them. (Some are mentioned in M, Fisher & Calvet 1997.) Extensive recent 
discussions with many references are Mirowski 1990, 1996, McCulloch 
1996, Ballie 1996, Rachev 1996, and forthcoming books by Levy-Vehel & 
Walter and Rachev & Mittnik. 

A few words about data and method are in order. Data was scarce in 
the 1960s, but I took great pains to analyze them in detail. Today, data 
are extremely abundant, but I am ill-equipped for empirical work 

This book's level of mathematical difficulty varies from high to low. 
Large parts are readable without much mathematical training, but many 
sections involve mathematics that, without being difficult, is delicate and 
familiar to few, and in many cases is published here for the first time. But 
mathematics is not pursued for its own sake. 

To those who may find some parts to be overly mathematical, or oth­
erwise baffling, my advice is "do not give up, merely skip ahead; the next 
topic may well be familiar or otherwise reassuring, and the difficulties you 
encounter may be gone on second reading." 

As to the development of new statistical tools, I do not dwell on it, 
though statistical fitting is performed with care, and the need for new 
tools is evident throughout. 

All told, my methods of investigation are those of a practicing theore­
tical and computational physicist. As a matter of fact, this has been the 
case in every substantive field in which I worked. 
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But there are significant wrinkles. I do not propose to pursue the 
adaptation to economics of an existing theory of equilibrium and of 
"mild" fluctuations. To the contrary, my tools were not to reach physics 
proper until later, as shall be told in this Preface. Therefore, my forty-five 
years in science can be viewed as being unified in giving a broader scope 
to the spirit of physicS. 

A proper quantitative study of financial markets began in the early 
1960s, as witnessed by an influential anthology, Cootner 1964. That book 
includes a reprint of M 1963b{E14}, and interesting comments were con­
tributed by the editor, Paul H. Cootner (1930-1978). (See also Chapter 
E16.) One reads that "Mandelbrot ... has forced us to face up in a substan­
tive way to those uncomfortable empirical observations that there is little 
doubt most of us have had to sweep under the carpet up to now. With 
determination and passion he has marshalled, as an integral part of his 
argument, evidence of a more complicated and much more disturbing 
view of the economic world than economists have hitherto endorsed. Fur­
thermore, this new view has a strong attraction for many of us." 

Elsewhere in Cootner 1964, one reads that "There can be no doubt that 
Mandelbrofs hypotheses are the most revolutionary development in the 
theory of speculative prices since Bachelier 1900." This last reference can 
be viewed as the point of departure of a rational approach to finance, 
since it was the first to describe the Brownian motion model, which will 
be discussed momentarily. 

Needless to say, my view of the economic world's complexity was not 
adopted in 1964, its implications were not faced, and the study of finance 
continued to rely on the "1900 model" of Bachelier, which pointedly 
denies discontinuity and concentration. Those obvious defects are 
becoming unacceptable, bringing me back to the study of finance. 

To tackle discontinuity and concentration, I conceived in the late fifties a 
tool that was already mentioned, but deserves elaboration. I concluded 
that much in economics is self-affine; a simpler word is scaling. This notion 
is most important, and also most visual (hence closest to being self­
explanatory), in the context of the financial charts. Folklore asserts that 
"all charts look the same." For example, to inspect a chart from close by, 
then far away, take the whole and diverse pieces of it, and resize each to 
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the same horizontal format known to photographers as "landscape". Two 
renormalized charts are never identical, of course, but the folklore asserts 
that they do not differ in kind. The scholarly term for "resize" is to 
"renormalize" by performing an "affinity," which motivated me in 1977 to 
coin the term "self-affinity." (Scaling can also be self-similar, as we shall 
see in Section 2 of Chapter E6.) The scholarly term for "to look alike" is 
"to remain statistically invariant by dilation or reduction." 

I took this folklore seriously, and one can say that a good portion of 
this book studies financial charts as geometric objects. 

Brownian motion is scaling also, but it is best to restrict this term to 
non-Brownian models. Non-Brownian forms of scaling are sometimes 
called "anomalous;" a better term is "non-Fickian." 

Viewing the renormalized pieces of a chart as statistical samples from 
the same underlying process, I identified, one after another, several non­
Brownian implementations of scaling, and tested them - successfully - in 
one or another financial context. 

From the viewpoints of economics and finance, the most striking pos­
sible consequence of "non-Fickian" scaling is discontinuity/concentration. 

In this spirit, the "M 1963 model," centered on M 1963b{E14}, con­
cerned speculative prices for which long-term dependence is overwhelmed 
by discontinuities or periods of very fast change. 

As soon as advances in computer graphics made it possible, fractal 
"forgeries" of price records were drawn for the M 1963 model. These for­
geries prove to be realistic. This significant discovery became an early 
exhibit of a surprising and fundamental theme common to all aspects of 
an area to be discussed momentarily, fractal geometry. 

In a later "M 1965 model" (M 1965h{H}, M & Van Ness 1968{H}, and 
many other chapters in M 1997H, the key factor is long-term dependence. 

The "M 1967 model," described in M & Taylor 1967{E21}, soon intro­
duced the notion of trading time and pointed out the relevance of a once 
esoteric mathematical notion called "subordination." 

Finally, M 1972j{N14} introduced the notion of multifractal, and con­
cluded (page 345) by immediately pointing out this notion's possible 
implications to economics. This is why the term "M 1972 model" will be 
applied to the approach that I developed in recent years on the basis of 
multifractals. 

The scaling principle of economics incorporates these and all other 
forms of variability and promises further generalizations. I also used 
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scaling in other contexts of economics, such as the distribution of income 
and of firm sizes. 

Moving on from the visual to the analytic aspect of the study of 
scaling, it involves diverse "scaling exponents." One is Pareto's income 
exponent, which is familiar to many economists. 

M 1963b{E14} attracted attention, witnessed by the above quotes from 
Cootner 1964, praise from W.H. Morris, and a special session of the 
Econometric Society (see Chapter E16), witnessed also by doctoral disserta­
tions that I supervised, Fama 1965 and Zajdenweber 1976, and the disser­
tations of Fama's students, especially Blume 1968 and Roll 1970. In 
addition, I was elected to Fellowship in the Econometric Society (and 
listed in a Who's Who in Economics.) But until the strong revival that we 
are now witnessing, interest in the M 1963 model waned (and the second 
edition of that Who's Who dropped me.) 

It was dear that I addressed concerns that were not being faced, that 
is, answered questions that were not being widely asked, and that my reli­
ance on ccmputers was prohibitive. More importantly, the conceptual 
tools of my work, and its perceived consequences, were resisted. In a 
way, one may say that I was "victimized" by a case of unexpected histor­
ical primacy of financial economics over physics. 

An earlier case of such primacy was already mentioned twice. Odd 
but true, and implied in the quote from Cootner 1964, a maverick named 
Louis Bachelier (1870-1946) discovered Brownian motion while studying 
finance, five years before Albert Einstein and others independently redis­
covered and developed it in physics. Eventually, but not until the 1960s, 
many hands brought Brownian motion back into economics. 

Quite similarly, scaling and renormalization were central to my work 
in finance several years before they were independently discovered and 
developed in the study of critical collective phenomena of physics, 
through the work of Fisher, Kadanoff, Wid om, Wilson, and others. In fact, 
"scaling" and "renormalization" are those physicist's terms, and replace 
my weaker terminology. This "rerun" of the story of Brownian motion 
confirms that, while economics finds it easy to borrow from established 
physics, the cases of historical primacy of economics over physics start by 
being a handicap, if they involve overly unfamiliar and untested tools. 
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Interrupting the study of finance, I went on to investigate scaling and 
renormalization in more hospitable contexts scattered over mathematics, 
physics, astronomy, the earth sciences, and elsewhere. This explains yet 
another word, already mentioned in this preface and featured on this 
book's title page. Fractal, a word I did not coin until M 19750, denotes a 
new geometry of nature that, in a word, makes it possible to quantify 
many forms of roughness. It brought together diverse bits of scattered 
knowledge coming from opposite and distant sides, and made them 
interact and bear fruit. Thanks to fractal geometry, those bits of know­
ledge became understood, acquired a clear identity, and ceased to be 
"homeless" by becoming part of a new field. 

One side brought diverse and scattered empirical observations (some 
of them stated in the form of "folklore.") All raised questions that cry out 
to be answered, but were finding no answer with the existing tools. In a 
real sense, many drifted into the dustbin of the history of science. 

The other side brought several notions that mathematicians had con­
trived with no motivating application in sight. Quite the contrary, those 
notions were specifically introduced, and continued to be presented, as 
examples of "exceptional" or "pathological" behavior. Their sole role was 
to demonstrate that mathematics has a creative freedom that requires no 
concrete need or use to be unleashed. I turned those notions around, so to 
speak, and matched those "answers without questions" to the "questions 
without answers" mentioned in the preceding paragraph. 

Needless to say, this match between the "dustbin" and the "psychi­
atric hospital" brought immediate need for new tools and new data, hence 
advances in mathematics as well as in observation. Furthermore, the 
move of fractal geometry from finance to physics and mathematics was 
deeply helped by an unexpected novelty: the computer and computer 
graphics began to play an increasingly essential role. The reader may 
know M 1982F{FGN) for what we call "computer forgeries" of mountains 
that share the "extravagant ambition" expressed early in this preface, ... 
and fulfill it partially, but better than anyone expected. 

Acquaintance with fractals is not a prerequisite to reading this book, 
but a sketch is found in Section 2 of Chapter E6. In any event, this book 
uses the term fractal sparingly, but even the reprinted chapters are thor­
oughly impregnated with the idea. In fractal technical terms, my succes­
sive models in finance signify that, once again, the charts generated by my 
models are self-affine. Being self-affine involves several specific embod­
iments of increasing generality and power. 
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Yet another reason stalled the writing of this book in the mid-sixties and 
made me move out of economics. When P. H. Cootner described M 
1963b{E14} as a "revolutionary development," did he think mostly of 
destruction or reconstruction? The answer is found in Cootner 1964: 
"Mandelbrot, like Prime Minister Churchill before him, promised us not 
utopia, but blood, sweat, toil and tears. If he is right, almost all our statis­
tical tools are obsolete ... , past econometric work is meaningless ... It 
would seem desirable not only to have more precise (and unambiguous) 
empirical evidence in favor of Mandelbrot's hypothesis as it stands, but 
also to have some tests with greater power against alternatives that are 
less destructive of what we know." 

The wish to see improved statistical tests can be applauded without 
reservation. But it is prudent to fear that "what we know" is not neces­
sarily the last word. Allow me just one example. When Fast Fourier algo­
rithms became available around 1964, spectral analysis created great 
interest among economists. Tests showing some price series to be nearly 
"white" were interpreted as implying the absence of serial dependence. 
The result made no sense and was forgotten. But (as reported in Chapter 
E6) a promising non-Gaussian model of price variation is white, despite 
the presence of strong serial dependence! It often seems that novel uses of 
known statistics may at the same time test a hypothesis and test a test! 

Be that as it may, the study of financial fluctuations moved on since 
1964, and became increasingly refined mathematically while continuing to 
rely on Brownian motion and its close kin. Therefore, Cootner's list of 
endangered statistical techniques would now include the Markowitz 
mean-variance portfolios, the Black-Sholes theory and Ito calculus, and the 
like. 

In Cootner's already quoted words, my "view of the economic world 
is more complicated and much more disturbing than economists have 
hitherto endorsed." This implies that the erratic phenomena to which this 
book is devoted deserve a special term to denote them, and explain why I 
chose to call them wildly random. By contrast, Brownian motion and most 
models used in the sciences deserve to be characterized as mildly random, 
and lognormality and some other treacherous forms of randomness that 
are intermediate between the mild and the wild will be described as slow. 

The point is this: the specificity of slow or wild randomness in eco­
nomics could be disregarded for many years, but no longer. In particular, 
new statistical tools are urgently needed. 



10 PREFACE 0 0 EP 

Attention can now turn to a last word on the title page. This is one of 
several volumes under preparation collectively called Selecta, and meant to 
accompany my book-length Essays, M 19750{LOF}, M 1977F and M 
1982F{FGN}. Those Essays elucidate a strong and long-term unity of 
purpose, but their technical references were hard to locate, read and relate 
to each other. The technical Selecta originated in a set of reprints sorted 
out in several categories, typically centered around a key paper. (It was a 
relief to observe that all my papers could be reprinted without being 
embarrassing, even though in fact only a few will be reprinted.) 

The topics of those Selecta books are deeply interdependent, but to a 
large extent they can be read independently of each other, in no logical 
order. Therefore, each is denoted by the first letter of a key word. Here, 
this key word is economics, which is why all chapter numbers begin by E. 
At least three of these books, the present one, M 1997H, and M 1997N, 
concern the broad concept of self-affine fractality. Those other books focus 
on turbulence, noises, hydrology, and other physical phenomena; however, 
their discussions of multifractality and self-affinity are essential to under­
stand, study, and develop my models in finance. 

The diverse obstacles that made my work "premature" in the 1960s 
have vanished. Computers are everywhere. Physicists and fractalists 
developed new modeling tools that can be applied to finance. Abundant 
financial data are readily available. Events insure that concern with dis­
continuity is near-universally shared, and my work is pointedly addressed 
to the many "anomalies" that bedevil prevailing financial models. 

Overall, my ideas now fit in the framework of fractals (hence also of 
chaos), and of experimentation with new financial products. An effect of 
these changes is to bring me back to the study of finance. 

Yet, this book barely scratches its topic. In particular, the M 1963 and 
M 1965 models are linear. This is unrealistic, but convenient, and some 
techniques of econometrics extend to linear models with nonGaussian 
"error terms." However, non-linearity entered with the model in M 
1966b{E19} and the M 1967 and M 1972 models; it is at the center of 
current work that would not fit in this book. 

New Haven, CT, & Yorktown Heights, NY, May 1997 
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Organization of the book 

Granted time, assistance, and freedom from other tasks, this book would 
have become less idiosyncratic and bulky. But the present format has 
redeeming features: the reader can choose the sequence of chapters that is 
most suitable, and can start either with the history represented by the 
reprints, or the present represented by the new chapters. 

The old and new halves of the book are organized differently. 

The reprinted chapters. The second half of the book is straightforward. 
The reprints of major old papers follow a logical order that happens to be 
close to the order of original publication. To avoid clutter, several short 
publications follow the chapters to which they are closest in subject, as 
Pre- or Post-publication Abstracts or Appendices. Chapter Forewords and 
Annotations were added, and many chapter titles were updated from the 
originals found in the Cumulative Bibliography. 

As the originals are readily available in standard periodicals, and were 
criticized for poor English style, it was felt best to copy-edit them care­
fully, with added subtitles, but of course no change whatsoever in the ori­
ginal thinking. A few afterthoughts and/ or corrections were inserted as 
Postscripts placed within braces {}. More importantly, the notation and 
terminology were unified - more or less systematically: original terms 
that did not take root were replaced by terms chosen to be easy on the 
tongue, like scaling, fractal, L-stable, mild, slow and wild. Once again, they 
were not part of my vocabulary when those old papers were written. 

The remaining overlap between the original articles will (once again) 
assist those who will not read the reprints in sequential order. 

The newly written chapters. UnaVOidably, the first half of this book is 
organized in somewhat complicated fashion. It is best viewed as a house 
that boasts not one but several welcoming entrances, between which the 
self-sufficient reader is free to choose. To make this task easier, the new 
chapters, like the old, involve repeats; those are easily skipped, but 
decrease the need for cross references. Thanks to this policy, it became 
possible to order the chapters for the sake of one category of readers: 
those who prefer to soften the harder mathematics by beginning with 
extensive verbal explanations and light mathematical arguments. 



PART I: NONMATHEMATICAL PRESENTATIONS 

Chapter E3, an early expository work, appeared the same month as "The Vari­
ation of Some Speculative Prices," M 1963b{E14}, and remains of more than his­
torical interest, but of course is not up-to-date. The detailed introduction 
prepared for this book is divided into three chapters written at a level of detail 
intermediate between the breezy Preface and the reprints. Additional nonmath­
ematical preliminaries are found in the first sections of Chapters E5 and E6. 
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Introduction 

.. Abstract. A pragmatic attitude towards the slippery notion of random­
ness is described in Section 1. A premise of my work is that graphics 
must not be spumed; Section 2 argues that it remains indispensable even 
beyond the first stage of investigation. 

A more pointed premise of my work is that the rules of price variation 
are not the same on all markets, hence a single statistical model may not 
describe every market without unacceptable complication. I agree that "it 
is better to be approximately right than certifiably wrong," and worked, in 
succession or in parallel, with several distinct fractal models of finance of 
increasing generality. Adapting the style of reference used throughout 
this book, those models will be denoted by the letter M followed by the 
year of original publication or announcement. 
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The core of this chapter is made of Sections 5 to 9. A first glance at 
scaling is taken in Section 5. Section 6 introduces the M 1963 model, 
which deals with tail-driven variability and the "Noah" effect and is based 
on L-stable processes. Section 7 introduces the M 1965 model, which deals 
with dependence-driven variability and the "Joseph" effect and is based 
on fractional Brownian motion. Old-timers recall these models as centered 
on "cotton prices and the River Nile." Section 8 introduces the M 1972 
combined Noah-Joseph model, which this book expands beyond the ori­
ginal fleeting reference in M 1972j{N14}. That model is based on fractional 
Brownian motion of multifractal trading time. 

The M 1965 and M 1972 models have a seemingly peculiar but essen­
tial feature: they account for the "bunching" of large price changes indi­
rectly, by invoking unfamiliar forms of serial dependence with an infinite 
memory. All the alternative models (as sketched and critized in Section 4 
of Chapter E2) follow what seems to be common sense, and seek to reach 
the same goal by familiar short memory fixes. Infinite memory and infi­
nite variance generate many paradoxes that are discussed throughout this 
book, beginning with Section 8.3. 

Here are the remaining topics of this chapter: Brownian motion (the 
1900 model!) and martingales are discussed in Section 3. The inadequacies 
of Brownian motion are listed in Section 4. Section 9 gives fleeting indi­
cations on possible future directions of research. Finally, the notions of 
"creative model" and of "understanding without explanation" are the 
topics of Section 10. ... 

IN ADDITION TO THIS CHAPTER, the book also has other welcoming 
entrances, each geared to a different constituency. Chapters E1 to E4 use 
mathematics sparingly and proceed leisurely. Their point of arrival will 
not be described in mathematical terms until Chapter E6, but was men­
tioned at the beginning of the Preface. 

1. AN ENTIRELY PRAGMATIC VIEW OF THE SLIPPERY NOTION OF 
RANDOMNESS 

Randomness is an intrinsically difficult idea that seems to clash with pow­
erful facts or intuitions. In physics, it clashes with determinism, and in 
finance it clashes with instances of clear causality, economic rationality 
and perhaps even free-will. It is easy to acknowledge that randomness 
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can create its peculiar regularities. But it is difficult to acknowledge that 
such regularities either could be interesting or could arise in physics or 
finance. As a result, the fact that any statistical model could be effective 
seems a priori inconceivable and is difficult to acknowledge. 

The problem is mitigated in physics because the atoms in a gas are not 
known individually, and much exaggerated in finance for the opposite 
reason. Furthermore, it is difficult in finance to disentangle the roles of 
the observer and the active participant. Most persons seek financial know­
ledge for the purpose of benefitting from it, and thereby modifying what 
they benefit from. But merely describing the markets does not perturb 
them, and the ambition of this book is simply to observe, describe some 
degree of order, and thereby gain some degree of understanding. This 
leads to a pragmatic view described in Chapter 21 of M 1982F{FGN}, titled 
"Chance as a Tool in Model Making." Several paragraphs of that chapter 
will now be paraphrased. In short, the notion of randomness is both far 
more effective and far less assertive than is often assumed or feared. 

It is necessary to first comment on the term, random. In everyday lan­
guage, a fair coin is called random, but not a coin that shows head more 
often than tail. A coin that keeps a memory of its own record of heads and 
tails is viewed as even less random. This mental picture is present in the 
term random walk, especially as used in finance (Section 3). 

Of course, statisticians hold a broader view of randomness, which 
includes coins that are not fair or have a memory. However, more or less 
explicitly, statisticians ordinarily deal with observations that fluctuate 
around a "normal state" that represents equilibrium. A good picture of 
that classical scenario is provided by the edge of a razor blade. When 
greatly enlarged, it presents many irregularities, but from the user's view­
point, a high quality blade is practically straight overall, therefore its 
description splits naturally into a fluctuation and a highly representative 
"trend." In Chapter E5, such fluctuations will deserve to be called mild. 

For contrast, consider a coastline like Brittany's or Western Britain's. 
Taking into account an increasingly long portion will average out the 
small irregularities, but at the same time inject larger ones. A straight 
trend is never reached and interesting structures exist at every stage. 

All too often, however, "to be random" is understood as meaning "to 
lack any structure or property that would single out one object among 
other objects of its kind." The question arises, is this a fair characterization 
of randomness or, to the contrary, is the mathematical notion of chance 
powerful enough to bring about the strong degree of irregularity and vari­
ability encountered in coastlines as well as in financial charts? 
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The answer to that question came as a surprise: not only is chance 
powerful enough, but in many cases it goes beyond the desired goal such 
as, for example, the case for this generalized processes I introduced in 
M1967b{NIO} and proposed to call "sporadic". In other words, I perceive 
a tendency to grossly underestimate the ability of chance to generate 
extremely striking structures that had not been deliberately inserted in 
advance. 

However, fulfilling this goal demands forms of randomness that are 
far broader than is acceptable in the bulk of statistics. Once again, the 
physicists' concept of randomness is shaped by mild chance that is essen­
tial at the microscopic level, while at the macroscopic level it is insignif­
icant. In the scaling random fractals that concern us, to the contrary, the 
importance of chance remains constant over a wide range of levels, 
including the macroscopic one. This nonaveraging change is described in 
Chapter E5 as wild; I continually explore it, and claim that it, and not mild 
chance, is the proper tool in finance and economics. 

Be that as it may, the relationship between unpredictability and 
determinism raises fascinating questions, but this work has little to say 
about them. It makes the expression "at random" revert to the intuitive 
connotation it had at the time when it entered medieval English. The ori­
ginal French phrase "un cheval a randon" is reputed to have been uncon­
cerned with causes and the horse's psychology, and merely served to 
denote an irregular motion the horseman could not fully predict and 
control. 

Thus, while chance evokes all kinds of quasi-metaphysical anxieties, I 
am little concerned with whether or not Einstein's words, "the Lord does 
not play with dice, " are relevant to finance. I am also little concerned 
with mathematical axiomatics. The reason I make use of the theory of 
probability is because there is no alternative: it is the only mathematical 
tool available to help map the unknown and the uncontrollable. It is for­
tunate that this tool, while tricky, is extraordinarily convenient and proves 
powerful enough to go well beyond mild randomness to a wild and 
"creative" state of that concept. 

Let us draw some other consequences from the preceding combination 
of a credo and a promise. To be entitled to use probability theory, there is 
no need to postulate that every financial and economic event is generated 
by chance, rather than by cause. After the fact (ex-post), one may find 
uncontroversial or reasonable causes for at least some features. But before 
the fact (ex-ante), the situation is very different. In order to move towards 
a quantitative approach to economics (a "rational economics" to echo the 
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grand old term "rational mechanics"), one must unavoidably resort to prob­
ability theory. Further subtle but significant differences between ex-post 
and ex-ante are found throughout this book. 

To believe that the concept of randomness has far more power than it 
is credited with is essential, but is not enough. One must construct actual 
random processes that use few inputs, are tightly organized and fit the 
data so well as to yield a degree of understanding. To show this is fea­
sible is an ambition of this book. 

2. GRAPHICS, THE COMPUTER, STATISTICS AND BEYOND: 
"INDEX NUMBERS" AND OTHER SUMMARIES OF THE DATA 

"To see is to believe," and to prove that the last paragraph of the pre­
ceding section is valid, the easiest and most convincing path consists in 
allowing the eye to compare the actual data to the outputs of random 
processes, without waiting for the technical details that will not be given 
until Chapter E6. The reader is, therefore, encouraged to compare Figures 
1 and 2 of this chapter. The latter is a simulation of a surprisingly simple 
process (which took a surprisingly long time to be identified!) and it can 
be "tuned" to achieve a wide range of different behaviors. 

My claim is that ability to imitate is a form of understanding. To 
preempt a challenge, imagine that a statistical test proclaims that the data 
in Figure 1 are actually very different from the simulation in Figure 2. If 
so, what should the proper response be: to dismiss the evidence of the 
eye or to look carefully for hidden assumptions that may have biased the 
statistical test? This second possibility is the one that this section proposes 
to examine in detail. Many readers may want to proceed to Section 3. 

Through most of history, computation and pictorial representation 
were at best prohibitively expensive and mostly impractical or even incon­
ceivable. Deep philosophical reasons were put forward to justify the fact 
that the eye became suspect and was almost completely banished from 
"hard science." In my opinion, those philosophical reasons were uncon­
vincing, and the real reasons for foresaking the eye was simply practical. 
Therefore, the advent of cheap computing and graphics will have a pro­
found and increasing impact throughout the sciences. Of special concern 
to us is its impact on probability theory and statistictive fields are related 
but separate and best examined in tum. 
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In the past, random processes could only be investigated through for­
mulas and theorems. The resulting knowledge is invaluable, but three 
episodes made me conclude, long ago, that it is incomplete. 

60 65 70 75 80 85 90 95 

FIGURE E1-1. Top: IBM stock from 1959 to 1996, in units of $10, plotted on loga­
rithmic scale. Bottom: the corresponding relative daily price changes, in units 
of 1%. 
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The shallowness of my earlier understanding of random walk first 
became obvious after I spent hours dreaming while examining, again and 
again, the sole illustration in Feller 1950 (Volume 1). This illustration, a 

FIGURE El-2. From top to bottom: plot of a computer simulation of the current 
fractal model of the variation of prices followed by a plot of its increments, 
and additional samples of the increments for different seeds. This figure is 
included here to make a point in anticipation of Chapter E6, where Section 4 
explains the underlying construction and Figure 5 exhibits additional samples. 



20 INTRODUCTION 0 0 El 

record of painstaking actual throws of a coin, is reproduced, with com­
ments, in Figure 4 of M 1963e{E3}, and also in Plate 241 of M 1982F{FGN}. 
William Feller later confided to me that this was one of several possible 
illustrations prepared for him, and was chosen because the alternatives 
were even further removed from the readers' prejudices. It was disap­
pointing that a figure I found inspiring should exemplify the fact known 
to everyone, that Man often use pictures to disguise reality, instead of illus­
trating it. But Man also uses words for the same purpose! Be that as it 
may, I think that the publication of all of Feller's pictures would have pro­
vided clearer "intuitive" or "in the fingers" understanding. 

Second episode: Following immediately upon M 1963b{E14}, Berger & 
M 1963{N} faced the challenge of making it obvious that a certain physical 
phenomenon involved a degree of randomness well beyond the mild. To 
force conviction, they had to resort to a hand-cut wire model. 

Third episode: As soon as crude "Calcomp" tracing tables could be 
attached to a computer, M & Wallis 1969a,b,c{H} hastened to put them to 
use in illustrating a process that will be discussed momentarily. Com­
paring the data with the sample functions of the M 1965 model and other 
models, we saw instantly that certain models could not possibly be 
correct, while other models seemed adequate. The "objective" statistical 
tests available at that time provided less clear-cut distinctions, confirming 
that they had been devised to deal with a context substantially different 
from the context of fractals. Only half in jest, we thought that the calcu­
lations involving existing statistical techniques were not only a way to test 
a model, but also to test the tests. 

Given the minimal cost of sample graphs, I never felt we erred by 
producing too many, but often fear (for example, when preparing this 
book) that we err by producing too few. 

The same issue can be seen under another light. Under the old tech­
nological constraints, the long lists of data provided by observation and 
measurement could not be graphed or manipulated usefully, and it was 
imperative to begin by compressing them drastically. In economics, of 
course, this compression yields diverse "indicators" or "index numbers." 
The most classical and simplest index numbers are (weighted) averages, 
but it is useful to use the same term more widely, in particular, for 
moments of order higher than 1. 

Needless to say, the proper selection of index numbers is an endless 
source of controversy, and skeptics claim that suitable weights can yield 
any result one wishes. Nevertheless, it is widely believed that moments 
are an intrinsic concept. But are they really? In mechanics, it is indeed 
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true that the first and second moments, weighted by mass, yield a body's 
center of gravity and radius of gyration. In finance, the value of a port­
folio is a non-controversial first sample moment; more controversial is 
"cost-of-living." But, ex-ante, second and higher moments are far from 
unquestionable. It is true that they playa central role in Taylor series (to 
be touched upon at the end of Chapter ES), but their main role is to 
provide quantitative "index numbers," whose usefulness must not be 
viewed as obvious but must instead be established separately in each case. 

I believe that, ex-post, the compression implicit in the moments may, 
but need not, be useful, depending on specific circumstances to be distin­
guished in Chapter ES. In the cases of mild randomness, as exemplified 
above all by independent Gaussian variables, very simple compression is 
"sufficient" and preserves the important information. However, much of 
this book will argue that economics and finance (as well as many fields of 
natural science) are characterized by forms of randomness that are not mild 
at all. A prime characteristic of wild randomness is that familiar index 
numbers altogether cease to be representative in their case. What should 
be done until new and more appropriate statistical tools become available? 
I think that one will have to live with graphical tests, and learn to perform 
them with care and without haste, taking full advantage of computer 
graphics. 

"When exactitude is elusive, it is better to be approximately right than 
certifiably wrong." To be unquestionably correct is a nice idea but is not an 
option, and the Stock Market wisdom quoted in this paragraph's title is an 
excellent characterization of one aspect of my approach. In particular, the 
Brownian model of Section 3 claims to be valid without restrictions, which 
is certainly quite wrong, while the scaling models of Sections 6 to 8 only 
claim to be approximately exact over a limited range of applicability. That 
is, when the data are compared with my theoretical distributions, one 
should expect systematic errors of specification that are larger than errors 
due to statistical fluctuations. 

More detailed reasons for tolerating the imperfection described in this 
subsection's title will be discussed in Section 5 and in Chapter E2. A dis­
cussion of this "necessary tolerance" should be part of statistics, but is not. 

Even the best objective statistical tests are not of universal validity. Who is 
testing the testers? My attitude is deeply colored by publications that reex­
amined my M 1963 model quantitatively and concluded that "objective" 
tests contradict the "subjective" claims I based on graphical evidence. 
Actually, that graphical evidence was confirmed again and again, while 
the objective tests are forgotten, as they deserved to be. Indeed, there is 
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no theorem without assumption, and even the best statistical test can only 
be used under certain conditions of validity. 

Take spectral analysis: this is unquestionably a powerful tool, but a 
very tricky one: Chapter E6 (Section 3.5) will describe a significant "blind 
spot" of spectral whiteness that concerns nonGaussianity. It is not a 
matter of mathematical nitpicking, but it directly concerns finance. More 
generally, if my models are in fact close to being correct, reality lies 
beyond the domain of applicability of many universally accepted statistical 
tests, and we should expect to find that these tests will conclude against 
my models' validity. All too often, strange as it may sound, the conclu­
sions yielded by such statistical criteria evaluate both the model and the 
test in some inextricable combination, from which little of use can be 
inferred. 

Once again, while statistics works out the above challenges, we have 
no choice but to rely on graphics. It is worth noting that fully fleshed-out 
and detailed pictures - not skeletal diagrams - put no premium on con­
cision, therefore on compression. But they put a heavy premium on the 
ability of the eye to recognize patterns that existing analytic techniques 
were not designed to identify or assess. 

We discussed only a small aspect of a wider shift that computer 
graphics brought on the role of pictures in the hard sciences (and in my 
own life). The question of whether "in the beginning" was the word or 
the picture is a fascinating topic best discussed elsewhere. 

3. "RANDOM WALK DOWN THE STREET," MILD RANDOMNESS, 
BROWNIAN MOTION (THE "1900" MODEL), AND MARTINGALES 

Scaling models are meant to replace the simplest model of price variation, 
which Malkiel 1973 breezily called "Random walk down the street." 
Every version assumes that prices change randomly and each price change 
is statistically independent of all past ones. The probabilists' original 
random walk proceeds in equal steps, up or down, equally spaced in time. 
In Figure 3, the steps are so small as to be indistinct. 

Another basic version assumes that price changes follow the Gaussian 
("bell curve") distribution, which allows for a "mild" level of scatter. 
Typical generalizations assume or imply that individual price changes 
need not be Gaussian, but are only mildly scattered. The technical 
meaning of the term "mild" is sketched in Chapter E2 and described in 
Chapters E5 and E6. Quite appropriately, those examples interpret the 
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word walk to denote a motion that proceeds in steps, while the alternative 
M 1963 model proceeds in jumps. 

FIGURE El-3. Graph of a sample of Brownian motion (top), and its white noise 
increments in units of 1 standard deviation (bottom). 
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3.1 The "ordinary" Wiener Brownian motion 

The continuous-time counterpart of random walk was advanced in 
Bacheller 1900, is now called Brownian motion, and will be denoted as B(t). 
Bacheller's discovery of Brownian motion in financial speculation occurred 
years before physicists discovered it in the motion of small particles, and 
decades before a mathematical theory of B(t) was provided by Norbert 
Wiener. The tale is recounted in M 1982F{FGN}, p. 392. Hence, the com­
posite term Wiener Brownian motion (WBM) will be used in case of ambi­
guity, in particular, when one must provide contrast with fractional 
Brownian motion (Section 7); a term used on occasion is "B 1900 model". 

The main properties of Wiener Brownian motion are best listed in two 
categories, as follows. 

3.1 Invariance properties of Wiener Brownian motion 

Invariances are familiar in the hard sciences. Thus, classical geometry 
begins by investigating what can be done when the shapes one deals with 
reduce to lines, planes, or spaces. And the simplest physics arises when 
some quantity such as density, temperature, pressure, or velocity is dis­
tributed in homogeneous manner. The line, plane or space, and the homo­
geneous distribution on them, are invariant under both displacement and 
change of scale; in technical terms, they are both stationary and scaling. 

Both properties extend to Wiener Brownian motion. 

• Statistical stationarity of price increments. Equal parts of a straight line 
can be precisely superimposed on each other, but this is not possible for 
the parts of a random process. However, samples of Wiener Brownian 
motion taken over equal time increments can be superimposed in a statis­
tical sense . 

• Scaling of price. Moreover, parts of a sample of Wiener Brownian 
motion corresponding to non-overlapping time increments of different 
durations can be suitably rescaled so they too can be superimposed in a 
statistical sense. This key property implements the principle of scaling: 
except for amplitude and rate of change, the rules of higher- and lower­
frequency variation are the same as the rules of mid-speed frequency vari­
ation. 

3.2 More specialized properties of Wiener Brownian motion 

Stationarity and scaling do not suffice to determine Brownian motion. It 
also has the following properties. 
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• Independence of price increments. Knowing the past brings no know­
ledge about the future. 

• Continuity of price variation. A sample of Brownian motion is a con­
tinuous curve, even though it has no derivative anywhere. (A technicality 
deserves to be mentioned once: the above properties only hold almost 
surely and almost everywhere.) 

• Rough evenness of price changes. The eye and the ear are more sensi­
tive to records of changes than of actual values. A record of Wiener 
Brownian price changes, over equal time increments M, is a sequence of 
independent Gaussian variables. A telling term for this process is "white 
noise." The ear hears it like the hum on a low-fidelity radio not tuned to 
any station. The eye sees it as a kind of evenly spread "grass"that sticks 
out nowhere. A telling sample is shown in the bottom of Figure 3. 

• Absence of clustering in the time locations of the large changes. 

• Absence of cyclic behavior. 

3.3 The martingale assumption, pro or con 

Another basic property of B(t) must be discussed separately. Bachelier 
1900 introduced B(t) as the easiest example he knew of a far broader class 
of processes now called martingales, which embody the notion of "efficient 
market" and successful arbitraging. 

Prices are said to follow a martingale if they somehow acquire the fol­
lowing desirable property: whether the past is known in full, in part, or 
not at all, price changes over all future time spans have zero as expecta­
tion. 

This definition allows properties other than the expectation to depend 
upon the past (as it does in M 1966b{E19}.) The notion of margingale was 
a bold hypothesis and a major breakthrough in 1900 and eventually 
received wide notice, witnessed by Cootner 1964. It does remain attractive 
and enlightening, but raises serious difficulties. 

A first difficulty is this. A positive martingale always converges; that 
is, it eventually settles down and ceases to vary randomly (Samuelson 
1965.) Conversely, a martingale that continues to vary randomly must 
eventually become negative. For example, a random walk eventually 
becomes negative. True, a "proportional effect" argument makes it cus­
tomary to postulate that it is the logarithm of price that is Brownian, or at 
least a martingale. When this is the case, price itself cannot become nega-
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tive, but ceases to be a martingale. Therefore, the "efficient market" justi­
fication for martingales disappears. 

A second problem is more serious. While a martingale implements 
the ideal of an efficient market, is it possible to implement it by 
arbitraging, even under ideal conditions? The answer is yes under the 
conditions postulated in M 1966b{E19}. But the answer is no in M 
1971e{E20}, which postulates that non-arbitraged price follows fractional 
Brownian motion, a generalization of B(t) to be discussed in Section 7. 
This function is not a martingale, and cannot be arbitraged to become one. 

4. BROWNIAN MOTION'S INADEQUACIES AS MODEL OF PRICE 
VARIATION, AND SKETCH OF PROPOSED REPLACEMENTS 

Brownian motion is far and away more manageable than any alternative. 
An immense mathematical literature grew around it, and recently devel­
oped "financial mathematics" draws extremely long mathematical infer­
ences from the assumptions that prices follow a martingale, and/or that 
B(t) applies very exactly to prices. Unfortunately, B(t) is an extremely 
poor approximation to financial reality. Soon after 1900, Bachelier himself 
saw that the data are nonGaussian and statistically dependent. When the 
model in Bachelier 1900 was "rediscovered" and confronted with reality, 
those discrepancies were independently observed by many authors. Thus, 
Osborne 1963 describes trading as tending to come in "bursts" and 
Alexander 1964 concluded that price variation is non-stationary. In the 
editor's comments of Cootner 1964, p. 193, one finds the suggestion that 
the bursts may be linked to the model of Berger & M 1963; not surpris­
ingly, I had the same idea, found it difficult to implement, but imple­
mented it in due time - as will be seen in Section 8. 

4.1 A list of discrepancies between Brownian motion and the facts 

• Apparent non-stationarity of the underlying rules. The top diagram in 
Figure 1 is an actual record of prices. Different pieces look dissimilar to 
such an extent that one is tempted not to credit them to a generating 
process that remains constant in time. While a record of Brownian motion 
changes looks like a kind of "grass," a record of actual price changes 
(bottom diagram of Figure 1) looks like an irregular alternation of quiet 
periods and bursts of volatility that stand out from the grass. 

• Repeated instances of discontinuous change. On records of price 
changes, discontinuities appear as sharp "peaks" rising from the "grass." 
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• Clear-cut concentration. A significant proportion of overall change 
occurs within clear-cut periods of high price variability. That is, the 
"peaks" rising from the "grass" are not isolated, but bunched together. 

• Conspicuously cyclic (but not periodic) behavior. For example, the 
real price series shown in Figure 1 shows conspicuous "cycles." 

It will be seen that the preceding discrepancies can be traced to two 
characteristics of a more theoretical nature. 

• The long-tailed ("leptokurtic") character of the distribution of price 
changes. An especially sharp numerical test of the instability of the sample 
variance is provided by the analysis of cotton data in Figure 1 of M 
1967j{E15}: over 50 sub-samples of 30 days, the sample variance ranged a 
hundred-fold. 

• The existence of long-term dependence. 

4.2 The Noah and Joseph effects, taken singly or in combination 

Those and other flaws of Brownian motion are widely acknowledged, but 
the usual response is to disregard them or to "fix" WBM piecemeat here 
and there, as needed. The resulting "patchwork" is discussed in Section 4 
of Chapter E2. My approach is very different. Instead of seeking a grand 
"model of everything/' I moved in successive piecemeal steps, adding gen­
erality and versatility as suitable tools became available. 

This strategy began by tackling nonGaussian tails and long depend­
ence separately. Reflecting two stories in the Bible, those of the Flood and 
of the Seven Fat and Seven Lean Cows, the underlying phenomena were 
called, respectively, Noah and Joseph Effects (M & Wallis 1968{H}). The M 
1963 model (Section 6) concerns cases where serial dependence is unques­
tionable, but a stronger driving feature resides in non-Gaussianity. The M 
1965 model (Section 7) concerns cases where non-Gaussianity is unques­
tionable, but the strongest driving feature resides in serial dependence. 

Because of their simplicity, the M 1963 and M 1965 models remain 
instructive and essential, but they are obviously oversimplified. The M 
1967 model simply rephrases the symmetric case of the M 1963 model, and 
the M 1972 model goes further and tackles non-Gaussianity and serial 
dependence simultaneously. The models in Sections 6 and 7 generalize 
Brownian motion in two directions one may call orthogonal to each other, 
and Section 8 brings those two generalizations together again, as special 
cases of the M 1972 model. Ways to separate Noah and Joseph features in 
a record of real data are tackled at the end of Section 7. 
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4.3 It is fruitful to emphasize "the exceptional", even at the cost of 
temporary and comparative neglect of "the typical"? 

The distinction between the typical and the exceptional is ancient, and my 
stress on discontinuity and concentration has been criticized. Clearly, 
when faced with rare events, Man finds it difficult to avoid oscillating 
between overestimation and neglect. 

Most common is a stress on the typical. It motivated Quetelet 1835 to 
his concept of "average man," and we read the following in the Preface of 
a famous treatise, Marshall 1890. "Those manifestations of nature which 
occur most frequently, and are so orderly that they can be closely watched 
and narrowly studied, are the basis of economic as of most other scientific 
work; while those which are spasmodic, infrequent, and difficult of obser­
vation, are commonly reserved for special examination at a later stage: 
and the motto Natura non tacit saltum is specially appropriate to a volume 
on Economic Foundations ... [Tlhe normal cost of production ... can be 
estimated with reference to 'a representative firm' ... " 

At first, these words seem to contradict an opinion expressed by 
Jacques Hadamard, that "it is the exceptional phenomena which are likely 
to explain the usual ones." But the case of a very concentrated industry 
suggests that the two viewpoints need not be in contradiction. Many 
believe, as I do, that emphasis on the largest firms agrees with 
Hadamard's opinion when "exceptional" is interpreted as meaning "con­
cerning few entries in a list of all firms." But it agrees with Marshall's 
when "representative" is interpreted as meaning "concerning a large pro­
portion of persons on the list of all the employees of those firms." 

5. INV ARIANCE PRINCIPLES: STATIONARITY AND SCALING 

The fractal approach to finance and economics rests on two features. 

One is a profound faith in the importance of invariances and in the 
possibility of identifying stationarity and scaling as invariance principles 
in economics. This will be elaborated upon in Chapter E2. 

The second feature is the recognition that probability theory is more 
versatile than generally believed, and the willingness to face several dis­
tinct "states of randomness." When suitably chosen, a scaling random 
process can allow variation that will be described as "wild," a term to be 
explained in Chapter E5. The sample functions of wild processes contain 
significant features that were not deliberately incorporated into the input, 
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yet, without a special "fix," achieve one or several of the following proper­
ties. 

• Repeated instances of sharp discontinuity can combine with continuity. 
The fact that non-Brownian scaling random processes can be discontin­
uous and concentrated is extraordinarily fortunate; it is not a mathematical 
pathology that would be source of concern. 

• Concentration can automatically and unavoidably replace evenness. 
• Non-periodic cycles can automatically and unavoidably follow from 

long-range statistical dependence. 

5.1 Principles of invariance 

In mathematics and physics, such principles are a staple and the key to a 
wonderful wealth of consequences drawn from one simple idea. But they 
are not an established part of economics. I recall the eloquence of Jacob 
Marshak (1898-1977), when proclaiming that the single economic invari­
ance he could imagine concerned the equality between the numbers of left 
and right shoes, ... and even that could not be trusted. Marshak was 
doubtless thinking of the basic invariance of mathematics and theoretical 
physics, which are stated as absolute. However, as already mentioned in 
Section 2, other parts of physics find it extraordinarily useful to work with 
invariances that are approximate and have a limited range of applicability. 

Thus, I propose to abandon Wiener Brownian motion as a model, but 
endeavor to preserve stationarity and scaling as basic invariance princi­
ples. 

5.2 Scaling under an especially critical form of conditioning 

The probabilists' notation used throughout this book. This notation represents 
random elements by capital letters, and their actual values by corre­
sponding lower case letters. Pr{"event"} will denote the probability of the 
"event" described between the braces. EX will denote the expected value 
of the random element X. Furthermore, this book uses words like scaling, 
Gaussian, lognormal as substantives, to mean scaling, Gaussian or 
lognormal distributions. 

The scaling distribution. As applied to a positive random variable, the 
term scaling, is short for scaling under conditioning. To condition a random 
variable U specified by the tail distribution P(u) = Pr {U > u}, suppose that 
it becomes known that U is at least equal to w. This knowledge changes 
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the original unconditioned U to a conditioned random variable W. Using 
a vertical slash to denote conditioning, the tail distribution of W is 

P(u) 
Pw(u) = Pr{W> u} = Pr{U > u I U> w} = P(w) . 

Now take tail distribution P(u) = Cu- a = (u/i1)-a. When w> il, condi­
tioning yields Pw(u) = (u/w)-a. This expression is functionally identical to 
P(u). The sole response to conditioning is that the scale changes from il to 
w. Hence, the tail distribution P(u) = Cu- a is denoted by the term scaling. 
In this wording, as seen in many places in this book, "Pareto's law" is an 
established empirical finding that states that the "frequency distribution of 
personal income is scaling." Conversely, P(u) = Cu- a is the only distrib­
ution that is scaling under this particular conditioning. 

By the logarithmic transformation V = log eU, this invariance property 
reduces to a well-known invariance property of the exponential distrib­
ution Pr {V> v} = exp[ - a(v - v)]. Conditioned by V> w> v, the tail dis­
tribution becomes P W<v) = Pr {V > v I V > w} = exp[ - a(v - w)], which is 
identical to Pr {V> v}, except for a change of location rather than scale. 

Starting from an exponentially distributed V, a scaling U is obtained 
as U = exp V. The logarithmic transformation is simple, the exponential is 
well-known, and the passage from V to U is obvious. Therefore, one may 
presume that no conclusion that is at the same time new and interesting 
can be obtained concerning the scaling U. The interesting surprise is that 
this presumption is totally unwarranted. The transformation from U to V 
raises new and difficult questions that go beyond technical detail to deep 
and concretely relevant issues. Therefore, the scaling property that follows 
from P(u) = (u/i1)-a has far-reaching consequences. This book is largely 
devoted to studying them, yet is far from exhausting the topic. 

Experimental measurement of the scaling exponent, and practical lack of 
meaning of high values of a. The exponent a is typically measured on the 
straight portion of a graph of log Pr (U> u) versus log u. The discussion 
that accompanies Figure 1 in M 1963p{E5} underlmes that experimental 
work should give little or no credence to high values of a. Such values 
are entirely determined by observations for which the range of values of 
log u is small, making it harder to ascertain the straightness of doubly log­
arithmic graphs, and errors in a are far larger when a is large than when 
a is small. 
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5.3 Wild randomness and its surprising creativity 

Stationarity and scaling suffice to derive many facts from few assump­
tions. Ex-ante, as already observed, they seem simple-minded. Ex-post, 
they turn out to be surprisingly "predictive" or "creative," in a sense 
developed in Section 10 of this chapter and elsewhere in this book. Imple­
mented properly and helped by the evidence of computer graphics, they 
suffice to account for an extraordinary wealth of complicated behaviors, all 
bound together in what will be described as a "tightly organized 
phenomenology." The surprising possibility of such organization is essen­
tial from the viewpoint of "understanding," and Section 10 will argue that 
it is a second best to full explanation. This "creativity" is the second 
feature underlying the fractal approach to finance, and expresses a math­
ematical possibility that is central to every aspect of fractal geometry. 

More specifically, the mathematical concept of stationary randomness is 
far less restrictive than generally believed. Properly tuned, it generates 
structures whose richness is well beyond the power of Brownian and near­
Brownian randomness, which will be described as "mild." That is, sta­
tionary and scaling processes also extend to the very different forms of 
randomness that will deserve to be described by the provocative term, 
"wild." What we shall see is that many of the observed facts that motivate 
other writers to propose diverse "fixes" to Brownian motion (see Section 4 
of Chapter E2) can also be accounted for by suitable wild randomness. 

6. FRACTALS IN FINANCE, STAGE I: THE "M 1963"MODEL FOR 
TAIL-DRIVEN VARIABILITY AND THE "NOAH EFFECT" 

The M 1963 model assumes that successive price changes are independent 
and highly non-Gaussian but stationary and scaling. In practice, it ade­
quately addresses price records in which the long-tailedness of the 
changes is dominant, and their serial dependence can be studied as a later 
and closer approximation. This situation turned out to be a good approxi­
mation for commodity prices and other examples examined in M 
1963b{E14} and M 1967j{E15}. 

Given a price series Z(t), write L(t, 1') = 10geZ(t + 1') -logeZ(t). The M 
1963 model assumes that L(t,1') follows a probability distribution called 
L-stable. When successive L(t, 1') are independent, 10geZ(t) is said to follow 
a random process called L-stable motion ("LSM"). The significant param­
eter is an exponent a ; its range could be [0, 2], but in the case of price 
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changes, it narrows down to [1, 2]. Wiener Brownian motion is the very 
atypical limit case of L-stability for a = 2. 

The limitation to a < 2 is a significant irritant. It makes L-stability 
inappropriate for certain prices, and perhaps also for certain forms of 
income investigated in M 1963HAppendix IV to EI0}. Section 8 will show 
how a generalized model extends the range of a beyond 2. 

6.1 The original evidence for the M 1963 model: the case of cotton 

Figure 4, which provided the earliest evidence, first appeared in M 1962c. 
It was promptly reproduced with detailed explanations in M 1963b{EI4}, 
then in many references including p. 340 of M 1982F{FGN}. This original 
empirical test of L-stability used Pareto-style log-log plots. The following 
description is translated in slight paraphrase from M 1962c. 

"Denote by Z(t) the spot price of cotton, namely, the price for imme­
diate delivery on day t. 

"Curves la and 2a represent, for the period 1900-1904, the empirical 
frequencies Fr{L(t, T = one day) > u} and Fr{L(t, T = one day) < - u}. 

"Curves Ib and 2b represent, for the period 1944-1958, the empirical 
frequencies Fr{L(t, T = one day) > u} and Fr{L(t, T = one day) < - u}. 

"Curves lc and 2c represent, for the period 1880-1940, the empirical 
frequencies Fr{L(t, T = one month) > u} and Fr{L(t, T = one month) < - u}. 

"Both coordinates are logarithmic for all nx curves. To my knowledge, 
the evidence concerning price variation was never presented in this way. 

"Those various curves quickly become straight lines having the same 
slope of approximately a = 1.7. Therefore, we can write 

log [Fr{L(t, D > u}] - - a log u + log C(D, 
log [Fr{L(t, D < - u}] - - a log u + log C"(D. 

"Thus Figure 4 suggests that the tails are asymptotically ruled by the 
scaling distribution (see section 5.2), with the same a exponent 
throughout. We also observe that C *" C", which reveals a slight 
asymmetry. The average value of L(t, D is practically zero. 

"We see that la is parallel to Ib, and 2a is parallel to 2b. This shows 
that between 1904 to 1958 the distribution of L(t, 1) did not change, except 
for scale. There is also evidence (not shown here) that the distribution of 
L(t,l) changed little from 1816 to 1940. The fact that curves la and lc and 
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2a and 2c are parallel shows that the distributions of L(t, T = one month) 
and of L(t, T = one day) are identical, except for a change of scale. 

"In a first approximation, the six curves displayed in Figure 4 can be 
superposed on each other by horizontal translation, showing that the dis­
tribution of L(t, 1) is L-stable under change of T. This feature will be inter­
preted as a strong quantitative symptom of scaling." 

Deviations from exact superposition are full of meaning, as shown in 
Chapter 14, both in the text which reproduces M 1963b, and in Appendix 
ill which reproduces M 1972b. 

6.2 A deviation from invariance can be significant statistically, without 
being significant scientifically 

As mentioned in Section 2, careful testing will doubtless show that prices 
exhibit statistically significant deviations from stationarity and scaling. 
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FIGURE El-4. These figures on the spot price of cotton are explained in the text. 
They provided the first empirical evidence of scaling in finance. Reproduced 
from Figure 5 of M 1963b{E14}. 
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To elaborate, each scaling model of price variation claims to describe 
properties that apply (up to size factors) to effects at short, middle or 
longish time scales. Moreover, the M 1963 model involves one basic 
parameter, u. Specific properties such as a probability of a given kind of 
ruin can be evaluated, as seen in Section 3.2 of Chapter E6, and the results 
can be affected dramatically by the value of u. Thus, in the range around 
u = 1.7, the probability of ruin may be approximately 10- 1, while in the 
(Brownian) limit case u = 2, it may be exactly 10- 20. Now, what about the 
actual u? By visual inspection, the cotton prices yielded u = 1.7, but one 
must expect that short, medium and longish time spans will yield quanti­
tative estimates of u that slightly differ from each other. Hence, the 
above-mentioned probability of ruin may, in fact, differ from 10- 1 by a 
factor ranging between 1/2 and 2, or perhaps even between 1/3 and 3. 

As seen in Chapter E16, my prudent vagueness about the value of u 
was criticized by P. H. Cootner. I reported those reservations to William 
S. Morris (who will be quoted in Chapter E16), and he had no difficulty 
convincing me that the resulting uncertainty about the probability of ruin 
pales into inSignificance. There is a far greater difference between the 
uncertain value of "approximately 10- 1" relative to a - 1.7, and the cer­
tainly incorrect value of "exactly 10- 20" relative to u = 2. It is fair to criti­
cize the M 1963 model for being insufficiently precise, but only after 
praising it for providing a correct order of magnitude. 

6.3 Beyond the M 1963 model 

Be that as it may, the M 1963 model was pOintedly only meant to to 
account for certain prices. Given the messiness of the data, it would be 
reckless not to fear that strict invariances are never encountered. But my 
systematic policy is to first seek improved models that preserve and gener­
alize stationarity and scaling. 

Sections 7 and 8 will, I hope, convince the reader that this has been a 
fruitful strategy. But Chapter E2 will argue that a sensible person should 
expect some features of the markets to contradict scaling. That is, ad-hoc 
"fixes" or "touch-ups" may eventually become necessary. But, as Section 
4 of Chapter E2 will argue, those fixes must not be applied to Brownian 
motion, but instead to a model that is already part way to the truth. 
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7. FRACTALS IN FINANCE; STAGE II: THE"M 1965"MODEL FOR 
DEPENDENCE-DRIVEN VARIABILITY AND THE "JOSEPH EFFECT" 

M 1963b{E14}, where the M 1963 model was first described, specifically 
acknowledges the existence of serial dependence in price changes, but the 
model itself approximated by postulating independence. This attitude was 
criticized for many reasons. In particular, every form of so-called "static" 
description is viewed as less desirable than a "dynamical" one that prom­
ises to be a possible basis for both portfolio management and conceptual 
understanding. I do not share this scorn for statics, but moved beyond the 
M 1963 model in several steps. In a first step, M 1965h{H} addressed 
records in which change is dominated by global (long-run) dependence 
and the deviation of the margins from the Gaussian can be studied sepa­
rately and later. 

The M 1965 model has a generic and specific aspect. Generic aspect: 
it introduces infinite memory into statistical modeling. Specific aspect: it 
introduces fractional Brownian motion ("FBM"), a process that has one 
significant parameter: the Hurst or Holder exponent H satisfying 
0< H < 1. The Wiener Brownian motion WBM is the atypical special case 
corresponding to the value H = 1/2. Early references on FBM are M & van 
Ness 1968{H} and the papers by M & Wallis{H}; the use of FBM in eco­
nomics was pioneered in M 1970e, M 1971n, M 1971q, M 1972c and M 
1973j. Bras & Rodriguez-lturbe 1993, Baran 1994 and Samorodnitsky & 
Taqqu 1944 (Section 7.2) are among many textbooks that discuss FBM. 

The original empirical test of long-run dependence, once again, used 
Pareto-style log-log plots, but did not apply them to the tail distribution 
but instead, to either the correlation or the spectrum. The latter take a 
very characteristic scaling form, described as "1If," which is mentioned in 
Chapter E6 and discussed in detail in M 1997H and M 1997N. 

7.1. Concrete justification for the idea of infinite memory, through the 
behavior of high-dimensional systems, and a metaphor from physics 

While FBM implies an infinite memory, it may be reassuring that a model 
based on FBM need not imply belief in action at a distance. 

Indeed, consider a very high-dimensional system (physical or eco­
nomic) that is Markovian when viewed in its full glory. Such a system's 
one-dimensional or few-dimensional coordinates need not be Markovian at 
all. To think of them as following FBM involves no paradox whatsoever. 
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A useful metaphor is suggested at this point by the statistical physics 
of magnets. Infinite range dependence controlled by power-law 
expressions is the rule in systems such that actual interactions only occur 
between immediate neighbors. Those systems must be of high enough 
dimensionality and observed under conditions that physicists describe as 
" critical" . 

Be that as it may, infinite memory in finance calls for explanation. It 
also proved to require a new frame of thinking, but, to my delight, was 
accepted more readily than infinite variance. To my knowledge, no writer 
went as far as P.H. Cootner did, when (see the Preface) he described the 
M 1963 model as promising "blood, sweat and tears." 

7.2. Historical digression: the hydrology connection 

The intellectual path that led from LSM to FBM brings light on the simi­
larities and differences between the M 1963 and M 1965 models, therefore 
remains interesting. When I was a Visiting Professor of Economics at 
Harvard and it became known that I was able to deal with the 
"pathology" of price variation, I was flooded with examples of other 
pathologies. Most proved beyond my skills, but two exceptional "hits" 
led me far away from finance for a while. 

In 1962, a pattern of very anomalous noise led to Berger & M 
1963{NS}, which implicitly introduces the notion of fractal time to which 
we shall tum in Section 8. 

In 1963, hearing of the "Hurst puzzle" of hydrology (Hurst 1951, 1955, 
Hurst et a1.1965), I identified it immediately as a new example of scaling, 
and briefly believed that it required a straight replay of the M 1963 model. 
But this beautiful theory was soon demolished by a mere fact: while LSM 
was the proper tool to deal with price variability driven by long tails, 
yearly river discharges are not far from Gaussian. This led me to conclude 
that the Hurst puzzle was driven by the accumulation of variables that 
may even be Gaussian, yet exhibit serial correlation of infinite time span. 
The form of infinity raises many questions, but they are best discussed in 
Section 4 of Chapter E2 while tackling ARMA representations. 

7.3. The widespread confusion between the M 1963 and M 1965 models 

Such confusion occurs despite the sharp differences between the Noah and 
Joseph Effects and the LSM and FBM processes. In the M 1963 (LSM) 
model, depending on which feature is singled out, fractal dimension is 
either DG=2-1/a. or DT=a.. In the M 1965 (FBM) model, depending on 
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which feature is singled out, fractal dimension is either DG = 2 - H or 
DT = l/H. Even a competent mathematician sees between those two proc­
esses a number of parallelisms that some describe as "mysterious." 

Help is on the way. Section 4 of Chapter E6 generalizes the standard 
self-affine models further and presents the resulting family of possibilities 
in very graphic fashion. As a result, order and simplicity are restored, 
and confusion decreases. 

The Noah and Joseph effects often coexist; this fact raises two issues. 
The following subsection sketches an effective way to disentangle the two 
effects' contribution to a given record, and Section 8 sketches a versatile 
and effective way to build random processes that combine long-tails and 
long-dependence in "tunable" proportions. 

7.4. A way to disentangle the Noah and Joseph contributions to a record: 
R/S analysis of global dependence, and its application in finance 

"R/S analysis" is concerned with the kind of global dependence that the 
eye perceives as clear-cut cycles having no determined periodicity. This 
statistical technique, very different from spectral analysis, originated in the 
work on river discharges that is described in several papers by M & 
Wallis; see also M 1975h. This method started attracting wide attention, as 
exemplified by Feder 1988, and is one of the main topics of M 1997H. The 
details lie well beyond the scope of this book, but it deserves a comment 
that paraphrases M 1970e. 

''It is obviously important to know whether dependence in price 
change records vanishes, is positive or is negative. Unfortunately, the 
empirical investigations disagree, and all are unconvincing, because they 
invariably use statistical tools that imply that the underlying process is 
nearly Gaussian. Before any statistical test of dependence is used, its 
robustness with respect to infinite variance must be investigated. For this 
purpose, M & Wallis proposed R/S analysis, and I used it on financial 
data. It is not foolproof, in fact has not yet been extensively explored. But 
it should be added to the classical tools and promises to provide more 
applicable results. It measures the intensity of global R/S dependence by 
a single parameter J. 

"From the viewpoint of R/S, all independent random processes and a 
variety of martingales behave identically in yielding J = 1/2. They can be 
called "R/S independent." A striking fact is that the notion of R/S inde­
pendence is robust with respect to infinite variance. In the case of price 
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changes, it can serve as a useful surrogate for market efficiency, which is 
far from easy to handle statistically. 

"Using R/S, I analyzed interest rate series from Macaulay 1932, 1936, 
prices of commodities from various sources and series of daily and 
monthly returns on securities. I found that different kinds of "price" series 
fall into different categories. 

"Certain prices, and also the rate of call money, exhibit global persist­
ence with, for example, an exponent of J = 0.7. This result was expected: 
since call money was itself a tool of arbitraging, its price cannot itself be 
arbitraged to take advantage of inefficiency. Therefore, its behavior 
should follow closely that of the various exogenous quantities that affect 
the economy. There is strong evidence that economic time series other 
than price changes (Adelman 1965, Granger 1966) and various physical 
(e.g., climatic) triggers of the economy are globally persistent, and the J 
observed for call money rates is typical of exogenous economic quantities. 

"At the other extreme, British Consuls, cash wheat and some securities 
'have R/S independent increments. The reason for this behavior is 
unclear. The data may be dominated by what may be called "market 
noise." However, spot commodity prices are not subject to thorough 
arbitraging. As a result, the absence of persistence in wheat is a puzzle. 
An explanation may be sought in institutional features; the arbitraging 
that is present in future prices may have an indirect effect on spot prices. 

"Intermediate cases that exhibit a small degree of global dependence 
include prices of spot cotton and many securities. Closer investigations 
showed in many instances that the observed R/ S dependence is wholly 
due to small price changes, which are both more difficult and less worth­
while to arbitrage. Large changes are practically R/ S independent, even 
though they occur at highly non-independent (clustered) instants of time. 

This and some of my other results leave many issues open. In partic­
ular, it is questionable whether or not the actually observed dependence is 
precisely compatible with efficiency. It is also unknown why there are so 
many differences between different series, and so many series in which the 
dependence is negligible." 

A warning: No less than spectral analysis, R/ S is a delicate statistical tech­
nique. There are rumors that the "Hurst's exponent" has become well­
known in finance. However, recent developments reveal that R/ S is an 
even more delicate technique than I believed in the 1960s. See M 1997H. 
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8. FRACTALS IN FINANCE, STAGE III: THE "M 1967" AND "M 1972" 
MODELS; TRADING TIME AND THE "NOAH-JOSEPH" EFFECT 

We are now ready to perform the crucial task of combining the non­
Gaussian distribution of the M 1963 model with the dependence rule of 
the M 1965 model. The task took time and was not easy. Therefore, while 
this section is merely a preview of Chapter E6, it is unavoidably more 
technical than the rest of this chapter. 

"Fractional Levy flight" is a tempting obvious combination of scaling 
margins and long dependence. It is mathematically interesting, but fails to 
fit the actual records. Thirty years ago, its inadequacy set me to search for 
other broad methods in many different directions. 

8.1 Uniform or variable Hurst-HOlder exponents, the distinction between 
physical (clock) and trading time, and the notion of compound process 

The Noah-Joseph combination that best fits in this book is sufficiently 
general to include many important special cases: the B 1900 model, the M 
1963 model without asymetry, and the M 1965 model. The key step is to 
introduce an auxiliary quantity called trading time. The term is self­
explanatory and embodies two observations. While price changes over 
fixed clock time intervals are long-tailed, price changes between successive 
transactions stay near-Gaussian over sometimes long time periods between 
discontinuities. Following variations in the trading volume, the time inter­
vals between successive transactions vary greatly. This suggests that 
trading time is related to volume, but testing this empirical relation should 
be separated from an exploration of the model itself. Perhaps one could 
save Brownian motion by allowing price change to be due to extraneous 
impulses that are bunched in clock time. 

To provide an alternative motivation of trading time, let us summarize 
very informally some properties of existing models concerning the /I order 
of magnitude" of the price change Ax over a time increment M. Since M 
is assumed to be small, we deal with local behavior . 

• For the B 1900 model, Ax - .Ji t = MH. The exponent is time invar­
iant and H = 1/2 . 

• For the M 1963 and M 1965 models, Ax - MIla or Ax - MH, respec­
tively. The exponent l/n or H is again time invariant but:¢: 1/2. 

Unifractality versus multifractality. Because their scaling exponent is 
unique, the preceding models can be called uniscaling or unifractal. The 
generalization to which we now proceed can, by contrast, be called multi-
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scaling or multifractal, because it consists in allowing the exponent to 
depend on t, and to be chosen among an infinity of possible distinct 
values. 

Since we deal with local behavior of small M, large or small values of 
H(t) express, respectively, that x(t) varies slowly or rapidly near the instant 
t. Trading time is an alterative way of thinking about this variability of the 
exponent H. One imagines that x(t) varies more or less unformily in its 
own intrinsic time, but the latter varies non-uniformly in clock time. 

The preceding two comments should suffice for motivation. As a 
strictly mathematical idea, every non-decreasing function 8(t) of physical 
time provides a formal representation of Z(t) as a compound process 
Z(t) = 2[8(t)]. But the result will be a useless increase in complication, 
unless special circumstances prevail. In the spirit of my work and of this 
book, I took both 2(8) and 8(t) to be scaling, namely self-affine. To be 
practical, the only case I examined thus far is where 2(8) and 8(t) are sta­
tistically independent (see Section 9.) Specifically, I allowed 2(8) to be a 
Wiener or fractional Brownian function, and 8(t) to be a fractal or 
multifractal time. As was hoped, the resulting generalization of Wiener 
Brownian motion provides a sensible approximation to interesting data 
that combine long tails and dependence. Let us take up the topic in his­
torical sequence, which also corresponds to increasing difficulty. 

8.2 Subordination and the "M 1967" model: the "symmetric M 1963" 
model is representable as a Wiener Brownian motion in fractal time 

The simplest form of compounding was pointed out formally by H. M. 
Taylor (Section 1 of M & Taylor 1967{E21} and I went on to interpret it 
concretely (Section 2 of M & Taylor 1967{E21}). The shortened form "M 
1967 model" will be used, but it is not meant in any way to distract from 
the merits of Howard M. Taylor. 

The M 1967 concerns the special case where 8(t) is a random function 
with independent increments; for historical reasons, it is called subordinator. 
The mathematical aspects of the notion of "subordination" (due to S. 
Bochner) are discussed in several places in Feller 1950 (Volume II.) It 
came to play an important role in many aspects of fr~ctal geometry, there­
fore the concrete aspects are discussed in detail in Chapter 32 of M 
1982F{FGN}, where it is illustrated and interpreted in a variety of contexts. 

Specifically, M & Taylor 1967 takes price to be a Wiener Brownian 
motion of trading time. In order for physical time to be a non-decreasing 
self-affine function of trading time, it is necessary for the graph of t(8) to 
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be the so-called Levy devil staircase. This object is defined in Chapter 3 of 
M 1982F{FGN}, as the simplest randomized form of a Cantor devil stair­
case. The points where the staircase moves up form a "Levy dust" charac­
terized by an exponent that is the dust's fractal dimension, a concept to be 
sketched in Chapter E6. Each discontinuity of the inverted staircase corre­
sponds to a step of the staircase and collapses a finite interval of trading 
time into an instant of physical time. Conversely, trading time followed as 
function of physical time reduces to a series of mutually independent 
jumps of widely varying size. Price followed as a function of physical 
time also undergoes jumps. 

Surprisingly, the above procedure simply reproduces the symmetric M 
1963 model. The exponent a of the L-stable motion is "fed in" by 
choosing a Levy staircase of dimension a/2. (Some messy details will be 
discussed momentarily.) 

Devil staircases are standard examples of self-affine fractals, a concept 
described in Chapter E6. Therefore, a trading time ruled by a devil stair­
case is called a fractal time. Section 4 of Chapter E2 mentions that Clark 
1973 preserved subordination, but with a trading time that is not fractal. 
M 1973c {Section 3 of E21} argued against Clark's non-fractal substitute, 
but never implied that M & Taylor 1967{E21} said the last word. Let us 
now proceed beyond. 

A goal for generalizations of the M 1963 model: it is necessary to correct its 
unrealistic prediction, that large price changes are statistically independent 
ex-ante, therefore isolated ex-post. In the M 1967 model, jumps with inde­
pendent positions and amplitudes are inherent to the definition of subor­
dination. Unfortunately, such jumps are unacceptable in the study of 
finance. Clear-cut bunching of large price changes is noted in M 
1963b{E14}, but could not be seriously taken into account until a natural 
solution presented itself in the altogether different context of the study of 
turbulence. 

A stepping stone towards generalization of the M 1963 model. Since it 
brings no new prediction or property, M & Taylor 1967 is best described 
as providing a "representation." All too often, such formal representations 
are mathematically important, but of limited practical interest. A glowing 
exception, subordination opened the gates to generalizations to which we 
now proceed. They are new, even from the mathematical viewpoint. 

An easily described generalization of the M 1967 model, replacing the Wiener 
Brownian motion by fractional Brownian motion. The result combines long 
tails and long-range dependence. It is defined by two main parameters: 
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an a exponent that is twice the a exponent of the Levy staircase, and the 
H exponent of the subordinated BH" Little is known about it. 

8.3 Compounding and the M 1972 model: Wiener Brownian motion of 
multifractal time; the turbulence connection and the paradoxical 
character of the perception of infinite memory by the ear and the eye 

The most direct replacement for subordination replaces fractal trading 
time by a construct that is more general and more richly structured (also, 
more complicated), called multifractal time. 

The step from fractality to multifractality was first taken in my very 
first full publication on turbulence, M 1972j{N14}, to which we shall return 
momentarily. Today, every field takes this step near-automatically at 
some point in time, following a general pattern advocated in Chapter ix of 
M 19750 and in an entry on "relative intermittence" on p. 375 of M 
1982F{FGN}. Broadly speaking, patterns that seem fractal in a first approx­
imation tend on a second look to be multifractal. 

Returning to M 1972j{N14}, it ends (p. 345 of the original) with the fol­
lowing words: 

"The interplay... between multiplicative perturbations and the 
lognormal and [scaling] distributions has incidental applications in other 
fields of science where very skew probability distributions are encount­
ered, notably in economics. Having mentioned the fact, I shall leave its 
elaboration to a more appropriate occasion." 

The concept first introduced in M 1972j{N14} is a family of many­
parameter multifractal functions to be denoted by M(t). They are non­
decreasing and continuous but non-differentiable. Their increments are 
called multifractal measures, and Figure 5 reproduces parts of the original 
example in M 1972j{N14}, for two values of a basic parameter J..l. As is 
typical of the most interesting multifractal measures, the corresponding 
integral M(t) is represented by a graph that is monotone increasing but 
lacks the flat steps characteristic of a devil staircase. It follows that the 
inverse of M(t) has no jumps; like M(t), it is continuous but non­
differentiable. 

Originally, the increments of M(t) were meant to model the gustiness 
of the wind and other aspects of the intermittence of turbulence. An 
earlier fractal model of gustiness assumed that the wind comes in sharp 
isolated peaks. M 1972j{N14}, M 1974f{N15} and M 1974c{N16} put 
forward a more realistic multifractal picture of the wind's gustiness. After 
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a delay of fifteen years, experiments (largely performed or supervised by 
K. Sreenivasan) confirmed the validity of that picture. 

In addition, however, Figure 5 reminded me instantly of something 
entirely different, namely Figure 1 of M 1967j{E15}, which represents the 
variance of cotton price increments over successive time spans. After a 
long delay, this initial hunch proves to be an astonishingly good approxi­
mation. It was not elaborated until recently and is published for the first 
time in this book. The elaboration will, nevertheless, be called the "M 
1972" model. Thus, my theoretical views of turbulence in the wind and 
the stock market were immediately and completely parallel. 

Jl == .50; 

Jl = 1; 

FIGURE El-S. Both graphs are reproduced from Figure 1 of M 1972j{N14}; they 
illustrate the original multifractal measure for two parameter values. 

As intended and achieved, this graph represents the variability of energy 
dissipation in a turbulent fluid. But it instantly brought to mind the graphs 
representing the variability of the variance of price increments, thus revealing 
a deep link between the uses of the fractal approach in the study of turbulence 
and of finance. 
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Graphs analogous to Figure 1 of M 1967j{E15} are, of course, very 
familiar in finance, and their ubiquity motivates the "patchworks of quick 
fixes" called ARCH models, which are outlined and criticized in Section 4 
of Chapter E2. In the fractal context, to the contrary, the same resem­
blance immediately suggested a very different thought: a change in 
trading time from fractal to multifractal may generalize the M 1963 model. 

Explanation, using acoustics, of the "unreasonable effectiveness" of infinite­
memory models in accounting for bursts. ARCH-type models closely follow 
common sense. Even a casual look at diagram I of Figure 1 shows that 
large price changes are clustered. It is natural to attribute this fact to the 
presence of "high-frequency" serial dependence between price changes 
over neighboring time spans. Low-frequency serial dependence at a dis­
tance does not even come to mind. 

To the contrary, my models start by accounting for very low frequen­
cies, but they also succeed in accounting for the perceived high-frequency 
effects. Before we go on, we must establish that this paradoxical claim is 
not absurd. This is best done by injecting yet another physical science 
connexion, namely, some phenomena called 1/t noises. Among them, the 
first to come to mind is the derivative of FBM, simply because it is 
Gaussian, but the most appropriate illustration a definitely nonGaussian 
phenomenon called "flicker noise." As indicated by this name (or alterna­
tive names like "frying" and "popping"), the human ear perceives such a 
noise as a sequence of bursts separated by quieter periods. Hence, the ear 
seems to inform the brain that it deals with an "intermittent high­
frequency phenomenon." Unfortunately, attempts to model this vague 
description failed. More importantly, spectral analysis yields a more 
objective diagnosis: a smooth spectrum concentrated in very low frequen­
cies. 

In a nutshell, the M 1972 model claims that the variance of L(t, n is a 
kind of flicker noise. As can be seen in M 1997N, I developed from 1964 
to 1974 the technical know-how required to handle such noises, and the 
goal of the developments to be described from now on is to apply this 
know-how to finance. 

8.4 From scaling to multiscaling: from marginal distributions that 
"collapse" to long-tailed distributions that shorten under averaging 

Let us return to a sober examination of the marginal distribution of price 
change. "Data collapse" is said to occur when L(t, n has the same distrib­
ution for all values of T, except for scale. This is predicted by the M 1963 
model and observed in Figure 4. But other price series proved to behave 
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in a different and more complicated fashion (Officer 1972). For them, the 
distribution of L(t, n is reasonably close to being L-stable for small T, but 
the tails become markedly shorter than predicted. 

The psychological impact of those findings was surprisingly strong 
among students of speculation. The consensus became that, as T 
increases, L(t, n might eventually converge to the Gaussian, so that the M 
1963 model does not matter. As to the "transient" behavior before the 
Gaussian is reached, it was to be handled by the ARCH-type models to be 
discussed in Section 4 of Chapter E2, and/or other "quick fixes." 

No one could dispute that the observed drift is incompatible with the 
combination of scaling with statistical independence of price increments. 
Therefore, the presence of a drift means that it is necessary to face serial 
dependence. The point is that this can be done using a multifractal sce­
nario developed from the above-quoted remarks in M 1972j {NI4}. 

This replacement led to the M 1972 model whose most striking predic­
tion is as follows. As T -+ 0, the distribution of L(t, n becomes increasingly 
sharp-peaked and long-tailed. Qualitatively, this prediction matches the 

empirical evidence. 

A technical illustration of drift away from collapse. A key feature of 
multifractality concerns the scale factors u(q) = {E[Lq(t, T)n1/Q• In the fractal 
case, the scale factors for q < n are powers of T, with an exponent inde­
pendent of q, which is why this case is called uniscaling. In the 
multifractal case, to the contrary, the exponents of the scale factors depend 
on q, which is why this case is called multiscaling. 

A useful mental picture is suggested by the limit lognormal 
multifractals introduced in M 1972j{NI4}). The picture consists in a 
sequence of lognormal variables Au such that EAu = 1, while log Au is 
characterized by an increasing variance if. The probability densities Pu(u) 
of those Au cannot be collapsed by using linear transformation. The M 
1972 model predicts that the same is true of the distributions of L(t, n for 
different T. The resulting drift is slight if the exponent of the scale factor 
u(q) = {E[LQ(t, nn1/Q increases little and slowly as with q -+ 00. But the 
drift's intensity can be "tuned" at will. 

The careful reader may observe that, while the lognormal probability 
densities Pu(u) cannot be collapsed linearly, the corresponding expressions 
log Pu(u) are easy to collapse. This is pretty much all there is to the 
multifractal function fin) to be mentioned in Section 3.9 of Chapter E6. 

An alternative scenario behind the drift away from data collapse. The long­
term dependence characteristic of multifractals implements the follOwing 
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scenario, which I often heard mentioned, but do not recall seeing in print. 
In the case of statistical independence, a price increment of small proba­
bility p cannot be observed, unless the sample is at least equal to a few 
times lip. But suppose that larger changes of L(t,1) are strongly clustered 
for all values of T. If so, a price increment of probability p can only be 
observed on a sample containing many more than lip roughly inde­
pendent values. A shorter sample should be expected to include far too 
few values in the tails. 

When a sample for t = 0 to t = tmax is examined for increasing values of 
T, the sample size tmax/T decreases. Therefore, as T grows, the probability 
of hitting upon large deviations decreases. So does the histogram's tail. 

8.5 Simulations of the multifractal M 1972 model, and empirical tests 

As mentioned in the Preface, those tests were neither prompt, nor com­
plete. Before they are described, it is good to restate a basic point already 
made in Section 2. The eye tells us that the behavior exemplified by 
Figure 1 is mimicked reasonably in Figure 2. We can now add an expla­
nation: each line of Figure 2 is a separate implementation of a very simple 
"surrogate" to the M 1972 model - as explained fully in Section 4 of 
Chapter E6. "Fine tuning" the surrogate algorithm also tunes the output. 

As to quantitative comparisons, I am overcommitted, and at present 
lack any competitive advantage in handling financial data. However, an 
exploratory study of foreign exchange rate changes is extremely prom­
ising. The results will be sketched in Chapter E6, after some technical 
tools are described. Full details will be published in free-standing form in 
M, Fisher & Calvet 1997, Calvet, Fisher & M 1997 and Fisher, Calvet & M 
1997. 

9. BEYOND ALL THE MODELS DESCRIBED IN THIS BOOK 

Flaws of the preceding models should be immediately acknowledged. 

Independently of whether fractional Brownian motion is followed in 
clock or multifractal time, its increments have a symmetrical distribution. 
Therefore, the M 1965, M 1967, and M 1972 models do not apply to cases 
where the distribution is clearly asymetric, for example to cotton price 
changes. 
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The compound process in Section 8 assumes independence between 
trading time as function of clock time and price as function of trading 
time. It will be nice to go beyond independence. 

For the above reasons and others, the M 1972 model does not claim to 
be the last word. In fact, my investigation of the combination of long tails 
and long dependence also tried out two very different approaches that 
remain little explored and may reward a fresh look. 

M 1966b{E19} describes an interesting and surprisingly realistic form 
of rational market "bubbles." The key is a form of arbitraging whose input 
has short tails and long dependence, while its output is a martingale with 
long tails and remaining long dependence. 

The "fractal sums of pulses" {FSP} processes are described in M 1995n 
and several papers I co-authored with R. Cioczek-Georges; they are listed 
in the Bibliography. The FSP are used in Lovejoy & M 1985{H} to simu­
late the shapes of clouds, and also show promise in finance, but this book 
chose to explore a very different approach. 

10. OLD-FASHIONED CHEMISTRY AS EXAMPLE TO EMULATE; 
VALUE OF "UNDERSTANDING" SHORT OF EXPLANA nON 

Section 4 of Chapter E2 will describe alternatives to the models announced 
in the preceding sections. Those alternatives are based on "fixes" of 
Brownian motion, to which I see many defects. Some are practical, while 
others may be called esthetic. In my view, even if an accumulation of 
qUick "fixes" were to yield an adequately fitting "patchwork", it would 
bring no understanding. That concept will be taken up now, in the form 
of a methodological digression meant to contrast the fractal approach in 
finance and the piecemeal approaches using fixes. 

At one extreme on the scale of perceived achievement in the sciences 
is the ideal of determinism and "reductionism," whose model is Newton's 
law of gravitation. To call a law "explanatory" is to give up any attempt 
to seek an even deeper truth behind it. Reductionism seeks general princi­
ples of independent value that account for ("explain") the individual 
observations, and also make correct predictions. The history of science 
tells us that this ideal was often achieved, mostly in physics, hence it is 
useful to keep it in mind. The goal of Quetelet 1835 was to rework it into 
a "social physics." But in the study of finance, reduction proves elusive. 

At the opposite extreme, on the scientific scale from the die-hard 
reductionists, one finds those resigned to accept that the variation of prices 
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follows rules that continually change in time and are not written down. 
Such alternatives are so open-ended that they cannot be proven wrong, 
but they are non-scientific, and to accept them would be to admit that a 
theoretical and quantitative approach to finance is not possible. 

The extremes of renunciation and reductionism bracket every 
phenomenological approach to finance, whether unorganized, like the 
step-by-step fixes described in Section 4 of Chapter E2, or tightly organ­
ized by insistent adherence to stationarity and scaling, like the models 
described in Sections 6 to 8. 

The said "fixes" are close to the non-reductionist extreme, and 
unavoidably bring to mind the representation of the planets' trajectories 
provided by the Ptolemaic system. There, each feature was specifically 
inserted to account for some aspect of observed reality that earlier models 
neglected. The construction started with "cycles," then corrected for the 
cycles' inadequacies by adding "epicycles." When epicycles also proved 
inadequate, yet another fix moved the center of the cycle away from the 
center of the system! The final outcome gave a good fit to the data avail­
able in its time (Gingerich 1993). One could achieve perfect fit by adding 
epi-epi-cycles ad infinitum, and some historians of mathematics argue that 
the Ptolemaic system was an early step towards the representation of arbi­
trary almost-periodic functions by Fourier series. 

The exclusive reliance on an accumulation of separate fixes, which 
characterizes the Ptolemaic system and the majority approach to finance, 
makes them examples of "unorganized descriptive phenomenology." 

The fractal approach is closer to the reductionist extreme, and it would 
be tempting to take a last step and view scaling as that demanding no 
further explanation. But this is impossible, if only because scaling takes 
on many different forms, even in finance. In addition, only a few 
instances of scaling in the social sciences led to convincing explanations. 

In physics, the situation is far more satisfying, as many instances of 
scaling are well-understood, at least in principle. Several are explained by 
full "renormalization" arguments, as alluded in Section 6 of Chapter E4. 
Additional fully implemented models exist, and special attention should 
be drawn to a widely valid reductionist explanation that I proposed in 
Chapter 11 of M 1982F{FGN}. The claim is that the solutions of the partial 
differential equations of physics invariably end by having fractal 
singularities. 

Outside of physics, the situation is less rosy. A few examples of 
explanation, each a few lines long, will be given in Chapter E8. Other 
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explanations of scaling and also a famous but (I think) grossly overrated 
"explanation" of lognormality will be discussed in Chapter E9. I feel, with 
regret, that when those arguments are fully understood, they cease to be 
convincing. Among other difficulties, some arguments justify the 
Gaussian probability distribution on the basis of a limit theorem of proba­
bility. Other explanatory arguments invoke steady states attained by in 
random processes, that is, the fixed points of corresponding transforma­
tions. All such approaches appeal to some kind of long-run. Macroscopic 
physics is concerned with assemblies of a colossal number of items and 
the long-run is meaningful and effective. But in finance or economics, 
such assemblies are not given time to develop, and (once again) references 
to them fail to convince. 

Altogether, the fractal approach ro finance unavoidably brings to mind 
two distinct metaphors from different physical sciences. 

The first brings in the organized phenomenology of Johannes Kepler. 
Ptolemaic fixes are not creative and bring no understanding whatsoever. 
To the contrary, Kepler's laws are "creative/' insofar as they predict many 
consequences that no person had inserted by design. While short of 
explanation, they bring real "understanding." This last notion is impor­
tant, or so I think, and is encountered in many observed instances of 
fractal behavior. It is not easy to define, even in mathematics, and calls 
for elaboration. 

Let us be generous and allow that separate but satisfactory "fixes" 
may eventually be discovered for every defect of the Brownian motion in 
finance. If so, each fix will cry out for a separate explanation, and then 
the separate explanations will cry out to be organized. By contrast, 
fractality "bundles" everything from the start. 

A second metaphor from physical science is even more compelling. 
From the reductionists' viewpoint, chemistry was not respectable until 
quantum mechanics transformed it, at least in principle, into a chapter of 
core physics. The question is, how should a scientist behave during a pos­
sibly interminable wait for reduction. Viewed as a temporary 
phenomenology, modest old-fashioned chemistry was remarkably well­
organized, robust, and creative. In contrast to more ambitious efforts that 
ended in failure, chemistry developed into a body of knowledge and 
understanding that deserves to be viewed as a shining example, never to 
copy, of course, but to emulate. 



Discontinuity and scaling: their scope 
and likely limitations 

E2 

.. Abstract. Chapter E1 stated emphatically my view that Gaussianity, 
random walks and martingales are attractive hypotheses, but disagree 
with the evidence concerning price variation. This chapter presents, in 
largely non-mathematical style, the processes I propose as replacements 
for Brownian motion. Their foundations include an evidence-based theme 
and a conceptual tool. 

The theme is discussed in Section 1: it is discontinuity and the related 
notions of concentration and cyclicity. The tool, scaling, is discussed in 
Section 2. The possible limitations of scaling expressed by cutoffs and 
crossovers are discussed in Section 3. Section 4 comments on alternative 
approaches that contradict scaling, and instead replace Brownian motion 
by a "patchwork" of step-by-step "fixes." Section 5 describes some para­
doxes of scaling. 

Stationarity and scaling express invariances with respect to translation 
in time and change in the unit of time. Diverse principles of invariance 
are essential to my work, in economics as well as in physics. .. 

IN A WAY, THIS CHAPTER IS AN "OVERFLOW" that helps prevent 
Chapter E1 from becoming unbearably long. The intention is to meditate 
in greater detail on several issues that passed by too briefly, and examine 
in passing some alternatives I perceive as unfortunate. 

While the concepts of discontinuity, concentration and cyclicity are 
intimately connected, Section 1 tackles them one by one, contrasting them 
with the corresponding features of standard models: the Random Walk 
on the Street and Brownian motion. 

Section 2 describes the principle of scaling. Scaling is present in 
finance when short pieces of a chart are like down-sized versions of longer 
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pieces. The original evidence of scaling in cotton prices is an aspect of 
Figure 3 of Chapter El. That chapter also points out that scaling is of 
great versatility and "creativity," that is, allows many sharply quite dis­
tinct possibilities. My strategy began by sharply restricting those possibil­
ities in various increasingly general ways and studying the restricted 
processes in detail, one after another. 

Section 3 follows M 1982F{FGN} in acknowledging the limitations that 
fractal geometry near-invariably sets to its own applicability. 

Often, there is an inner cutoff. For example, trading never proceeds in 
mathematically continuous time, therefore a very short piece of the record 
includes few transactions and could not possibly look like a longer piece 
of the record. 

An outer cutoff is also expected, right or wrong, if only because it is 
hard to believe that the rules of price variation are not modified as one 
moves from time scales dominated by "mere speculation," to longer scales 
dominated by more fundamental economic effects. 

Thirdly, one scaling model may not suffice to account for all the data. 
That is, distinct ranges of the time increment may call for distinct scaling 
models, separated by crossovers. 

Those limitations were acknowledged when the discovery of scaling in 
finance was reported in M 1963b{E14}. The real surprise resided in the 
existence surprisingly broad and clear-cut intermediate scaling zones gov­
erned by surprisingly simple rules. 

Section 4 surveys a few of the many publications by other authors, 
which concern the same facts but attempt to account for them, not by 
scaling, instead, by a "patchwork" of "fixes." 

Section 5 illustrates the "creativity" inherent to random scaling phe­
nomena. It begins seriously, by describing the paradoxes of expectation 
that bedevil the scaling distribution, then moves on in jocular tone, 
through several fanciful but enlightening stories. 

1. CONTRASTED BASIC TENETS OF THE RANDOM WALK ON THE 
STREET AND OF THE FRACTAL MODELS OF FINANCE 

1.1 The Brownian dogma of continuity versus the often discontinuous 
character of actual market prices 

Once again, the Bachelier 1900 model predicts that price varies contin­
uously, and continuity is also a basic assumption in the overwhelming 
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bulk of financial and economic literature. It is often left unmentioned 
because it is felt to be obviously appropriate. Technically, continuity is 
incomparably attractive because, were it a description of reality, the study 
of finance could borrow heavily from existing techniques of mathematics 
and physics. 

As background to continuity, Alfred Marshall (1842-1924) gave to 
every edition of his Principles of Economics (Marshall 1890) the motto, 
Natura non facit saltum, "Nature does not undergo discontinuities." I may 
attribute too much weight to a famous but very old book, or misinterpret 
its intent through ignorance. But there is no question that Marshall's 
motto fits in a long tradition of philosophical thought that extends well 
beyond economics. It is the tradition of the Great Chain of Being favored 
by Aristotle and Leibniz (Lovejoy 1936; see also pages 405-8 and 412-13 of 
M 1982F{FGN}.) Marshall comes to my mind each time that an 
"unanticipated" price saltus defeats a beautiful trading scheme founded on 
continuity. 

For contrast, consider the M 1963 fractal model, as proposed in M 
1963b{E14} and sketched in Section 6 of Chapter E1. When interpolated to 
continuous time, this model predicts that price variation must be discontin­
uous within every interval of time. Many other fractal models mix contin­
uous and discontinuous variation. 

Of course, price quotes only include a finite (but increasing!) number 
of digits. Therefore, continuity can only mean that successive prices differ 
by amounts of the order of magnitude of an irreducible minimum. 
Smaller discontinuities embodied in a model are not part of reality, only a 
mathematical fiction. The concrete contents of the M 1963 model reflects 
an unquestionable fact: Instantaneous price changes far larger than the 
minimum are clearly visible on almost every financial chart. 

Do the discontinuities actually hide a deeper "latent" reality that is 
continuous and can be "revealed" by proper data analysis? My view, to 
the contrary, is that the possibility of absolutely sharp discontinuity is an 
essential ingredient that sets finance apart from classical physics. If prices 
on financial markets are to fulfill their role, they must be able to change 
instantly when important new information becomes available. For 
example, when Company A is bidding to buy Company B, the price of 
either party must be able to change on the spot by an unboundedly large 
percentage. And that is indeed how prices behave; a small company's 
price that instantly doubles or halves is by no means an exception. And 
the sheer size of IBM did not prevent its stock from dropping by 10% 
near-instantly in early 1996, and later from rising by 13.2%. 
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If one is prepared to assume that it is legitimate to think of "latent" 
prices, one might well imagine that they are even more discontinuous than 
those recorded and shown by financial charts. After all, many markets 
employ "specialists," whom the United States Securities Exchange Com­
mission enjoins to "insure the continuity of the market." While they 
cannot always fulfill this task, they successfully smooth out small disconti­
nuities by buying or selling on their own account. In effect, they are 
enjoined to keep two sets of books; one corresponding to an undisturbed 
"latent" interplay of market forces, and a second reporting a smoother 
behavior. 

Insofar as the fractal approach helps explain the need for the institu­
tion of specialists, it is "predictive," because durable and time-seasoned 
institutions are unlikely to arise without causes that are rooted in durable 
characteristics of the market. I see such a characteristic in discontinuity. 

Here is a relevant story. The M 1963b model includes a "tunable" 
parameter 0., such that continuity is achieved by choosing 0. = 2, and any 
desired degree of discontinuity, by letting 0. decrease to 1. Therefore, the 
computer made it possible to perform the following multiple-choice test. 
Show to a sophisticated subject a series of sample plots of the same model, 
but with different values of 0., and pretend that one plot is a genuine 
financial chart while the others are samples from a theory. Challenged to 
identify the real chart, the sophisticated subject never chooses the contin­
uous sample function. Needless to say, as acknowledged in Section 2 of 
Chapter El, arguments that involve the eye had come to be held in low 
regard in science. In particular, "eye-ball curve-fitting" came to attract 
deep scorn from statisticians. It tends to be viewed as subjective and far 
inferior to objective numerical fitting methods. Now that the eye has been 
greatly empowered by computer graphics, the safest is to use both 
methods together as needed. 

1.2 Concentration of price change, versus the Brownian dogma of 
evenness 

Consider a price that changed markedly over some long period of dura­
tion T days (or hours, or weeks ... ). Should one expect this total change to 
be more or less evenly distributed over the T contributing days? Or 
should one expect in many cases to find that the total change is concen­
trated in, or dominated by, a few contributing periods of particularly brisk 
change? 

The original Random Walk on the Street proceeds in equal up or 
down steps, hence predicts that the absolute value of the daily step is pre-
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cisely even. For larger T, both Random Walk and Brownian motion 
predict a less sharp form of evenness: a daily change that is the fraction 
liT of the total change, plus or minus a Gaussian "error term" that is 
independent of the total price change over T days. Thus, even if the total 
change is large, the Gaussian model predicts rough equality between the 
orders of magnitude of the contributions, each individual contribution 
becoming negligible as T increases. 

The M 1963 model makes an altogether different prediction. When the 
total monthly change is large, not only the contribution from any single 
day will fail to be asymptotically negligible, but the contribution from one 
or a few days will most likely be of the same order of magnitude as the 
cumulative contribution of all the other days. Similarly, a large daily 
change will be dominated by contributions from one or a few contributing 
hours or minutes. 

When this form of concentration is refined to apply to increasingly 
small time increments, it unavoidably creates discontinuities. 

A fundamental distinction: difference between "ex-ante" identity in distrib­
ution and "ex-post" order-of-magnitude identity of samples. A subtle point is 
involved here. Both the Random Walk and the M 1963 model assume that 
T contributing price changes are identically distributed ex-ante. Ex-ante 
identity results in ex-post near-identity in the Brownian model, but fails to 
do so in the fractal models. Thus, the distinction between the concepts of 
ex-ante and ex-post is bound to become important beyond economics. 

Musings concerning the "theory of errors:" the attractiveness of its founda­
tions and its failure in the presence of concentration. Instead of disaggregating 
a price change into parts contributed by successive time intervals, one may 
disaggregate it into the effects of separate "causes." Centuries ago, obser­
vational astronomers developed a "theory of errors" that holds those 
effects to be numerous, additive and individually negligible, both ex-ante 
and ex-post. This is why errors are expected to follow the Gaussian dis­
tribution. 

Similarly, one can (at least in a first approximation) view the separate 
possible causes of price change as numerous and additive. This being the 
case, consider the ex-post contributions of various causes to a large price 
change. In the classical (Gaussian) theory of errors, a large change would 
typically result from the rare chance simultaneity of many large contrib­
uting causes, each of them individually negligible. In economics, this 
inference is indefensible. Typically, the occurrence of a large effect means 
that one contributing cause, or at most a few tum out ex-post to be large. 
It may be worth reporting that I once heard an economist condemn all of 
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statistics for being founded on the classical theory of errors, therefore on a 
misinterpretation of reality. I interrupted his tirade to point out that he 
was describing the phenomenon of concentration, which is indeed beyond 
the scope of elementary statistics books, but is a key feature of the M 1963 
model of price variation. 

In the same spirit but a different context, a sharp large change in the 
value of an index or portfolio is often overwhelmingly due to a very large 
change in one or a few components. 

1.3 Concentration without discontinuity for dependent increments 

Having correctly predicted concentration, the M 1963 model goes on to 
predict that concentration is mostly due to isolated discontinuities. In the 
real world, to the contrary, isolated discontinuities are not the rule. A 
more typical scenario involves so-called periods of "market turbulence" 
that include discontinuities following each other in close sequence, 
intertwined with small price changes. 

Indeed, the strongest short argument to account for discontinuity (like 
IBM moving down, and later up, by 10%, then 13.2%) involves the fact 
that exogenous stimuli can be very large. But a large exogenous stimulus 
need not come out as one single piece of news. Thus, I like to speak of 
concentration as involving the Noah effect; but the Bibilical flood was not 
a discontinuity, since rain fell for forty nights and forty days. Further­
more, markets need not be able to respond instantly. Trading limits and 
liquidity problems may playa role. A realistic scenario is incompatible 
with independent price increments. 

Based on this type of thinking, the last section of M 1963b{E14} 
acknowledges instances where a large change is not concentrated in one 
day, but spread over successive days. A toy model is even presented, but 
only tongue-in-cheek. The basic fact is that the M 1963 model cannot be 
expected to hold exactly. It shows that one needs a model with serial 
dependence. 

It may be recalled that a very versatile way of introducing dependence 
while preserving scaling is sketched in Section 8 of Chapter E1 and dis­
cussed in Chapters E6 and E21. The idea is that price variation is best not 
followed in physical "clock time," rather in an auxiliary "trading time." 
To implement this idea in a scaling world, one must identify price vari­
ations as a scaling function of trading time, and trading time as a scaling 
function of clock time. The burden of accounting for discontinuity and 
concentration can be made to fall on the choice of trading time. M & 
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Taylor 1967{Section 1 and 2 of E21} noted that the M 1963 model can be 
represented as Brownian motion in "fractal time." 

This last fact is only mildly interesting, but it suggests two very 
important generalizations. One replaces Brownian motion by Fractional 
Brownian motion. A further generalization is the M 1972 model, which 
allows Brownian or fractional Brownian motion to proceed in 
"multifractal" trading time that allows for both rapid but continuous 
changes and arbitrarily sharp discontinuities. 

1.4 Practical consequences of discontinuity and/or concentration, 
concerning hedging and the size and nature of risk 

Price discontinuity and concentration are major ingredients in a realistic 
evaluation of risks. To stress their importance, take a portfolio and 
compare the risks using the Random Walk on the Street and the M 1963 
model. The former estimates the risks as small, say, one thousandth, one 
millionth or less, while the latter may estimate the same risk to be a hun­
dredth, a tenth or more. 

In particular, price continuity is an essential (but seldom mentioned) 
ingredient for all trading schemes that prescribe at what point one should 
buy on a rising price and sell on a sinking price. Being discontinuous, 
actual market prices will often jump over any prescribed level, therefore, 
such schemes cannot be implemented. An early example was very specific 
and clear-cut: it was Sidney S. Alexander's "filter method" (Alexander 
1961). I viewed filters as "perpetual financial machines" that challenged 
the theorist to identify the subtle hidden flaw that seemed to make them 
work. That is, they reminded me that thermodynamics first showed its 
bite by pinpointing the subtle flaws in diverse mechanical "perpetual 
motions." M 1963b{E14} argued, indeed, that filters rely on the fallacy of 
continuity, and - on average - the nearest implementable trading method 
may yield no benefit. This prediction was confirmed, as seen in Appendix 
II of Chapter E14. The filters' use and repeated failure might have sufficed 
to discredit them, but one cannot be sure. In any event, it is good to 
know that their failure was precisely and correctly predicted before they 
had had time to be used, on the fundamental theoretical ground of conti­
nuity versus discontinuity. 

1.5 One can account for the observed non-periodic cycles by stationarity 
combined with globality of dependence and intermittency 

Statisticians and historians find it convenient to describe price records as 
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involving random fluctuations that add to trends and a diversity of 
"cycles" of short, medium and long duration. Most economists view those 
cycles as significant, but Keynes asserted in jest that their main utility is to 
help long treatises of economic history be broken into manageable smaller 
volumes. 

The following observation in M & Wallis 1969a suggests that Keynes 
had a strong point. The key finding concerns the fractional Gaussian 
noise, which is defined as the sequence of increments of fractional 
Brownian motion, and can range between independent events (white 
Gaussian noise) and Brownian motion. From the very beginning of the 
study of fractional Gaussian noise, a central ingredient consisted in 
graphics examined with great care, combining respect with skepticism. 
Using primitive tracing tables, M & Wallis 1969a synthesized and visual­
ized long samples of fractional noise, and found it exhibits an already 
familiar feature: there is a fundamental difference between ex-ante 
absence of deliberately built-in cycles and ex-post obvious visual cyclicity. 
That is, the ex-ante generating mechanism involves no periodic compo­
nent, nor any privileged time scale, only a built-in form of "global" or 
"long-run" dependence. 

Surprisingly, ex-post examination of samples from this process 
revealed that every sample seems to exhibit three cycles. This striking 
"rule of three" is true for all sample durations, because it is an aspect of 
self-affinity, an implementation of the notion of scaling that will be dis­
cussed in Section 2. Now let us go back to data. Could it be a simple 
coincidence that the "long cycles" Kondratiev observed in a sample of a 
hundred-odd years consisted in three oscillations? Similar cycles are 
claimed to exist in weather and hydrological records, and it is in their 
context that I pioneered an indirect approach to long-run dependence that 
throws deep doubt on the "reality" of long cycles. See M 1997H. 

If cycles' relation to self-affinity becomes confirmed, the basic problem 
will be displaced from determining cycles' lengths and making concrete 
use of them, to determining the rules of self-affinity and identifying their 
significance from the viewpoint of prediction and control. 

1.6 Cause versus chance as accounting for the wealth of sharply defined 
features one observes in financial and economic data 

Once again, every contrast between ex-ante simplicity and ex-post com­
plexity exemplifies a surprising and fundamental theme of fractal geom­
etry, mentioned repeatedly in this book: misleadingly simple-looking 
algorithms (random or even non-random) typically generate unexpectedly 
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complicated but highly structured behavior. Even when there is no 
dependence between the increments, and no prediction is possible, a 
sample from a suitable fractal random process can exhibit features on 
which a technical analyst would base buy or sell recommendations. Other 
fractal random processes exhibit global dependence but involve no pre­
ferred time scale, yet generate swings reminiscent of economic cycles. 

To provide an intellectual background to those findings, it is good to 
mention a parallel discovery I made concerning galaxies; M 1982F{FGN} 
describes this problem in Chapters 9, 32, 34 and 35. Random processes 
that involve no preferred spatial scale, hence no trace of built-in hierarchy, 
nevertheless generate patterns that the eye invariably and spontaneously 
organizes into a hierarchy of clusters and super-clusters. 

2. THE PRINCIPLE OF SCALING IN FINANCE AND ECONOMICS, 
AND APPARENT LIMITATIONS THAT DISAPPEAR WHEN THE 
MODEL IS SUITABLY GENERALIZED 

Scaling was on my mind when I was working on the distribution of 
income (Part III of this book), but it did not come into its own until 1963, 
when it imposed itself in two altogether different ways. 

On the one hand, M 1963e{E3} describes a peculiar theoretical argu­
ment that concludes as follows: When seeking a statistical description of 
economic reality, the alternative one faces is not "scaling against a multi­
tude of other possibilities," but "scaling against a form of lawlessness." 

On the other hand, there is quantitative empirical evidence for scaling, 
under different forms that depend upon the context. 

2.1 From practitioners' folklore to specific and verifiable statistical 
predictions 

A central role is played in the preceding sections by examples of 
"folklore" and "anecdote". These strong words usually denote a mess of 
unverified qualitative observations that languish beyond the boundaries of 
organized scientific discourse. The bulk of it is nonsense, often the 
harmful fruit of fabrication or careless observing, reading or listening. But 
much of my scientific work is grounded on anecdotes and pieces of folk­
lore that are incontrovertible and would not have remained beyond 
science, if a way had been known to fit them in. One such observation is 
empirical scaling, and was made separately in many different areas. 
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A first example far removed from finance and economics may help the 
reader view this statement with greater objectivity. Geologists are firmly 
instructed to take a multitude of photographs, to view them seriously, and 
always include an object of known size: a pencil, a hammer, or a col­
league. They are warned by their teachers that, in the absence of such an 
object, the scale of the photograph may be impossible to guess. The 
counterpart in the field of finance is that, if one does not exert great care 
to label the axis of time and the axis of price, "all financial charts tend to 
look the same," and are readily mistaken one for another. 

2.2 Quantitative evidence, old and new, of scaling in prices 

The eye would not suffice to establish scaling, of course; in any event, M 
1963b{E14} was written before computer graphics could help. 

Original quantitative evidence for scaling in finance. Let us review the ori­
ginal evidence concerning the spot price of cotton, as presented in Figure 5 
of M 1963b{EI4}, which is reproduced as Figure 3 of Chapter E1. To judge 
whether or not "the financial charts are really the same," I chose the 
method of "data collapse," to use the physicists' term for a method many 
other scientists also use. Monthly and daily price changes were plotted 
suitably, and it was found that six separate curves can be superposed by 
performing translations that amount to changes of scale. This is close to 
the the standard way to reduce all Gaussian distributions to be of mean 0 
and variance 1. It is the principle of scaling that suggested the suitable 
plotting procedure. 

An example of recent evidence for scaling in finance: zero crossings. A 
standard problem of probability is raised by the distribution of the time 
interval between zero crossings. In a random walk or Brownian motion, 
this time interval is scaling with the exponent (l = 1/2. Chapter E8 men­
tions this topic in Section 1.1.3 and Appendix I. More generally, when a 
random process is scaling, and its exponent H - as defined in Chapter E6 
- satisfies H < I, the time intervals between zero crossings are often scaling 
with the exponent 1 - H. The test is easy to perform and Zajdenweber 
1994 reports a value of H that is reasonably well-determined and clearly 
distinct from the Brownian 1/2. 

A second and more abundant recent argument for scaling is best 
stated at the end of Section 2.4. 
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2.3 A tale that should serve as warning. 

Since no one predicted the degree of stationarity that I found in records of 
certain price change, no one expressed surprise when Figure 4 of Chapter 
E1 (identical to Figure 5 of Chapter 14) suggested that the price of cotton 
was more volatile near 1900 than near 1950. In time, however, this per­
ceived difference in volatility proved to be based on an error on my part. 
As described in M 1972b{Appendix I of E14}, those figures analyzed 
handwritten sheets in which slots corresponding to Sundays seemed to 
report prices based on actual trading. But in fact those slots were 
reporting weekly averages! When the same test was redone with actual 
data, it showed little change between 1900 and 1950! 

More generally, everyone expected to find that the change in overall 
economy between 1816 and 1950 provoked drastic changes in the rules of 
variation of cotton prices. In fact, as shown in Figure 6 of M 1963b{E14}, 
those changes were not overwhelming at all. 

2.4 An apparent limitation of an invariance in finance and economics 
may disappear when this invariance is suitably modified: from 
stationary to conditionally stationary and from (uni) scaling to 
multiscaling 

In the study of finance, stationarity is all-too-often replaced by a strawman 
that is easy to argue against. First, it is interpreted in old-fashioned and 
narrow fashion, as implying that the ex-post appearance of samples must 
not differ "too much" from white Gaussian noise. The patent discrepan­
cies between this narrow interpretation and the facts are routinely used to 
dismiss the strawman, but also every conceivable form of stationarity. My 
point is that one must not rush to take those discrepancies as irremediable. 
Indeed, even the M 1963 model suffices to demonstrate that the apparent 
failure of one implementation of stationarity does not exclude a more 
general implementation, one that may eventually fail, but only at a later 
stage of the process of data accumulation and modeling. 

For invariance with respect to contractions, namely scaling, the all-too­
ready acceptance of limitations is necessarily a more recent phenomenon. 
The question, "is scaling a property of price series?" was on no one's 
mind. But assume for the sake of argument that it was asked at the time 
when modeling used only one scaling process, the Wiener Brownian 
motion. The answer would have been that, since actual price series are 
not Brownian, they cannot be scaling. But, once again, the M 1963 model 
showed that they are scaling, albeit in "anomalous," nonBrownian fashion. 
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Eventually, a variety of discrepancies between M 1963 model and the 
evidence were identified. Firstly, u is bounded by u2 in the M 1963 
model, but perhaps not in the data. Secondly, large discontinuities do not 
occur in isolation, but in "bunches." 

Some authors used those imperfections to disqualify fractal modelling 
in general. Since those critics gave no convincing counter-model, the net 
effect was to encourage a return to a "default" model, Random Walk on 
the Street, together with "fixes" of the kind discussed in Section 4. Other 
authors directed "fixes" to scaling. For example, they acted to "save" the 
M 1963 model by introducing sharp cutoffs, crossovers or a variable value 
for the leading exponent u. 

The models listed in Sections 6 to 8 of Chapter E1 show that I read the 
same evidence very differently. The M 1963 and M 1965 models moved 
beyond Brownian scaling, but that concept's scope was not exhausted and 
it is constantly expanded by fresh alternative implementations. Many 
have not yet been tried, as shown in the "Panorama" presented in Chapter 
E6. Each generalization organizes an increased wealth of evidence. An 
important generalization that moved from Sections 6 and 7 to Section 8 of 
Chapter E1 deserves to be emphasized by an example. 

The limitations of one form of scaling may not apply to a more refined form; 
the example of foreign exchange rates. Olsen 1996 is a collective term the Bib­
liography uses for an abundant and varied collection of papers and pre­
prints, some of which test a specific model, while others are not model 
specific but concern scaling itself. 

The diagrams that test scaling are invariably of impressive 
straightness. Naively, one might have expected that this straightness indi­
cates that foreign exchange rates follow the M 1963 model, but in fact they 
clearly fail to do so. 

From (uni) scaling to multiscaling. The appearance of contradition in the 
preceeding example suffices to show that the M 1963 model is less general 
than scaling. 

A way to resolve this discrepancy is to introduce a basic distinction 
that was mentioned in Section 8 of Chapter E1 and will be central to 
Section 3.8 of Chapter E6. Scaling can take two forms, uniscaling and 
multiscaling, and the proper model of foreign exchange rates appears to be 
a multifractal one. 

Conditional stationarity. The preceding distinction is linked to two 
further notions, which cannot be discussed here: conditional stationarity 
and sporadic process. Both are discussed in M 1997N. 
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3. IRREDUCIBLE LIMITATIONS OF STATIONARITY AND SCALING 

Once again, the basic shapes in geometry and physics, line, plane and 
space, are invariant under displacement and change of scale. Those sim­
plest invariances are invaluable, but geometry and physics soon move 
beyond their domain of validity, and at that point everything becomes 
more complicated. 

Inevitably, the same is true in finance, and the two themes of this 
section reflect the complication of economic reality. Section 2.4 argues that 
it is unwise to rush and conclude that a phenomenon is not invariant. An 
apparent deviation from invariance may disappear when one introduces a 
suitably generalized model. Nevertheless, deviations from stationarity 
and/ or scaling are facts of life, in every concrete use of fractals. That is, a 
single intellectual path led to both the scaling nature of financial time 
series, and a variety of clear-cut deviations from scaling. This subtlest and 
most significant one is discussed Section 5.4 of Chapter E6. 

3.1 A lesson from physics: a scientific principle can be useful even 
when there are limitations to its applicability 

In times past, physics boasted of principles that envisioned no exception. 
Sometime around 1800, Pierre-Simon Laplace used especially eloquent 
words to proclaim that everything in the world will eventually fall under 
the sway of Newton's "inverse square of distance" law of gravitational 
attraction and will become fully predictable. This confidence was 
rewarded as mechanics became filled with very long deductive arguments 
that correctly predict the outcome of careful experiments. Diverse "princi­
ples of least (or greatest) something," some in physics and others in eco­
nomics, also claimed they could bear the burden of long mathematical 
arguments. 

However, physics abounds in examples of grand principles that con­
tradict one another, hence cannot all be strictly true. Joseph Plateau 
(1801-1883) discovered an extraordinary example of such "frustrations." 
One expects the symmetries of a folded wire to be preserved in the soap 
bubbles formed on that wire. But this symmetry is not implemented (it is 
said to be "broken") when it contradicts another law of nature, which pro­
claims that no more than 4 bubbles can meet at one point. Physics also 
abounds in theories that are successful but based on assumptions that are 
theoretically incompatible, but close enough to compatibility under limited 
conditions. In effect, much of statistics places an equal degree of confi­
dence in the Gaussian distribution. For example, many refined theorems 
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concerning risk and the probability of ruin only hold in a universe in 
which the Gaussian holds with absolute exactitude. 

Even in "hard" sciences, the claims of the principle of scaling are infi­
nitely more modest than those of Newton's law. Thus, the study of turbu­
lence in fluids attributes a central role to a combination of scaling with 
cut-offs and crossovers. Cut-offs and crossovers also play a central role in 
disputes concerning the validity of my fractal model of the distribution of 
galaxies. 

3.2 Cutoffs of scaling due to impenetrable bounds 

Most quantities encountered in nature are bounded, while most theoretical 
random variables are without bound. But it is generally understood that 
this contradiction need not be serious at all. 

The example of the Gaussian distribution. The Gaussian is unbounded, 
while humans' heights are by definition positive and do not range up to 
twice the average height. But the Gaussian is useful, because its built-in 
self-contradiction is extraordinarily unlikely to be expressed. 

Here is a quick and dirty estimate of the probability of its being a nui­
sance. Take average height to be 6 ft. and the standard deviation 10 times 
smaller, namely, 7.2 inches. Height would fall below 0 or above 12 feet 
when a Gaussian exceeds 10 (J', an event of probability roughly equal to 
the inverse of the Avogadro number 1023, not a reason to worry. 

Personal incomes and interest rates. More to the point, M 1960HE10} pro­
posed an L-stable model for the distribution of personal income. This 
model allocates a small probability to negative income: this unintended 
implication's quality of fit cannot be tested, but it is harmless - indeed, 
rather charming! 

M 1967b{E15} investigated the distribution of several interest rates, and 
found a clear indication of approximate L-stability. But two bounds come 
into the picture. Once again, L-stability would allow interest rates to 
become negative. This possibility is theoretically absurd, but so unlikely 
that in practice it is harmless. Secondly, can rates increase without 
bound? My first test in M 1967j{E15} concerned the rate of "call money," 
which could become very large - and occasionally did. With arithmetic 
interest the rate that would require daily payments equal to the principal 
would be 36500%; the M 1963 model would take forever to reach that 
level but in any event it is clearly inapplicable, because changes in fast­
moving interest rates are surely not independent. 
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Of course, the interest rates practiced today have lower upper bounds 
that do not allow the L-stable model to be extrapolated. Some markets 
fight volatility by setting an upper bound to the daily variation of a price. 
Such bounds inevitably create serial dependence and introduce diverse 
complications on which I have little to say. 

Sharp cutoffs and reasons for postulating them only when unavoid­
able are discussed in Section 4.1. The simplicity inherent in a sharp cut-off 
is misleading. 

3.3 Crossovers between different scaling regimes 

Many phenomena that are not scaling are usefully represented by intro­
ducing "crossovers" between several distinct "scaling regimes" corre­
sponding to different ranges of size. We shall begin by describing this 
notion in a non-financial context, then comment on it. 

Different dimensions implicit in a ball of thread. This homely topic is dis­
cussed in M 1982F {FGN}, p. 17. In slight paraphrase, one reads the fol­
lowing: 

"A ball of 10 cm diameter made of a thick thread of 1 mm diameter 
possess (in latent fashion) several distinct effective dimensions. 

"To an observer placed far away, the ball appears as a zero­
dimensional a point. From a distance of 10 cm resolution, it is three­
dimensional. At 10 mm, it is a mess of one-dimensional threads. 

"At 0.1 mm, each thread becomes a column and the whole becomes 
three-dimensional again. At 0.01 mm, each column dissolves into fibers, 
and the ball again becomes one-dimensional, and so on, with the dimen­
sion crossing over repeatedly from one value to another. When the ball is 
represented by a finite number of atom-like pinpoints, it becomes zero­
dimensional again. 

"An analogous sequence of distinct dimensions separated by crosso­
vers is encountered in a sheet of paper." 

The underlying idea is that it is often best to subdivide the total range 
of sizes corresponding to a concrete quantity and tackle each sub-range 
separately. This is routine in physics, where, to take an example, phe­
nomena at the molecules' level are first studied separately from those at 
the level of atoms or fluids. 

The preceding comments also apply to the two principles of invariance 
in finance. A single scaling rule of scaling may not apply to L(t, n for all 
values of the time lag T. If so, it is a good idea to proceed as with the ball 
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of thread and identify different ranges of T, each characterized by separate 
rule of scaling. The surprise is not that crossovers as needed, but that 
they are needed far less often that expected. 

Crossovers in high-frequency foreign-exchange data. The existence of 
crossovers is suggested in Olsen 1996, and M, Fisher & Calvet 1997 
confirm it. The case of the dollar/deutschmark exchange rate will be 
mentioned in Section 3.15 of chapter E6. 

The anticipated breakdown of scaling due to the crossover between finance 
and economics. It is irresistibly tempting to believe that short-run fluctu­
ations are dominated by contingent constraints of speculation and the 
organization of financial markets, while long-run fluctuations concern fun­
damental rules of economic change. A priori, speculation and economics 
could follow entirely different rules. Therefore, the folklore that all finan­
cial charts look the same should be expected to fail for charts corre­
sponding to long time periods. 

I shared this expectation and knew how to test it. The original test 
concerned cotton, and the result is part of Figure 3 of Chapter E1. It came 
as a major surprise and an unexpected triumph for the idea of scaling. 
Roughly speaking, the distances between curves 1a and Ie (or 2a and 2c) 
seemed to indicate that the model used of daily changes, if rescaled, also 
represents monthly changes. But I was careful to note that the superposi­
tion of the daily and monthly curves in Figures 1 and 2 is imperfect, 
except if one argues that a month contains an "effective number" of days 
smaller than the actual number. This pointed out to a negative 
"correlation" between changes within a month. Eventually, the M 1972 
model extended scaling to statistical interdependence between successive 
price increments and scaling again became a contender. 

However, this apparent success is not established in a definite fashion. 
A more careful investigation may reveal breaks between short-run specu­
lation and long-run economics. This possibility could not be tested in the 
1960s, though the data on cotton were exceptionally extensive. 

Conclusion. While crossovers are likely to be observed sooner or later, 
Section 4 will argue that one must not rush into "fixes" that involve sharp 
cutoffs or exponential terms. 

4. STEP-BY-STEP CORRECTIONS FOR SPECIFIC INADEQUACIES OF 
BROWNIAN MOTION, AND "PATCHWORKS" OF "FIXES" 

Once again, the notions of stationarity and scaling were inspired by prop-
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erties of the homogeneous mass distribution on the line. Science soon 
moves beyond the line, the plane and other flat spaces, invariances remain 
valuable, and must not be given up without trying. The problems that 
involve invariances are not only the most attractive for the physicist, but 
also, as an unexpected "gift," many are surprisingly realistic. Unfortu­
nately, every invariance eventually ceases to be verified. At this point, 
two strategies are available. 

My strategy is to follow the example of physics, and view invariance 
as so valuable, that it is best to preserve the idea as long as feasible. 
When one invariance proves to have broken down, I seek better invari­
ances, farther and farther beyond Brownian motion. At some point, this 
search will fail, but this point must be postponed as far as possible. 

In sharp contrast, scaling and even stationarity are of no concern to 
the authors of the multitude of alternatives to Brownian motion that are 
continually being put forward. 

Most (but not all) of those alternatives begin with the Random Walk 
on the Street, then apply "patches" or "quick fixes" as needed, without 
overall plan. (Even successful physics often needs a patch, denoted by the 
word Ansatz.) Inevitably, the result is more complicated than the original, 
and serious problems arise, especially if graphics are allowed as evidence. 

Firstly, each discrepancy between the data and Bet) is handled by a 
separate and specific amendment, and no feature is present in the 
resulting pyramid, unless it was purposefully inserted. Section 10 of 
Chapter E1 argued that the fixes are not "creative," and provide no 
"understanding." 

Secondly, graphic ecidence must be allowed, as argured in Section 2 of 
Chapter El. I take the liberty of challenging the proponents of the 
Brownian motion and of ARCH-like processes to examine how the graphic 
outputs of their algorithms compare with the actual data. I have no doubt 
about the outcome. 

The discussion of the fixes should not be viewed as entirely negative, 
but as providing an opportunity to characterize my own approach more 
precisely. Sections 4.1 and 4.2 comment on fixes concerning marginal 
probability distributions. Section 4.3 concerns the rules of serial depend­
ence. Section 4.4 expresses my attitude towards fixes, from the viewpoint 
of the distinction to be made in Chapter E5 and E6 between several dis­
tinct "states of randomness." 



E2 <> <> DISCONTINUITY AND SCALING: ... 67 

4.1 Fixes that neglect serial dependence and invoke a transient marginal 
distribution: truncation and multiplicative exponential decay 

Two obvious but unfortunate fixes must be considered first: rather than 
with Brownian motion, they begin with the scaling distribution and the M 
1963 model. 

Assertions that the scaling variable is in foct "truncated" that is, does not 
exceed a finite maximum umax• It is known, as already stated repeatedly, 
that on certain markets the distribution tails are shorter than implied by 
the scaling distribution or the M 1963 model. A strong temptation is to 
account for those discrepancies by assuming the existence of a sharp finite 
cut-off that has no basis in either regulation or economics and is merely 
meant to account for the tails' shortness. 

Sometimes, umax is assumed to be so large that its value does not 
directly affect any observable quantity. If so, the assumption umax < 00 

does insure finite population moments, but otherwise is a form of empty 
posturing that also distracts from consideration of genuine problems. 

Transients, and the piifolls that make them misguided and misleading. In 
most cases when a finite umax is invoked, it is meant to be small enough to 
affect observable quantities of interest. For example, define U as a L-stable 
distribution that was truncated to umax < 00 and consider the sum of N 
such variables. For small values of N, the distribution of the properly 
normalized sum is unaffected by umax. For large N, a different normaliza­
tion predicts convergence to the Gaussian. Therefore, the tails become 
increasingly short as N increases. 

The scenario based on truncation implies the belief that interesting 
values of N fall between those two zones of simplicity. Unfortunately, the 
intermediate zone called "transient" is complicated and hard to control. 
Instances where this scenario is confirmed fail to contribute to the goal of 
"understanding" described in Section 10 of Chapter E1. Therefore, while 
this scenario that may be unavoidable if everything else fails, it is 
extremely unattractive and I do my best to avoid it. My attitude towards 
transients is elaborated upon when the case is made against the lognormal 
in Chapter E7. 

A suggestion that goes back to V. Pareto: a scaling density multiplied by an 
exponential decay that yields a progressive cut-off. The standard method for 
achieving a crossover from scaling is one hundred years old! Indeed, just 
after Pareto's law of income distribution, Pr {income> u} - u- a, Pareto 
1896 also included u-aexp( - /3u) as a possible improvement. One may, 
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instead, replace density - uu- a - 1 by one - u-a-1exp( - f3u). When f3 is 
small, exp( - f3u) is - 1 for small u, but becomes predominant for large u. 

There may be cases when a term exp (- f3u) is actually imposed by 
the data. But I think that in most cases it is simply an easy "fix." From a 
traditional statistical viewpoint, a density - u - a - lexp( - f3u) with f3 > 0 
shares the main virtue of truncation with umax < 00. Assuming f3 > 0 all 
moments are finite, while assuming f3 > 0 the q-th moment is infinite when 
q > u. This whole book argues, however, that such infinite moments are 
not "improper" in any way. They are not abominations to be hidden or 
papered over at all cost, but important symptoms of an underlying reality. 
They must be faced squarely. 

This exponential decay with f3 > 0 is eminently natural, since many 
decades after Pareto, it independently entered physics. Even later, several 
physicists unacquainted with Pareto proposed to "import" f3 > 0 back into 
finance. Every new parameter injected in a formula is bound to improve 
the fit, but the justification offered for f3 > 0 in physics does not carryover 
to economics. I view Pareto's exp( - f3u) as nothing but ad-hoc and uncon­
vincing deus ex mach ina. 

Comment on price changes. The preceding two ancient and crude proce­
dures relative to the distribution of income returned to life as would-be 
improvements addressed to cases when the M 1963 model's tails are per­
ceived to be too long. As the reader knows by now, the same discrepan­
cies led me to change over from scaling to multiscaling. 

4.2 Student's and hyperbolic distributions, and other fixes that neglect 
serial dependence and solely concern the marginal distribution 

The Student's distribution. Blattberg & Gonedes 1974 questioned the M 
1963 model, and proposed to replace the L-stable distribution, A, by Stu­
dent's distribution, I. It is true that 

a) statisticians view I as familiar, and A as exotic; 

b) a simple analytic expression exists for I, namely a negative power 
of (1 + x2)1 but none exists for A; 

c) the u parameter is common to both distributors; its value is unre­
stricted for I; for A, to the contrary, it is bounded by a maximum value 
u=2; 

d) lastly, some statistical tests, when applied to daily price changes 
concluded that I gives a better fit than A. 
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I have doubts about item d), because of a "qualitative" feature: when 
plotted as in Figure 3 of Chapter El, L yields a cap-convex curve, while 
the curves in Figure 3 are not cap-convex. But I prefer to limit my 
response to Blattberg & Gonedes to more basic considerations of two 
kinds. The first was originally phrased in the context of a different 
standard statistical distribution, namely, one that Clark 1973 described as 
preferable to the L-stable in this context examined at the end of Section 4.3 
and in Section 3 of Chapter E21. 

Statistical fit need not be optimal for each individual feature of the problem, 
but must be acceptable for every quantity under consideration. An observa­
tional scientist, after he sets aside the study of daily "seasonals," must not 
focus exclusively on daily price changes, but must study in parallel the 
price changes over periods different from 1 day. 

From this viewpoint, A has the virture of being invariant under addi­
tion of independent quantities, which is why the M 1963 model and other 
fractal constructs can be interpolated and extrapolated, and the result con­
fronted with the facts. Moreover, one knows a variety of rules of serial 
dependence that preserve A. By contrast, I do not know how to interpo­
late Student's L from daily price changes to T less than one day. The 
extrapolation of Student's to T = several days is feasible, but analytically 
unmanageable. Furthermore, I do not know any rule of serial dependence 
that preserves L. 

To conclude, the unquestionable assets of Student's distribution, its 
analytic simplicity and familiarity, apply only to T = 1, which is not 
enough. While the predictions of the M 1963 model are likely to be only 
approximate, they form a coherent and fully specified whole. Careful sta­
tistics is worthless if it involves distributions that fail to belong to a 
coherent and fully specified whole. 

The parameter a and role of possible values a ~ 2. In Student's case, there 
is nothing atypical or critical about a = 2. To the contrary, the L-stable dis­
tribution behind the M 1963 model sets a = 2 as an atypical critical value 
that cannot be exceeded. On this criterion, Student's seems preferable, so 
why label it a "fix," while L-stable is called a model? One reason is that 
a = 2 is a genuinely critical value, and the difference between a < 2 and 
a> 2 is genuinely critical and not made to vanish if it is "papered over." 
For example, in cases where Brownian motion in multifractal trading time 
applies, a < 2 is compatible with either serial independence or depend­
ence, while a > 2 calls for strong serial dependence. 

The "hyperbolic distribution." This term has been proposed for the 
probability density p(u) such that the graph of log p(u) is one-half of a 
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hyperbola (Barndorff-Nielsen & Blaesdild 1983.) Its theoretical motivation 
is inconsequential, in my opinion, and its sole unquestioned merit is that it 
is analytically convenient. This distribution combines a near-Gaussian bell 
and two exponential tails into a hybrid or "chimera" for which the graph 
of log p(u) is cap-convex. Therefore, it could not fit those data for which 
the graph of log p(u) is emphatically not cap-convex. 

Be that as it may, the invariances of the hyperbolic are not additive; 
hence, in cases where daily data are satisfactorily fitted by the hyperbolic, 
serial dependence cannot be neglected, even in a first approximation. The 
hyperbolic distribution's sole virtue, namely, analytical convenience, is not 
expected to be preserved under extrapolation to changes over T > 1 days. 

4.3 Fixes that start with Wiener Brownian motion and inject serial 
dependence: high-order Markov, ARMA and ARCH representations 

To make a point, this subtitle uses the term "representation," instead of 
"mode!." Mathematical analysis tells us that a wide variety of functions 
can be approximated by ordinary or trigonometric polynomials or repres­
ented by trigonometric series. Similarly, there is no question that a wide 
class of random processes of all kind can be accurately approximated by 
high-order Markov, a wider class falls under the ARMA or ARCH algo­
rithms, and even wider classes fall under further generalizations. 

However, what do we learn from those approximations? This ques­
tion arises again and again, in one field after another. The earliest exam­
ples are ancient; two that I know date back to Gauss himself and are 
discussed in M 1982F{FGN}, pages 417-8. Early authors proposed repres­
entations that were in the spirit of high-order Markov, and this proposal 
provoked sharp rebukes from two great physicists. In effect, though obvi­
ously not in actual wording, J. c. Maxwell and L. Boltzmann argued that 
those examples manifest long-time serial dependence, and that high-order 
Markov processes were the wrong way to tackle them. Let us now look 
closer. 

An examplary tale: high-order Markov processes in the context of hydrology. 
As mentioned in Section 7 of Chapter E1, I first encountered this issue in 
the context of the "Hurst puzzle" that is taken up in detail in M 1997H 
and deals with the persistence manifested by river discharges. Hydrology 
is far from finance but is characterized by equally erratic fluctuations. The 
"persistence" in the successive yearly discharge of a river like the Nile was 
promptly recognized as reflecting serial dependence and, naturally 
enough, the first model to be tried was ordinary Markov process of 
memory M = 1. This idea was found inadequate, but a renowned 
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probabilist ventured, in Feller 1951, that one ought to try a Markov 
process of longer memory M > 1. 

As I recall, the search for a detailed geophysical motivation of the 
Markov property was never more than casual. Indeed, like the Gaussian 
distribution, Markov processes are so profoundly imbedded in science as 
to be taken for granted, as the probabilistic expression of direct causality. 

By contrast, M 1965h interpreted the Hurst's puzzle as a symptom 
implying that the dependence is not Markovian, but scaling. This implies 
that the memory is not finite, but infinite, with a single main parameter, 
H, that is readily measured from R/5 graphs (see Section 7 of Chapter E1.) 
To be scaling, a Gaussian process must be a fractional Brownian motion, 
which is also mentioned in Section 7 of Chapter E1 and in greater detail in 
Chapter E6. 

William Feller adopted my argument as soon as he heard it, but those 
hydrologists who were not informed followed up on the ill-considered 
suggestion found in Feller 1951. They went on to estimate the memory M 
from the data, and soon made a striking discovery: as the sample length 
T increases, a good statistical fit requires a memory M that increases 
without limit, staying in the range between T /3 and T /2. 

This shocking conclusion made it clear that the Markov property is an 
artifact, and M is a non-intrinsic and worthless characterization that pro­
vides no scientific insight and has no pragmatic predictive value. As a 
result, the Markov model was forgotten, and action moved to ARMA, 
which raises the same issues, but in a more opaque way. The references 
are scattered throughout M 1997H. 

The eye versus high-order Markov, ARMA and ARCH. Let us step aside 
for comments that bring in the eye. They may seem overly "soft" and 
qualitative, but in factare basic and concern a matter of principle. 

Once again, as argued in Section 1 of Chapter E1, the validity of 
Markov models must be subjected to test by eye. Within a very long 
sample, take two sub-samples of length M separated by an interval of the 
same duration M. If the process is Markov of memory M, those samples 
are near-independent. It follows that the large sample includes no 
"feature" of duration longer than M. In other words, seen from a distance 
much larger than M, a Markov process of memory M looks near indistin­
guishable from the white noise in Figure 2 of Chapter El. To the contrary, 
once again, financial data like those of Figure 1 of Chapter E1 
unquestionably include a wealth of long duration structures. Back to the 
case of the Nile River, the absence of structure predicted by Markov 
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clearly contradicts well-founded legend and historical facts. The Bible 
describes "seven fat and seven lean years" and history records periods of 
seventy wet and fat years of famous Pharaohs followed by seventy dry 
years ruled by forgotten dynasties. 

To represent such data by Markov, ARMA, ARCH, or any other short­
term dependent process would be highly unadvisable, unless very strong 
independent reasons exist to believe that long duration phenomena are 
distinct and different from the short range phenomena to be modeled by 
ARMA or ARCH. To the contrary, the M 1965 model attempted to 
account for all data, and this "extravagant ambition" (to quote the first 
pages of the Preface) was at least partly successful. 

ARMA representations. The comments that follow are addressed to 
readers already acquainted with the "auto-regressive moving average" 
processes. The notion caused no stir when advanced by Herman Wold in 
the 1930s, but in the 1960s the Box-Jenkins computer programs made 
nearly everyone rush to try ARMA, then a variant called ARIMA. 

As expected, every sample of hydrologic and any other data can be 
fitted satisfactorily in this manner. Generality is always billed as being a 
great asset, but in many cases it is actually a major liability. Once again, 
like a Fourier series, ARMA is not a model, only a versatile representation. 
A satisfactory statistical fit is of no use in science unless the fitting param­
eters are consistent in time and have an intrinsic meaning. Unfortunately, 
the ARMA or ARIMA parameters obtained from successive samples are 
near-invariably mutually contradictory, and have no intrinsic meaning. 
Furthermore, because of the lack of long term structures, they have no 
predictive value whatsoever. 

In that respect, the M 1965 model is very different. It does not have a 
multitude of parameters, but a single parameter H. It is not a versatile 
representation, but a demanding model, making specific predictions that 
may turn out to be right or wrong. 

Being eager to know whether or not the value of H is intrinsically 
meaningful, I sought out the noted and wise economist Pierre Masse, who 
started his road to fame as the great dam builder of France. I described to 
him a major finding in M & Wallis 1969b{H}. The parameter H is con­
sistent between different subsamples from a river, and it is systematically 
higher for French rivers with their source in the Massif Central rather than 
the Alps. Restated in words, the former are more persistent than the 
latter. Masse was delighted and astonished that so much of his life-long 
qualitative experience could be summarized by a single· number ... and 
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discovered so directly by a raw non-expert. How would he have reacted 
to parallel columns of ARIMA coefficients? 

One-parameter long-dependence having proved successful, it was 
combined with ARIMA, yielding "fractional ARIMA" (FARIMA or 
ARFIMA). As expected, the two ingredients in combination give a better 
statistical fit than either ingredient by itself. But does long-dependence or 
ARIMA contribute more significantly to the overall good fit in FARIMA? 
That is, should the one-parameter FBM dependence be viewed as a last­
minute improvement on ARMA, or is it true (as I would expect) that the 
more significant factor is the exponent H of FBM? 

The ARCH representation and its variants. The comments that follow are 
addressed to readers already acquainted with this common "fix" to 
Brownian motion. In spirit, the ARCH model is closely related to models 
that inject a trading time, such as the 1967 model based on subordination 
(M & Taylor 1967) or the M1972 model. The fit of an ARCH-like model is 
likely to be good or even excellent, if only because there is no upper 
bound on the number of parameters. However, all the reservations con­
cerning ARMA extend to ARCH. 

To a recently-trained economist who accepts help from the eye, finan­
cial data like those in Figure 1 of M 1967j{E1S}) are prime material for 
ARCH modeling. But so does the original output of a multifractal 
measure, Figure 4 of Chapter E1, or any variant thereof. A short sample 
output of the fitted ARCH model includes interesting features reminiscent 
of either figure. But, as I expected but was careful to verify, a longer 
sample, when seen from a sufficient distance, behaves like the white noise 
of Figure 1 of Chapter E1. That is, ARCH analysis foils, by its very nature, 
to be faithful to the long-term component that the multifractals involve, 
and that the eye sees in the financial data. 

To be practical, suppose that some statistical test is applied to the 
long-term components that we all see, and declares them to be in fact sta­
tistically non-significant. My first impulse will be to examine the opinion 
those tests express concerning multifractal samples. I expect that the 
response will be that the long-term components are non-existent, whereas 
we know they are present, since they were deliberately built-in. 

Interpolation and extrapolation. Yet another deep difference between 
ARCH and the M 1972 model shows up when models based on daily data 
have to be interpolated or extrapolated to higher or lower frequencies. In 
ARCH, analytic procedures are not available. In the M 1972 model, 
interpolation and extrapolation are both immediate. Moreover, as in the 
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actual data, the distributions over different time spans M are different and 
narrow down as M increases. 

Clark's ''fix'' applied to the M 1963 model as a substitute to genuine gener­
alization. M & Taylor 1967 is discussed in Section 8 of Chapter E1, and 
reproduced in Chapter E21; we shall refer to it as op. cit. Once again, the 
point is that the M 1963 model can be represented as a Brownian motion 
followed in a trading time defined by using a "subordinator." 

Clark 1973 adopted this idea and statistical tests of several alternative 
subordinator functions concluded that a lognormal fits the daily data 
better than the scaling suggested in op. cit. My response in M 1973c 
(reproduced in Section 3 of op. cit) was a preview of the criticism of Stu­
dent's distribution presented in Section 4.2. I see nothing special about the 
time span of one day. If lognormality turns out to also apply to T> 1, this 
would be due to special rules of dependence that no one attempted to 
describe, much less to compare with the evidence. 

The answer to my concerns would be an independent justification of 
lognormality, but the widely accepted motivation by multiplicative effects 
is at best arguable, as shown in Chapter E8, and altogether inapplicable in 
this context. (The case against lognormality is argued in Chapter E9.) 

4.4 Touch-ups; scaling versus a patchwork of fixes, within a distinction 
Chapters E5 and E6 introduce between "states of randomness" 

Section 5.3 of Chapter E1 sketched the notion of mild randomness, as 
applied to self-affine models. By contrast, it will be said that fractional 
Brownian motion is wildly random. Thirdly, the words slow randomness 
will describe a range of behavior that is intermediate between mild and 
wild. In this case, the "long-run" asymptotic behavior is mild, a conclu­
sion that seems reassuring. Unfortunately, this reassuring conclusion is of 
no observable consequence for slowly random phenomena, because for 
them the observable "middle-range" transient mimics that of wildly 
random phenomena. 

How does this classification accommodate the financial model that 
involve fixes? The "Student" model straddles the distinction but at least 
allows for the possibility that a < 2, that is, does not exclude wild 
behavior. The M 1963 model altered by truncation (Section 4.1) is specif­
ically designed to promise asymptotic mildness, and the difficulties rela­
tive to the middle-run are papered over by being assigned to transients. 
The higher the pyramid of fixes, the longer the transient. The longer the 
transient, the less significant and worthy the initial model. 
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This fundamental and delicate issue is discussed in detail in Chapters 
E5 and E6. It leads me to draw a distinction between fixes and "touch­
ups." I think of the former as changing the state of randomness, without 
clearly acknowledging what is being done, while the latter remain within 
a single state of randomness and only concern details of fit. 

5. "PARADOXES" THAT ILLUSTRATE THE "CREATIVITY" 
INHERENT IN SCALING 

To move into this final section, it is necessary to change gears. The 
"creativity" that allows very simple fractal and scaling constructions to 
generate structures of unexpected complexity easily generates paradoxes 
that deserve being sampled in a jocular vein. 

5.1 Paradoxes of expectation in the exponential and the scaling cases 

The technical argument presented in Chapter E1, Section 5.2 has extensive 
concrete implications. 

The fact that the exponential distribution is invariant with respect to 
change of location has a well-known paradoxical consequence. When time 
intervals between buses are exponential, a passenger's waiting time (in 
particular, his expected waiting time) is not affected by the fact that they 
barely missed the preceding bus. 

This consequence has an obvious counterpart when U is scaling. 
When a > 1, one finds E(U, U> w) = a(a - I)-lw. For all a, the conditioned 
median is {U1/ 2 ' U > w} = 21/ aw, and all other quantiles are proportional to 
w. This is a disconcerting result, and calls for an intuition of randomness 
that is altogether different from the intuition acquired from exponential 
queues. This task is best faced through some folklore and related fanciful 
and paradoxical stories. 

5.2 Fanciful but enlightening paradoxical stories 

Throughout this chapter runs the assertion that scaling randomness war­
rants attention. The reason resides in its high probability of generating 
structures that fit the data well and seem to lie beyond the power of ran­
domness. It is, therefore, proper to end this chapter with fanciful stories 
that may help this "creativity" become understood. A few were moved 
here from M 1966b{E19} to increase emphasiS. Readers resistant to fancy 
are urged to forge ahead. The other readers are forewarned: if a story 
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holds up to criticism, I shall claim it as a scientific discovery; if it does not, 
I shall insist that a parable must not be taken too seriously. 

The Lindy Effect. Popular wisdom informs us that "Nothing succeeds 
like success"; "Advantage brings advantage"; "The greater an active man's 
past success, the greater further success he may expect in the future"; "The 
greater the scope an idea or a process has had in the past, the greater the 
additional scope it may expect to acquire"; "The future career expectation 
of a television comedian is proportional to the total amount of his past 
exposure on the medium." The New York Times Magazine of March 3,1968, 
when quoting this last saying, credited it The New Republic of June 13, 
1964, which had called it the Lindy Effect. 

Let us indeed ponder the expectation of the comedian's future career. 
Clearly, it is the average of (a) the nonexistent future careers of those 
whose day has already ended (though they may not realize it), (b) the 
short future careers of most, and (c) the very long future careers of a 
handful of individuals. Some past performers were extremely durable, 
therefore the same is generally expected to be the case for present per­
formances, but their identity is usually predicted by no more than a 
handful of observers who may be exceptionally perceptive or merely 
lucky. The issue may be discussed interminably, but is seldom deter­
mined with certainty. 

At this stage of the argument, however, we must stress that the Lindy 
Effect fails to hold for non-scaling distributions. Thus, as the exposure u 
increases, expectation remains constant if Pr{U ~ u} = exp( - u). It actually 
decreases if u > 0 and Pr{U> u} = exp (- u2), which is not too far from the 
rule that holds for the Gaussian. 

Relation between the Lindy Effect and the distribution of personal income. 
Restated in this book's terminology, Pareto's law claims that the distrib­
ution of personal income is scaling. Consider a contemporary U.S. resi­
dent, of whom we only know that his annual income is at least w, where 
W is neither small (a different formula would be needed in that case) nor 
so large as to identify the resident and hence move beyond the scope of 
statistics. In the case a = 2, it follows that E(U - w) = w. In words, the 
expectation of the unknown portion of income is equal to the ascertained 
income. The expected value is therefore 2w, but it is thoroughly mis­
leading. It combines the occasional millionaire with a mass of people 
whose income barely exceeds w. 

"Parable of the Young Poets' Cemetery. In the most melancholy section 
of the cemetery are the graves of poets and scholars fallen in the flower of 
their youth, each surmounted by a symbol of loss: one half of a book or 
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of a column, a tool's handle .... The old groundskeeper, a poet in his 
youth, urges visitors to take these funereal symbols most literally: I All 
who lie here,' he says, 'accomplished enough to be viewed as full of 
promise, yet fell so young that a limitless future seemed to extend in front 
of them. Some, indeed, might have challenged the prolific Leonhard 
Euler, but most were about to be abandoned by their Muses. Having 
lived long and seen much, I view my charges' lifework before they came 
here as divided into two exactly equal halves: one half in fulfillment and 
one half in broken expectation." 

"Where it is shown that a scientist whose work is interrupted when he is still 
young only realizes half of a promised career. Most humans never write a sci­
entific article. Of those who do, most write a very small number, but a 
very few - giants or pigmies - are extraordinarily prolific. According to 
Alfred Lotka, the distribution of the number of scientific papers signed by 
an author is scaling with a = 2. It follows that however long a person's 
record, it will on the average continue for an equal additional amount. 
When it eventually stops, it breaks off half its promise. The only way of 
avoiding such apparent disappointment is to live to be so old that age cor­
rections must be considered when computing the expected future." 

"The Dean and the Applicant. A young but already confirmed scientist 
applies for a position. Legend has it that overcautious deans simply 
weigh or count publications. Forward-looking deans attempt, through 
mist and uncertainty, to read the future. To remain "objective" and not 
misled by imponderables, they must be guided by expectation based on 
past experience. But after the best possible outcome is averaged with the 
worst, the Lindy Effect will make forward-looking deans agree with the 
overcautious ones. A difference is that the overcautious get what they 
bargained for, while the forward-looking ones worry about "deadwood" 
they ought to have foreseen." 

"On the exposure and expectation of a whole field of learning. Whole 
branches of science also grow, bloom and then wither away, and since 
there is no human mortality to bound a collective endeavor, it is easier to 
study a field of science than to study an individual scientist. Assuming 
that the Lindy Effect holds, the science with the longest uninterrupted suc­
cessful record should be expected to have the longest future. The sciences 
that have long been successful also have the greatest "prestige," and 
warrant - at least according to those who practice them - the greatest 
social and financial support. But every science will stop sometime, so the 
greatest disappointment is reserved for individuals who hitch their career 
to a long-prosperous field just about to run dry." 
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To continue in the same vein, here is a parable meant to point out that 
uncertainty is no lesser in the physical than in the social sciences. 

"Parable of the Receding Shore. Once upon a time, there was a country 
called the Land of Ten Thousand Lakes, affectionately known to its inhab­
itants as Biggest, Second Biggest, ... , N-th Biggest, etc., down to 10,OOOth 
Biggest. The widest was an uncharted sea, nay, a wide ocean at least 1600 
miles across, the width of N-th Biggest was 1600 !r0.s, and in particular 
the smallest had a width of only 1 mile. (This fits the evidence described 
in Chapters II and IX of M 1982F{FGN}). But each lake was always 
covered with a haze that made it impossible to see beyond a mile to iden­
tify its width. The land was poorly marked, and had few inhabitants to 
help the traveler. However, the people who lived there, the Lakers, were 
expert at measuring and great believers in mathematical expectation. As a 
Laker stood on an unknown shore, he knew he had before him a stretch of 
water of expected width equal to 5 miles. Having sailed for a few miles 
m, but failing to reach his goal, our Laker calculates the new expected dis­
tance to the next shore, and again obtains 5 miles. 

"Could it be that spirits moved the shore away?" 
Once again, fanciful stories must not be taken textually. But they 

must not be spurned either. Suppose, for example, that the lengths of 
droughts are scaling. Then a drought that already lasted w years will con­
tinue for an additional duration proportional to w. This prediction is by no 
means far-fetched, and is put to good use in the theory of financial 
bubbles that is presented in M 1966b{E19}. 
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New methods in statistical economics 

• Chapter foreword. An interesting relationship between the methods in 
this chapter and renormalization as understood by physicists is described 
in the Annotation for the physicists that follows this text. • 

.. Abstract. This is an informal presentation of several new mathematical 
approaches to the study of speculative markets and of other economic 
phenomena. My principal thesis is that to achieve a workable description 
of price changes, of the distribution of income, firm sizes, etc., it is neces­
sary to use random variables that have an infinite population variance. 

This work should lead to a revival of interest in Pareto's law for the 
distribution of personal income. The scaling distribution related to this 
law should dominate economics. .. 

AMONG TODAY'S STATISTICIANS AND ECONOMISTS, Pareto's law 
for the distribution of income is well-known, but is thoroughly neglected 
for at least two reasons. It fails to represent the middle range of incomes, 
and lacks theoretical justification within the context of elementary proba­
bility theory. I believe, however, that Pareto's remarkable empirical 
finding deserves a systematic reexamination, in light of the new methods 
that I attempt to introduce into statistical economics. 

I. INTRODUCTION 

Pareto claimed that there exist two constants, a prefactor C and an expo­
nent a > 0, such that for large u, the relative number of individuals with 
an income exceeding u can be written in the form P(u) - Cu- a. 
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That is, when the logarithm of the number of incomes greater than u 
is plotted as a function of the logarithm of u, one obtains for large u a 
straight line with slope equal to - u. Later, the same relation was found to 
apply to the tails of the distributions of firm and city sizes. In fact, the 
search for new instances of straight log-log plots has been very popular 
and quite successful, among others, in Zipf 1941, 1949. 

This book reserves the term "law of Pareto" to instances that involve 
the empirical distribution of personal income. The tail distribution 
P(u) ~ Cu- u is denoted by the neutral term, scaling distribution, that is 
useable in many sciences and was not available when the paper 
reproduced in this chapter was published for the first time. The quantity 
u will be called scaling exponent. 

Notwithstanding the abundant favorable evidence, Zipf's claims met 
strong objections from statisticians and economists. Those objections were 
so strong as to blind the critics to the evidence. In sharp contrast, I 
propose to show that the scaling distribution literally cries for our attention 
under many circumstances. Those circumstances include (1) taking seri­
ously the simplified models based on maximization or on linear aggre­
gation (2) taking a cautious view of the origin of the economic data or (3) 
believing that the physical distribution of various scarce mineral resources 
and of rainfall is important in economics. 

In addition, I shall show that, when the "spontaneous activity" of a 
system is ruled by a scaling rather than a Gaussian process, the causally 
structural features of the system are more likely to be obscured by noise. 
They may even be completely "drowned out." This so because scaling 
noise generates a variety of "patterns;" everyone agrees on their form, but 
they have no predictive value. Thus, in the presence of a scaling "sponta­
neous activity, validating a causal relation must assume an unexpectedly 
heavy burden of proof and must acquire many new and quite perturbing 
features. 

We shall see that the most important feature of the scaling distribution 
is the length of its tail, not its extreme skewness. In fact, I shall introduce 
a variant of the scaling distribution, which is two-tailed, and may even be 
symmetric. Hence, extreme skewness can be viewed as a secondary 
feature one must expect in variables that have one long tail and are con­
strained to be positive. 

Much of the mathematics that I use as tool have long been available, 
but viewed as esoteric and of no possible use in the sciences. Nor is this 
paper primarily an account of empirical findings, even though I was the 
first to establish some important properties of temporal changes of specu-
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lative prices. What I do hope is that the methods to be proposed will con­
stitute workable "keys" to further developments along a long-mired 
frontier of economics. Their value should depend on (1) the length and 
number of successful chains of reasoning that they have made possible; (2) 
the number of seemingly reasonable questions that they may show to be 
actually "ill_set" and hence without answer; and last, but of course not 
least, (3) the practical importance of the areas in which all these develop­
ments take place. 

This paper will not attempt to treat any point exhaustively nor to 
specify all the conditions of validity of my assertions; the details appear in 
the publications referenced. Many readers may prefer to read Section VI 
before Sections II-IV. Section IX examines Frederick Macauley's important 
and influential critique of Pareto's law. 

II. INV ARIANCES; "METHOD OF INVARIANT DISTRIBUTIONS" 

The approach I use to study the scaling distribution arose from physics. It 
occurred to me that, before attempting to explain an empirical regularity, 
it would be a good idea to make sure that this empirical identity is 
"robust" enough to be actually observed. In other words, one must first 
examine carefully the conditions under which empirical observation is 
actually practiced. The scholar observes in order to describe but the entre­
preneur observes in order to act. Both know that most economic quanti­
ties can hardly ever be observed directly and are usually altered by 
manipulations. In most practical problems, very little can be done about 
this difficulty, and one must be content with whatever approximation of 
the desired data is available. But the analytical formulas that express eco­
nomic relationships cannot generally be expected to remain unaffected 
when the data are distorted by the transformations to which we shall tum 
momentarily. As a result, a relationship will be discovered more rapidly, 
and established with greater precision, if it "happens" to be invariant with 
respect to certain observational transformations. A relationship that is 
noninvariant will be discovered later and remain less firmly established. 
Three transformations are fundamental to varying extents. 

Linear aggregation, or simple addition of various quantities in their 
common natural scale. The distributions of aggregate incomes are better 
known than the distributions of each kind of income taken separately. 
Long-term changes in most economic quantities are known with greater 
precision than the more interesting medium-term changes. Moreover, the 
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meaning of "medium term" changes from series to series; a distribution 
that is not invariant under aggregation would be apparent in some series 
but not in others and, therefore, could not be firmly established. Aggre­
gation also occurs in the context of firm sizes, in particular when "old" 
firms merge within a "new" one. The most universal type of aggregation 
occurs in linear models that add the (weighted) contributions of several 
"causes" or embody more generally linear relationships among variables 
or between the current and the past values of a single variable 
(autoregressive schemes). The preference for linear models is of course 
based on the unfortunate but unquestionable fact that mathematics offers 
few workable nonlinear tools to the scientist. 

There is actually nothing new in my emphasis on invariance under 
aggregations. It is indeed well known that the sum of two independent 
Gaussian variables is itself Gaussian, which helps use Gaussian "error 
terms" in linear models. However, the common belief that only the 
Gaussian is invariant under aggregation is correct only if random variables 
with infinite population moments are excluded, which I shall not do (see 
Section V). Moreover, the Gaussian distribution is not invariant under our 
next two observational transformations. 

One may aggregate a small or a very large number of quantities. 
Whenever possible, "very large" is approximated by "infinite" so that 
aggregation is intimately related to the central limit theorems that describe 
the limits of weighted sums of random variables. 

Weighted mixture. In a weighted lottery a preliminary chance drawing 
selects one of several final drawings in which the gambler acquires the 
right to participate. This provides a model for other actually observed 
variables. For example, if one does not know the precise origin of a given 
set of income data, one may view it as picked at random among a number 
of possible basic distributions; the distribution of observed incomes would 
then be a mixture of the basic distributions. Similarly, price data often 
refer to grades of a commodity that are not precisely known, and hence 
can be assumed to be randomly determined. Finally, the very notion of a 
firm is to some extent indeterminate, as one can see in the case of subsid­
iaries that are almost wholly owned but legally distinct. Available data 
often refer to "firms" that actually vary in size between individual estab­
lishments and holding companies. Such a mixture may be represented by 
random weighting. In many cases, one deals with a combination of the 
above operations. For example, after a wave of mergers hits an industry, 
the distribution of "new" firms may be viewed as a mixture of (a) the dis­
tribution of companies not involved in a merger, (b) the distribution of 
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companies that are the sum of two old firms, and perhaps even (c) the sum 
of more than two firms. 

Maximizing choice, the selection of the largest or smallest quantity in a 
set. It may be the case that all we know about a set of quantities is the 
size of the one chosen by a profit maximizer. Similarly, if one uses histor­
ical data, one must often expect to find that the fully reported events are 
the exceptional ones, such as droughts, floods or famines (and the names 
of the "bad kings" who reigned in those times) and "good times" (and the 
names of the "good kings"). Worse, many data are a mixture of full 
reported data and of data limited to the extreme cases. 

Although the above transformations are not the only ones of interest, 
they are so important that it is important to characterize the distributions 
that they leave unchanged. It so happens that invariance-up-to-scale holds 
asymptotically for all three transformations, as long as the parts themselves are 
asymptotically scaling. In the case of infinite aggregation, invariance only 
holds if the scaling exponent u is less than two. To the contrary (with 
some qualifications), invariance does not hold - even asymptotically - in any 
other case. 

Hence, anyone who believes in the importance of those transforma­
tions will attach a special importance to scaling phenomena, at least from 
a purely pragmatic viewpoint. 

This proposition also affects the proper presentation of empirical 
results. For example, to be precise in the statement of scientific distrib­
utions, it is not sufficient to say that the distribution of income is scaling; 
one must list the excluded alternatives. A statistician will want to say that 
"it is true that incomes (or firm sizes) follow the scaling distribution; it is 
not true that incomes follow either Gaussian, Poisson, negative binomial 
or log-normal distributions" But my work suggests that one must rather 
say: "It is true that incomes (or firm sizes) follow the scaling distribution; 
it is not true that the distributions of income are very sensitive to the 
methods of reporting and of observation." 

III. INV ARIANCE PROPERTIES OF THE SCALING DISTRIBUTION 

Of course, the invariance of the asymptotic scaling distribution holds only 
under additional assumptions; the problem will surely not be exhausted 
by the present approach. Consider N independent random variables, 
UnO ~ n ~ N) that follow the weak (asymptotic) form of the scaling distrib­
ution with the same exponent u. This means that 
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Pr{Un > u} - ~U-a if U is large. 

The behavior of Pr{Un < - u} for large u will be examined in Section VII. 

Let me begin with mathematical statements that imply that the scaling 
behavior of Un is sufficient for the three types of asymptotic invariance-up­
to-scale. Short proofs will be given in parentheses, and longer ones in the 
Appendix. The symbol L will always refer to the addition of the terms 
relative to the N possible values of the index n. 

Weighted Mixture. Suppose that the random variable Uw is a weighted 
mixture of the Un' and denote by Pn the probability that Uw is identical to 
Un' One can show that this Uw is also asymptotically scaling and that its 
scale parameter is Cw = LPnCn, which is simply the weighted average of the 
separate scale coefficients Cn' (Proof. It is easy to see that 

Maximizing choice. Ex-post, when the values Un of all the variables Un are 
known, let UM be the largest. One can show that this UM is also 
asymptotically scaling, with the scale parameters CM = LCn' the sum of the 
separate scale coefficients Cn' (Proof. Clearly, in order that UM:S u, it is 
both necessary and sufficient that Un:S U is valid for every n. Hence, II 
denoting the product of the terms relative to the N possible values of the 
index n, we have 

Pr{UM < u} = OPr{Un :S u}. 

It follows that 

Aggregation. Let U A be the sum of the random variables Un' One can 
show that it is also asymptotically scaling, with a scale parameter that is 
again the sum of the separate weights Cn' Thus, at least asymptotically for 
u -+ 00, the sum of the Un behaves exactly like the largest Un (see M 
1960HEI0} for further details}. Mixture combined with aggregation is an 
operation that occurs in the theory of random mergers of industrial firms 
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(M 19630). One can show that it also leaves the scaling distribution 
invariant-up-to-scale. 

The converses of the above statements are true only in the first 
approximation; for the invariance-up-to-scale to hold, the distributions of 
the Un need not follow the scaling distribution exactly; but they must be 
so close to it as to be scaling for many practical purposes. 

Strictly invariant distributions that also enter as limits. To introduce 
two distributions due to Frechet and Levy, respectively, and relate them to 
scaling, let us imitate (with a different interpretation) a principle of invari­
ance that is typical of physics: We shall require that the random variable 
Un be strictly invariant up to scale with respect to one of our three trans­
formations. 

Let N random variables Un follow - up to changes of scale - the same 
distribution as the variable U, so that Un can be written as anU, where 
an> O. I shall require that Uw (respectively, UM or UA) also follow - up the 
changes of scale - the same distribution as U. This allows one to write Uw 
( UM or UA) in the form awU (aMU or aAU), where aW' am and aA are positive 
functions of the numbers an. 

As shown in the Appendix, it turns out that the conditions of invari­
ance lead to somewhat similar equations in all three cases; ultimately, one 
obtains the following results: 

Maximization. The invariant distributions must be of the form 
FM(u) = exp( - u- a) (Frechet 1927, Gumbel 1958). These distributions are 
clearly scaling for large u and correspondingly small u- a, since in that 
range FM can be approximated by 1- Cu- a . They also "happen" to have 
the remarkable property of being the limit distributions of expressions of 
the form !r l/a max Un' where the Un are asymptotically scaling. There 
are no other distributions that can be obtained simply by multiplying the 
mass Un by an appropriate factor and by having N tend to infinity. But 
allowing the origin of U to change as N -+ 00, yields the "Fisher-Tippett 
distribution," which is not scaling and not invariant under the other two 
transformations. 

Mixing. In this case, the invariant distributions are' Fw(u) = 1- Cu- a, 

which is the analytical form of the scaling distribution extended down to 
u = O. This solution corresponds to an infinite total probability, implying 
that, strictly speaking, it is unacceptable. However, it must not be rejected 
immediately because in many cases U is further restricted by some 
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relation of the form 0 < a ::5: U ::5: b, leading to a perfectly acceptable condi­
tional probability distribution. 

Aggregation. Finally, aggregation leads to random variables that are the 
"positive" members of the family of "L-stable distributions," other 
members of which will be encountered =later (Levy 1925, Gnedenko & 
Kolmogorov 1954). These distributions depend on several parameters, the 
principal of which is again denoted by a and must satisfy 0 < a::5: 2. The 
density dFA(u) has a closed analytic form in a few cases. The limit case for 
a = 2, is the Gaussian distribution (which, however, is not itself scaling). 
The density of the positive L-stable distribution is also known in the case 
a = 1/2, which plays a central role in the study of the return to equilib­
rium in coin tossing. In other cases, no closed analytic expression is 
known for the stable distribution FA(u). But Levy showed that they 
asymptotically follow the scaling distribution with exponent a, except in 
the limit case a = 2 (for a just below 2, their convergence to their scaling 
limit is slow). 

The L-stable variables yielded by the present argument can take nega­
tive values if 1 ::5: a ::5: 2, as is readily seen in the Gaussian case. But there is 
a very small probability that they take large negative values. I have shown 
how this can be handled in practice by suitably displacing the origin. 

L-stable distributions have another important property: they are the 
only possible non-Gaussian limits of linearly weighted sums of random 
variables. Hence, even though they cannot begin to compare with the 
Gaussian from the viewpoint of ease of mathematical manipulations, they 
both share the fundamental properties of that distribution from the view­
point of linear operations. The corresponding forms of the non-classical 
central limit theorem show that the sum of many additive contributions 
need not be Gaussian; if one wishes to explain by linear addition a phe­
nomenon that is ruled by a skew distribution, it is not necessary to assume 
that the addition in question is performed in the scale of U itself. This 
also shows that the log-normal distribution is not the only skew distrib­
ution that can be explained by addition arguments, thus removing the 
principal asset of that distribution (which is known in most cases to 
underestimate grossly the largest values that can be taken by the variable 
of interest). 

One can see that the probability densities of the three invariant fami­
lies differ throughout most of the range of u. However, if 0 < a < 2, their 
asymptotic behaviors coincide. Hence, the scaling distribution is also 
asymptotically invariant with respect to applications of an arbitrary suc-
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cession of the basic transformations. When a is close to 2, the practical 
application of this property requires additional qualifying statements. 

It should be noted that Frechet's and Levy's distributions attract sub­
stantial attention from mathematicians. However, the scaling maximum 
distributions have few generally known applications and the scaling sum 
distributions (L-stable distributions) have practically none. 

It is true that a celebrated treatise on stable distributions, Gnedenko & 
Kolmogorov 1954, alludes to forthcoming publications specifically con­
cerned with applications of L-stability. However, when I discussed this 
allusion with Professor Kolmogorov in 1958 (ten years after the original 
Russian edition,) I found that these papers had not materialized after all -
for lack of applications! Basically, the only fairly well-known practical 
instance of a stable distribution is the distribution due to Holtsmark (but 
often rediscovered,) which rules the Newtonian attraction between ran­
domly distributed stars (see Section 2.8 of M 1960i{EI0}). Thus, Gnedenko 
& Kolmogorov 1954 did not pre-empt my plea that stable distributions 
should be counted among the most "common" probability distributions. 

IV. SIGNIFICANCE OF THE EVIDENCE PROVIDED BY DOUBLY 
LOGARITHMIC GRAPHS 

Limitations on the value of a lead to another quite different aspect of the 
general problem of observation. It concerns the practical significance of 
statements having only an asymptotic validity. Indeed, to verify empir­
ically the scaling distribution, the usual first step is to draw a doubly loga­
rithmic graph: a plot of 10glO[ 1 - F(u)] as a function of 10glOu. One should 
find that this graph is a straight line with the slope - a, or at least that it 
rapidly becomes straight as u increases. But, look closer at the sampling 
point of the largest u. Except for the distribution of incomes, one seldom 
has samples over 1,000 or 2,000 items; therefore, one seldom knows the 
value of u that is exceeded with the frequency 1 - F(u) = 1, 000- 1 or 
2,000- 1• That is, the "height" of the sampling doubly logarithmic graph 
will seldom exceed three units of the decimal logarithm of 1 - F. The 
"width" of this graph will be at best equal to 3/0. units of the decimal log­
arithm of u. However, if one wants to estimate reliably the value of the 
slope a, it is necessary that the width of the graph be close to one unit. In 
conclusion, one cannot trust any data that suggest that a is larger than 3. 
Observe that the resulting practical range of a's is wider than in the case 
of stable distributions. 
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Looking at the same question from another angle, take doubly loga­
rithmic paper and plot the following distributions: Gaussian, lognormal, 
negative binomial and exponential. Because all these distributions are 
very "short tailed," the slope of the graph will become asymptotically infi­
nite. However, in the region of probabilities equal to one-thousandth, the 
dispersion of sample data is likely to generate - on doubly logarithmic 
coordinates - the appearance of a straight line having a high but finite 
slope. In the words of Macaulay 1922 (see Section IX): "The approximate 
linearity of the tail of a frequency distribution charted on a double loga­
rithmic scale signifies relatively little, because it is such a common charac­
teristic of frequency distributions of many and various types." However, 
linearity with a low slope signifies a great deal indeed. Figure 1 further 
illustrates this difference between different values of 0.. 

There is another way to describe curve-fitling using special paper. 
One may say that the maximum distance between the sample curve and 
some reference curve - preferably a straight line - defines a kind of 
"distance" between two alternative probability distributions. Any special 
paper, whether it be log-normal or scaling, should be used only in ranges 
where the distances that it defines are sensitive to the differences that 
matter to the particular problem. Hence, the most conservative approach 
is often to consider several hypotheses, that is, to use several kinds of 
paper. 

In summary, if one considers mixtures, maximizations and practical 
measurement, the range of values of 0. is reduced to the interval from 0 to 
3. If one also takes aggregation into account, 0. must fall between 0 and 2 
(actually, the range of "apparent" a's is somewhat wider). 

V. FINITE SAMPLE BEHAVIOR OF RANDOM VARIABLES WITH 
INFINITE POPULA nON MOMENTS 

When 0. is not small (in a sense we shall describe shortly), a scaling dis­
tribution is extraordinarily long-tailed, as measured by Gaussian stand­
ards. In particular, if 0. < 2, the population second moment is infinite. It 
should be stressed, however, that the concept of infinite variance is in no 
way "improper." 

It is of course true that, since observed variables are finite, the sample 
moments of all orders are themselves finite for finite sample sizes; but this 
does not exclude the possibility that they tend to infinity with increasing 
sample size. It may also be true that the asymptotic behavior of the 
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samples is practically irrelevant because the sizes of all empirical samples 
are by nature finite. For example, one may argue that the history of 
cotton prices is mostly a set of data from 1816 to 1958, speculation on 
cotton having been very much decreased by the 1958 acts of the United 
States Congress. Similarly, when one studies the sizes of United States 
cities, the statistical populations have a bounded sample size. Even for 
continuing series, one may well argue for "apres moi, Ie deluge" and 
neglect any time horizon longer than a man's life. Hence, the behavior of 
the moments for infinite sample sizes may seem unimportant. But it actu­
ally implies that the only meaningful consequences of infinite population 
moments are those relative to the sample moments of increasing subsets of 
our various bounded universes. 

In Figure 2, the predictions of the mathematical theory are illustrated 
by computer simulations. Distinct samples of scaling random variables 
with a = 1 were obtained by inverting samples of random variables dis-
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FIGURE E3-1. Five doubly logarithmic plots: (A) Two exponential distributions 
(very curved solid lines) with very different expectations. (B) Two distributions 
which are uniformly scaling from u = 1 and have, respectively, the exponents 
a = 1/2 and a = 1. (0 One asymptotically scaling distribution, with the expo­
nent a = 4, a large value. The relations between these graphs demonstrate 
graphically that distributions similar to (C) can readily be confused with the 
exponential, but small values of the a exponent are reliable. 
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tributed uniformly over the interval [0, 1]. Plots of the variation of the 
first and second moments are then created. The sample first moments 
illustrate what happens when the population moment is given by a barely 
divergent integral; the sample second moments illustrate what happens 
when the population moment is given by a rapidly divergent integral. 
The sample moments do not converge, and - even more impressive - their 
growth is erratic and very sample-dependent. 

Let us now return to experimental data. In some cases, the sample 
second moment is observed to "stabilize" rapidly around the final value 
corresponding to the total set. If so, it is unquestionably useful to take 
this final value as an estimate of the population second moment of a con­
jectural infinite population from which the sample could have been drawn. 
But Figure 3 shows that the sample second moments corresponding to 
increasing subsets may continue to vary widely even when the sample 
size approaches the maximum imposed by the subject matter. From the 
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FIGURE E3-2. Monte Carlo runs of the sequential first moment (lower graphs) and 
the sequential second moment (upper graphs) of three independent samples 
from a scaling population of exponent a = 1. The term "sequential moment" 
means that, in each run, the moment is computed for every sample size from 
1 to 1,000. This figure suggests the degree to which the sample moments of 
scaling variables can be erratic and sample-dependent. 
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viewpoint of sampling, this expresses that even the largest available 
sample is too small for reliable estimation of the population second 
moment. In other words, a wide range of values of the population second 
moment are equally compatible with the data. Now, let us suppose that­
as in Figure 3 - the appearance of the sample data recalls Figure 2. Then, 
the reasonable range of values for the population moment will frequently 
include the value lIinfinity," implying that facts can be equally well 
described by assuming that the II actual" moment is finite but extremely 
large or by assuming that it is infinite. 

To support the alternative that I prefer, let me point out that a realistic 
scientific model must not depend too critically on quantities that are diffi­
cult to measure. The finite-moment model is unfortunately very sensitive 
to the value of the population second moment, and there are many other 
ways in which the first assumption, which of course is the more reason­
able a priori, is also by far more cumbersome analytically. The second 
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FIGURE E3-3. Sequential first moment (left) and the sequential second moment 
(right) of the numbers of inhabitants in United States cities with over 50,000 
inhabitants. The cities have been ordered alphabetically. As city sizes have a 
scaling exponent of about a = 1.1, the sample first moment tends - very slowly 
- to a limit, while the second moment increases less rapidly than in the simu­
lations reported in Figure 2. 
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assumption, on the contrary, leads to simple analytical developments, and 
the rapidity of growth of the sample second moment can be modulated to 
lead to absurd results only if one applied it to "infinite" samples, that is, if 
one raised problems devoid of concrete meaning. 

In other words, there is nothing absurd in assuming, as I am con­
stantly led to do, that intrinsic bounded variables are drawn at random 
from infinite populations of unbounded variables having an infinite 
second moment. But all these infinities are a relative matter, entirely 
dependent on the statistician's span of interest. As the maximum useful 
sample size increases, the range of the estimates of the second moment 
will steadily narrow. Hence, beyond a certain limit, the second moments 
of some variables may be considered as finite. Conversely, there are vari­
ables for which the second moment must be considered finite only if the 
useful sample size is smaller than some limit. 

Actually, this use of infinity is common in statistics, insofar as it con­
cerns the function max {uI' u2' •.• , UN} of the observations. From this view­
point, even the use of infinite spans would seem improper. However, it is 
well known in statistics that little work could be done without using 
unbounded variables. One even uses the Gaussian distribution to repre­
sent the height of adult humans, which is surely positive! 

The unusual behavior of the moments of scaling distributions can be 
used to introduce the least precise interpretation of the validity of the 
notion of scaling. For example, suppose that the first moment is finite, but 
the second moment is infinite. Then, as u tends to infinity, the function 
1- F(u) must decrease more slowly than 1/u2 but more rapidly than l/u. 
In this case, the behavior of F(u) in the tails is very important, and a very 
useful approximation may be Cu- a, with 1 < a < 2. This approximation is 
completely harmless as long as one limits oneself to consequences that are 
not very sensitive to the actual value of a. The situation is very different 
when the tail is very short, for example, when the population moments 
are finite up to the fourth order. In that case, the behavior of the function 
F(u) for large u is far less important than its behavior elsewhere; hence, 
one will risk little harm with interpolations by the Gaussian or the log­
normal distribution. 

VI. DIFFICULTIES CONCERNING STATISTICAL INFERENCE AND 
CONFIRMATION OF SCIENTIFIC DISTRIBUTIONS, WHEN THE 
ERRORS (THAT IS, THE "BACKGROUND NOISE") ARE SCALING 
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It is well known that second moments are heavily used in statistical meas­
ures of dispersion, or "standard deviation," and in "least-squares" and 
"spectral" methods. Hence, whenever the considerations of Section V are 
required to explain the erratic behavior of sample second moments, a sub­
stantial portion of the usual methods of statistics should be expected to 
fail. Examples of such failures have, of course, often been observed empir­
ically and may have contributed to the disrepute in which many writers 
hold the scaling distribution; but it is clearly unfair to blame a formal 
expression for the complications made inevitable by the data that it repres­
ents. If 2 < a < 3, second moments exist, but concepts based on third and 
fourth moments, - for example Pearson's measures of skewness and 
kurtosis - are meaningless. 

I am certain that for practical purposes some of those difficulties even­
tually will be solved. However, as of today, they are so severe that we 
must reexamine the meaning of the popular but vague concept of "a 
structure." It is indeed a truism, especially in fields where actual exper­
imentation is impossible, that one must carefully distinguish between pat­
terns that can only be used for "historical" description of his records and 
those that are also useful for forecasting some aspect of the future. A 
useful vocabulary considers the search for distributions a kind of 
extraction and identification of a "signal" in the presence of "noise." In 
particular, as we have seen, modem inference theory teaches us always to 
list both the accepted and the rejected possibilities. The scientist's major 
problem is frequently to determine whether a conjectured "relation" is sta­
tistically significant with respect to what may be generally called "sponta­
neous activity," which is the resultant of all the influences that one cannot 
or does not want to control in the problem at hand and which is conven­
iently described with the help of various stochastic models. 

It is not enough, however, that all members of a cultural group agree 
on the patterns that they read into a historical record. Indeed, although 
there is unanimity in the interpretation of certain Rorschach inkblots, they 
have no significance from the viewpoint of science as a system of predic­
tions. Broadly speaking, a pattern is scientifically significant when it is felt 
to have a chance of being repeated, meaning that, in some sense, its 
"likelihood" of having occurred by chance is very small. Unfortunately, 
the tools of statistics have been mostly designed to deal with Gaussian 
alternatives and, when the chance alternative is scaling, they are not at all 
conservative or "robust" enough. One will often be able to circumvent 
this difficulty, but not always. In fields where the background noise is 
scaling, the burden of proof is closer to that of history and autobiography 
than of physicS. 
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The same thought can be presented in more optimistic terms by saying 
that, if "mere chance" can so readily be confused with a causal structure, 
the effect of chance is itself entitled to be called a structure. The word 
"noise" may perhaps be reserved for the Gaussian error terms, or its 
binomial or Poisson kinds, which are seldom respected as sources of any­
thing that looks interesting. 

The situation is worse in models known to be very structured (for 
example, to be autoregressive) with scaling noise. Compared to the case 
of Gaussian noise, one should expect the data to be much more influenced 
by the noise and much less influenced by the structure. 

The association between the scaling distribution and "interesting 
patterns" is nowhere more striking than in the game of tossing a fair coin, 
which Henry and Thomas have been playing since sometime in the early 
eighteenth century. When the coin falls on "heads," Henry wins a dollar 
(or perhaps rather a thaler); when the coin falls on "tails," Thomas wins. 
We disregard what happened to the game before we break in at time t = 0, 
and we denote by T the time it takes for Henry and Thomas's fortunes to 
return to the state that they were in at the moment when we broke into 
the game. For large values t of T, one has the well-known relation: 
(Feller 1950, Vol. 1). 

Probability { that the fortunes return to their initial states 
after a time greater than t} = (constant) t- l12 . 

This relation involves the scaling distribution with exponent a = 1/2. 

However, gamblers are notorious for seeing an enormous amount of 
interesting detail in the past records of accumulated coin-tossing gains; far 
more than in the non-cumulative sequences. That is, gamblers are pre­
pared to risk their fortunes on the proposition that these details are not 
due to mere chance. Several of my papers were based on the idea that 
very similar phenomena should be expected whenever the scaling distrib­
ution applies. If so, one could associate with those phenomena some 
stochastic models that dispense with any kind of built-in causal structure 
and yet generate sample curves in which both the unskilled and the 
skilled eye can distinguish the kind of detail that is usually associated 
with causal relations. In the case of Gaussian processes, such details 
would be so unlikely that they would surely be considered significant for 
forecasting; but, this is not true in the scaling case. From the viewpoint of 
prediction, those structures should be considered perceptual illusions: they 
are in the observer's current records and in his brain but not in the mech-
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anism that has generated these records and that will generate the future 
events. 

Bearing in mind the existence of such models, let us suppose that we 
have to infer a process from the data. A non-structured scaling universe 
accounts very well for many observations; as a result, it is extremely diffi­
cult, at best, to choose between it and an alternative model that postulates 
causal relations. It is very difficult to challenge someone's belief in the 
existence of "genuine" structures. But to communicate such a belief to 
others, with the standards of credibility that are current in physical 
science, requires much more than the statistical tests of significance that 
social scientists shrug off at the end of a discussion. Such a situation 
requires a drastic sharpening of the distinction between patterns that -
however great the scholar's diligence - can serve only for historical pur­
poses and those patterns that are useable for forecasting. 

The question that I have in mind can be well illustrated by the 
problem of the significance of "cycles." Both the eye and sophisticated 
methods of Fourier analysis, suggest that almost any record of the past is 
a sum of periodic components. But the same is also true for a wide 
variety of artificial series generated by random processes with no built-in 
cyclic behavior. Furthermore, skilled cycle researchers seldom risk firm, 
short-term forecasts. Could we then ask two questions that paraphrase 
Keynes's comments on early econometric models, "How far are these 
curves meant to be no more than a piece of historical curve-fitting and 
description, and how far do they make inductive claims with reference to 
the future as well as the past?" 

It may also be noted that, because of the invariance of the scaling dis­
tribution with respect to various transformations (see Section III), one 
cannot hope that a simple explanation will be provided by arguing that 
only the genuine structures will be apparent to all observers. The only cri­
terion of trustworthiness is replicability in time. 

In an important way, the models of scaling spontaneous activity differ 
from the standards of "operationalism" suggested by philosophers. 
Indeed, to explain by mere chance any given set of phenomena, it will be 
necessary to imbed them in a universe that also contains such a fantastic 
number of other possibilities that billions of years may be necessary to 
realize all of them. Hence, within our lifetime, any given configuration 
will occur at most once, and one could hardly define a probability on the 
basis of sample frequency. This conceptual difficulty is common know­
ledge among physicists, and it is to be regretted that the philosophical dis­
cussions of the foundations of probability seldom investigate this point. In 
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a way, the physicists freely indulge in practices that for the historian are 
mortal sins: to rewrite history as it would have been if Cleopatra's nose 
had a different shape. My sins are even worse because their actual histo­
ries turn out to be very close to some kind of "norm," a property which 
my models certainly do not possess. 

The foregoing argument is best illustrated by two separate re­
interpretations of the coin-tossing record plotted in Figure 4. First, forget­
ting the origin of that figure, imagine that it is a geographical cross-section 
of a new part of the world in which all the regions below the bold hori­
zontal lines are under water. Imagine also that this chart has just been 
brought home by an explorer; the problem is to decide whether it was due 
to cause or to chance. The naive defense will resort to the Highest Cause. 
Presenting our graph as fresh evidence that God created Heaven and 
Earth using a single template, it follows that such concepts as a 
"continent," an "ocean," an "island," an "archipelago" or a "lake" are pre­
cisely adapted to the shape of the Earth. However, a devil's advocate 
would argue that the Earth is a creation of blind chance and that the pos­
sibility of using such convenient terms as "continent" and "island" just 
reflects the fact that the areas above water happen often to be very short 
or very long and are rarely of average length. 

The preceding example is not as fictitious as it may seem: the distrib­
ution of the sizes of actual islands happens to be scaling (M 1962n). 
Hence, our hypothetical debate emphasizes the two extreme viewpoints 
realistically, even though - the Earth having been presumably entirely 
explored - no actual prediction is involved in the choice between the inter­
pretation of archipelagoes as "real" or as creations of the mind of the 
weary mariner. 

Another example, also chosen for its lack of direct economic interpreta­
tion, is the problem of clusters of errors on telephone circuits. Suppose 
that a telephone line is used only to transmit either dots or dashes, which 
may be distorted in transmission to the point of being mistaken for each 
other. It is clear - again, according to the defender of a search for causes 
- that whenever an electrician touches the line, one should expect to 
observe a small cluster of such errors. Moreover, since a screwdriver 
touches the line many times during a single repair job, one should expect 
to see clusters of clusters of errors and even clusters of higher order. 

Actual records of the instants when errors occurred do indeed exhibit 
such clusters in between long periods of flawless transmission. A good 
idea of the distribution of the errors is provided by yet another look at 
Figure 4. Consider the sequence of points where the graph crosses the 
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FIGURE E3-4. Record of Henry's winnings jn a coin-tossing game, played with a 
fair coin. Zero-crossings seem to be strongly clustered, although intervals 
between crossings are obviously statistically independent. This figure is 
reproduced from Feller 1950 (Volume D. 

To appreciate fully the extent of apparent clustering in this figure, note 
that the unit of time is 2 coin tosses on the first line, and 20 coin tosses on the 
second and third lines. Hence, the second and third lines lack detail and each 
apparent zero-crossing is an imperfect representation of a cluster or a cluster 
of clusters. For example, the details of the cluster centered around the 200th 
coin toss are clearly separated on line 1. 
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line that, in an earlier interpretation, had represented sea level. According 
to the searcher for causes, the precise study of such past records will 
improve the prediction of errors and will help minimize their effects. On 
the other hand, precisely because of the origin of Figure 4, those beautiful 
hierarchies of degrees of clustering can very well be due to a "mere 
chance" devoid of memory (see Berger & M 1963). 

Similar devil's advocates can be heard in many contexts, and someone 
should take this role in relation to every important problem, without for­
getting that the devil's advocate must always be on the side of the angels. 
An interesting example of a stable truce between structure and chance is 
provided by the study of language and of discourse, where the traditional 
kind of structure is represented by grammar and - as one should expect 
by now - the chance mechanism is akin to the scaling distribution (see 
Apostel, M & Mod 1957 and M 1961b). 

VII. TWO-TAILED AND/OR MULTIDIMENSIONAL STABLE 
DISTRIBUTIONS 

Until now, we have followed tradition by associating the scaling distrib­
ution with essentially positive random variables, the distribution of which 
has a single long tail, making its central portion necessarily quite skew. 
However, I have discovered important examples in economics of distrib­
utions having two scaling tails; the most striking example is that of relative 
changes in the prices of sensitive speculative commodities. The argument 
of invariance under maximization cannot extend to them. But invariance 
under mixture simply leads to the combination of the scaling distribution 
of positive u and the scaling distribution of negative u. Invariance under 
aggregation is satisfied by every random variable constructed by adding 
or subtracting two arbitrarily weighted "positive" stable variables of the 
kind studied earlier in this paper. In particular, these general stable vari­
ables can by symmetric; the Cauchy distribution provides a prime 
example. But their study depends very little on the actual degree of 
skewness. Hence, the asymmetry of the usual scaling variables is less 
crucial than the length of their single tail. 

Another remarkable property of the stable distributions is that, like the 
Gaussian, they have intrinsic extensions to the multivariant case, other 
than the degenerate case of independent coordinates. Very few other dis­
tributions (if any) share this property. The reason for this is innately 
related to the role of stable distributions in linear models. It is indeed 
possible to characterize the multivariate stable distributions as being those 
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for which the distribution of every linear combination of the coordinates is 
a scalar stable variable. This property is essential to the study of multidi­
mensional economic quantities, as well as to the investigation of the 
dependence between successive values of a one-dimensional quantity, 
such as income (see M 1961e{Ell}). 

VIII. THE ROLE OF THE SCALING DISTRIBUTION IN ECONOMICS 
AND A LINK WITH THE PHYSICAL SCIENCES 

The arguments of this paper show that there is a strong pragmatic reason 
to undertake the study of scaling economic distributions and time series. 
This category includes prices (M 1963b{E14}), firm sizes (M 19630) and 
incomes (M 1960HE10}, as amended in M 1963p, and also M 1967j{E15}, 
1962g), hence making the study of scaling of fundamental importance in 
economic statistics. Similarly, the example of the distribution of city sizes 
stresses the importance of the scaling distribution in sociology (M 1965m). 
Finally, strong indications exist of its importance in psychology, but I shall 
not even attempt to outbid George Kingsley Zipf in listing all the scaling 
phenomena of which I am aware; their number seems to increase all the 
time. 

However, it is impossible to postpone "explanation" forever. If indeed 
a grand economic system is only based on aggregation, choice and 
mixture, one can prove that for a system to be scaling, it must be triggered 
somewhere by essentially scaling "initial" conditions. That is, however 
useful the method of invariants may be, it is true that it somewhat begs 
the question and that the basic mystery of scaling cannot be solved by 
pushing around the point where such behavior is postulated. Indeed, if it 
were true, in accordance with "conventional wisdom," that physical phe­
nomena are characterized by the distributions of Gauss and social phe­
nomena are characterized by that of Pareto, we may eventually have to 
explain the latter using the "microscopic" economics models, such as the 
"principle" of random proportionate effect, which I prefer not to empha­
size in my approach. 

I claim, however, that this situation need not be the case. Quite to the 
contrary, the physical world is full of scaling phenomena that one can 
easily visualize as playing the role of the "triggers" that cause the eco­
nomic system to be also scaling. For example (M 1962n), I have found 
that single-tailed scaling distributions, with trustworthy values for a, rep­
resent the statistical distributions of a variety of mineral resources, which 
are surely not influenced by the structure of society. This is the case with 
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the areas of oil fields and the sums of their total past production and their 
currently estimated capacity). The same is true for the valuations of certain 
gold, uranium and diamond mines in South Africa. Similar findings hold 
for a host of similar data related to weather, which is barely influenced by 
man as yet. Some weather data, such as hail records, have a direct influ­
ence on important risk phenomena, namely, insurance against hail 
damage. Other weather data, such as total annual rainfall, obviously 
influence the sizes of crops and hence, by the distributions of supply and 
demand, influence the changes of agricultural prices. 

If this paper proposed to contribute to "geo-statistics," it should, of 
course, examine the degree of generality of my claim. But, for the purpose 
of a study of economic time series, it will be quite sufficient to note that 
the trigger of a scaling grand economic system can very well be found in 
statistical features of the physical world. For example, natural resources 
and weather influence prices, which in tum influence incomes. Since the 
systems to which we refer are spatio-temporal, there is nothing disturbing 
in our association of economic time series with geological and geographical 
spatial distributions. 

I shall not attempt to say anything about the actual triggering mech­
anism since I doubt that a unique link can be found between the social 
and the physical worlds. After all, quite divergent values of the scaling 
exponent a are encountered in both worlds so that the overall grand 
system cannot possibly be based only upon transformations by linear 
aggregation, choice and mixture. 

I wish, finally, to point out that the scaling phenomena of physics 
have also turned out to include some phenomena with no direct relation 
with economics. For example, Section 3 mentioned that a three­
dimensional stable distribution occurs in the theory of Newtonian 
attraction. Moreover, the distribution of the energies of the primary 
cosmic rays has long been known to follow a distribution that happens to 
be identical to that of Pareto with the exponent 1.8 (Fermi's study of this 
problem includes an unlikely but rather neat generation for the scaling 
distribution). The same result holds for meteorite energies, an important 
fact for ionospheric clatter telecommunications. Also, as discussed in 
Section VI, the intervals between successive errors of transmission on tele­
phone circuits happen to be scaling with a very small exponent, the value 
of which depends on the physical properties of the circuit. 

There are many reasons for believing that many scaling phenomena 
are related to "accumulative" processes similar to those encountered in 
coin-tossing. 
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IX. FREDERICK MACAULAY'S CRITICISM OF PARETO'S LAW 

Having accumulated so many reasons to view the scaling distribution as 
extraordinarily important, I am continuously surprised by the attitude 
described in the first sentence of Section I. I eventually realized that it 
had deep roots not only in the apparent lack of theoretical motivation for 
that distribution but also in several seemingly "definitive" criticisms, such 
as that of Macaulay 1922. 

Macaulay's essay is most impressive indeed and - even though I disa­
gree with its conclusions - I strongly recommend it. It disposed of the 
claim that the a exponent in Pareto's law is the same in all countries and 
at all times and of the claim that the scaling distribution describes small 
incomes or the incomes of the lower paid professional categories. 
Macaulay is also very convincing concerning scaling distributions with a 
high exponent (see Section V). 

I believe, however, that his strictures against "mere curve fitting" have 
been very harmful. His ideal of a proper mathematical description is so 
restrictive that he rejects the scaling distribution outright because the 
sample empirical curves do not "zigzag" around the simple scaling 
interpolate but rather cross it systematically a few times. This illustrates a 
basic difference between the care economists bring to statistics and the 
seeming carelessness of the physicists. For example, when the Boyle law 
was found to differ from the facts, the physicists simply invented the 
concept of a "perfect gas," that is, a body that follows Boyle's law perfectly. 
Naturally, perfect gas approximations are absurd in some problems but 
are adequate in many others, and they are so simple that one must con­
sider them first. Similarly, scaling distribution approximations should not 
even be considered in problems relating to low incomes, but in other 
investigations they deserve to be the first to be considered. 

Therefore I can summarize Macaulay's criticism of the scaling distrib­
ution by saying that it only endorses the asymptotic forms. In many 
cases, however, I believe that it is legitimate to consider more seriously 
certain "relatives" of the scaling distribution, such as the stable distrib­
utions. 

APPENDIX: SOME MATHEMATICAL DERIVATIONS 

Characterize U by its distribution function F(u) = Pr{U:S u} and its gener­
ating function G(s), which is the Laplace transform of F(u), namely 
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G(s) =r-oo exp( - us)dF(u). In order for G(s) to be finite, it is necessary that 
dF --+ 0 very rapidly as u --+ - 00. Then, invariance-up-to-scale is expressed 
by the following conditions: 

Weighted Mixture. It is necessary that stability hold for equal Pn. In 
particular, it is necessary that the function F satisfy the condition that 

Maximization. Now, it is necessary that F(u/ aM) = I1F(u/ an); in other 
words, 

L log F( ~ ) = log F( a~ ). 

Aggregation. It is necessary that 

L log G(~s) = log G(aAs). 

It turns out that the three types of invariance lead to "functional 
equations" of almost identical form, although they refer to different func­
tions, respectively, Fw' log FM and log GA(s). Therefore, general solutions of 
these equations are alike. They assume the following forms 

One easily verifies that a~ = a~ = Lana and a~ = (1/N)La~. 
I shall now show that the above conditions are not sufficient, and that 

additional requirements must be imposed upon C', C and a.. 

Maximization. The distribution function of a random variable must be 
non-decreasing such that FM(oo) = 1. This requires that C> 0 and a. > 0, 
which leaves us with FM(u) = exp( - Cu- U). 

Mixing. In order that Fw(u) be non-decreasing and satisfy Fw(oo) = 1, it 
is necessary that C' = 1, a. > 0 and C > o. 

Aggregation. In order that GA(s) be a generating function, one can 
show that it is necessary that 0 < a. < 1 with C < 0 or 1 < a. ::;; 2 with C > o. 
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&&&&& POST-PUBLICATION APPENDIX &&&&& 

THREE ASPECTS OF THE NOTION OF RENORMALIZA TION 

1. Footnote 4 in the original, and comment. The many footnotes in the 
original, except one, were easily integrated in the text. But Footnote 4 did 
not fit, and it cried out to be emphasized, because it was an early allusion 
to the theme of self-similarity that came to dominate my life and led to 
fractals. This footnote 4 read as follows: 

"The various criteria of invariance used by physicists are somewhat 
different in principle from those I propose in economics. For example, the 
principle of relativity was not introduced to explain a complicated empir­
ical relation, such as scaling. I am indebted to Harrison White for sug­
gesting that I should stress the nuances between my methods and those of 
physics." 

Harrison White is a sociologist with a background in hard science, and 
his comment was made after a seminar I gave in Cambridge in 1962-3, 
while I was visiting as professor of economics at Harvard. At that time, 
little did anyone expect that 1963-4 would still find me at Harvard, having 
moved over from Littauer Hall to teach applied physics in Pierce Hall. 
This was in the right place to be reminded of a topic I had studied at 
Caltech in 1948, namely the 1941 "Kolmogorov" theory of turbulence. The 
"K41" theory concluded that the spectrum of turbulent velocity should be 
k- 513. Robert W. Stewart's group at Vancouver had been the first to 
observe k- 5/3 in an actual experiment, and Stewart was also visiting Pierce 
Hall. At this point, it became clear that my version of the method of 
invariances has far less to do with Einstein than with Kolmogorov. 
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2. The physicists' concept of "renormalization" and the economists' 
concept of "aggregation." Section 3 will discuss the relation between the 
method of invariances used in this chapter, and the physicists' renormaliza­
tion. This last term may be unfamiliar to economists, but is conceptually 
close to the notion of economic aggregation. The latter addresses the ques­
tion of how, starting with the economic rules that apply to individuals, 
one can obtain rules relative to families and larger aggregates. It may be, 
but one cannot be sure, that colleagues' interests in this aggregation 
helped inspire me to ask how the rules relative to daily price change can 
be transformed into rules relative to price change over weeks and longer 
periods. 

3. Annotation for the physicists. Only a few years after the events 
described in Section 1, reporting on the original Footnote 4, a current in 
the mainstream of "physics" turned very successfully, to the study of the 
"critical points" of thermodynamics. In the resulting intellectual context, 
the main themes of this paper are very easy to introduce. 

The scaling distribution is known in physics as a "power-law" or 
"algebraic" distribution. 

The operations with respect to which the tail of the scaling distribution 
is invariant are known in physics as "renormalizations." Three different 
renormalization are used in this chapter, one linear and two non-linear 
ones. Each has its own "fixed point," namely, its own "exactly 
renormalizable" distribution. Therefore, the key fact of this chapter may 
be described as reporting a property of the asymptotically scaling distrib­
ution: it is "asymptotically renormalizable" in three different ways. 

Given that this paper was written during the years preceding the ori­
ginal publication in 1963, it could in no way be affected by the later devel­
opment that introduced renormalization into physics proper. 



Sources of inspiration and historical 
background 

E4 

.. Abstract. This chapter is written in the style of an acknowledgement of 
broad intellectual debts. All my scienfitic work fell under the influence of 
the branch of physics called thermodynamics, and of other independent 
traditions ranging from deep to very shallow. I came to scaling and 
renormalization by cross-fertilizing the influences of probability theory 
(Levy) and the social sciences (Pareto, Zipf and the economists' idea of 
aggregation.) 

At a point where my views on scaling were already formulated, I 
became aware that this notion is also fundamental in the study of turbu­
lence (Richardson, Kolmogorov.) The theories of disorder and chaos, 
which also make extensive use of scaling and renormalization, arose from 
a different and independent tradition, and did not influence my work 
until quite late. Furthermore, diverse scaling rules were recorded in 
geology, but not appreciated, and the biologists' allometry is yet another 
expression of scaling. 

As my study of scaling became increasingly visual and grew into 
fractal geometry, it became widely agreed that fractal aspects are present 
in many fields; their importance is limited is some and fundamental in 
others - including finance. .. 

My SCIENTIFIC LIFE WAS PERMANENTLY AFFECTED by the fact 
that I wrote a Ph.D. thesis alone, without an advisor. Very influential, 
however, were two persons, namely Levy and Zipf, and a field of inquiry, 
namely thermodynamics. After the doctorate, I was greatly influenced by 
John von Neumann (1903-1957), who brought me to the Institute for 
Advanced Study in Princeton. (Fate made me his last post-doctoral 
fellow.) His intellectual openness and awe-inspiring versatility became a 
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model to emulate, but there was little technical overlap at that time 
between his interests and mine. 

In any event, fractal geometry had no single source and no actual fore­
runner. But neither did it materialize out of thin air. It began by 
answering a few concrete questions that were long left aside, by using a 
few mathematical tools that were pointedly not meant to answer any con­
crete question. In doing so, it combined two streams of thought that 
started from widely separate sources, a particularly "pure" one and one 
that can - to make a point - be called particularly "dirty." In due time, 
new questions were asked, new tools were developed, and additional 
sources of scaling were acknowledged, as will be seen in Sections 5 and 6. 

This intellectual development can be summarized as follows. It began 
with a collection of "power-law" statistical distributions (exemplified by 
Pareto's law for the distribution of personal income) that were collected in 
Zipf 1949. I was the first to take several steps together: a) to recognize a 
kinship between those empirical power laws and the theoretical power 
laws that occur in probability theory; b) to interpret power laws in terms 
of scaling; c) to interpret the limit theorems of probability theory as 
involving what is now called "renormalization," (M 1963p{E3}); d) to inter­
pret the limits in those theorems as "fixed points" of renormalization. 

The goal of this brief chapter is to elaborate on those steps. 

1. Probabilistic "answers without questions" 

Levy. Among those who provided answers without questions, the first 
was Paul Levy (1886-1971), whom I met when I was 20, came to know 
well, and helped reach a high place in the history of his field. In his life­
time, he was ignored or spumed by the Paris mathematical community, 
often in a harsh way (Levy 1970, M 19951.) 

Picking up a stream of thought that originated quite explicitly in 
Cauchy 1853, Levy made key contributors to the emergence of a tool that 
plays a central role in this book: the probabilist's version of the notion of 
scaling, as implemented in the probability distributions that he called 
stable. This term being terribly unfortunate and misleading, I toyed with 
alternatives. "Pareto-Levy," "Levy distribution," and listable Paretian" did 
not take root, created confusion, and were withdrawn. 

This book is an opportunity to denote my earliest scaling model of 
price variation, the M 1963 model, by the term ilL-stable." This is the word 
used by Levy and all probabilists, but preceded by the letter L to warn 
against misunderstanding and honor my mentor. 
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Levy is the hero of one of the biographical sketches in Chapter 40 of 
FGN (see also M 19951). His utter surprise was forcefully restated each 
time I reported to him yet another natural phenomenon ruled by what 
used to be viewed as "mathematical pathology," including his own 
"pathological" creations. His unwitting contributions to the mathematical 
toolbook of science went beyond the L-stable distributions. In fact, my 
fractal forgeries of mountains, which everyone seems to have glimpsed 
somewhere, began with a suitable generalization of Levy's Brownian func­
tion of several variables. 

2. Concrete II questions without answers" 

Divisia. To digress briefly, Ecole Poly technique presented a sharp contrast 
between the roles of the Professors of Mathematics (Levy) and Economics. 
Fran<;ois Divisia (1889-1964) lectured after dinner and the grade he gave 
hardly mattered to the final ranking that determined the students' later 
career. This contributed to my having no formal training in economics 
until the period when the bulk of this book was written, that is, at an age 
ranging from 36 to 43. No attempt is made to hide my lack of familiarity 
with economic theory. Not until much later did I acquire close familiarity 
with economic data, notably those collected by the National Bureau of 
Economic Research. 

Zipf. Among those who provided useful social science questions 
without answers, the foremost was George Kingsley Zipf (1902-1950), 
whose name became linked with the rank-size plots discussed in Chapter 
E7. Zipf 1949 was the work of encyclopedist following an "idee fixe." 

He is best remembered for curve-fitting all his data using "power-law" 
distributions. His zeal was uncontrolled and his assertions should be 
checked, especially on discoveries of which he was the actual originator. 
Yet he deserves praise for giving scrupulous credit to others for findings 
he could have safely claimed for himself, and he played a key role in col­
lecting and preserving knowledge that everyone else ignored. 

Unfortunately, an orphan status often befalls empirical discoveries that 
remain unexplained and not embedded in an over-reaching theory. They 
remain suspended in an intellectual vacuum, casually disregarded, dis­
missed, challenged and even ridiculed by professional investigators but 
attractive to non-professional dabblers of every kind and provincial profes­
sors - of which I was one when my career was starting. Most such dis­
coveries rapidly vanish into the dustbin of science. Lacking a theory, 
scientists did not expect to encounter power-law distributions; therefore, 
they did not face them, or even failed to see them. 



108 SOURCES AND HISTORICAL BACKGROUND <> <> E4 

To avoid this fate for his discoveries, Zipfs "idee fixe" was the need 
for a unifying structure. However, lacking technical background and dis­
cipline to draw logical conclusions he took a step familiar in politics and 
in pseudo-science. He proclaimed that scaling in social sciences follows 
from a grandiose "principle of least effort" which he did not take the 
trouble to phrase and study. It evaporates upon examination. 

Zipf 1949 received numerous reviews. Those due to social scientists 
raved about "least effort," but failed to mention the empirical power-law 
distributions. In sharp contrast stood Joseph L. Walsh (1895-1973), a 
Harvard mathematician and personal friend of Zipf. Walsh 1949 featured 
the scaling rule for word frequencies as a puzzle worth serious attention. 
Walsh's challenge led me to the explanation featured in Section 1.2.4 of 
Chapter E8; in the longer run, it set a direction to my life. 

To avoid being accused of a bias against social science, let me 
acknowledge an uncomfortable parallelism between Zipf's approach and 
that of some applied physicists who studied the so-called "l/fnoise." That 
topic is discussed in M 1997N, M 1997H, and elsewhere in my work. 

All told, Zipf does deserve a footnote in history, but the sketch in 
Chapter 40 of M 1982F{FGN} ends by noting that "one sees in him, in the 
clearest fashion - even in caricature - the extraordinary difficulties that 
surround any interdisciplinary approach." 

Pareto. Vilfredo Pareto (1848-1923), being a major Establishment figure 
in economics, found no place among the maverick heroes of Chapter 40 of 
FGN. But there was a maverick side to him. Besides, while every econo­
mist heard of Pareto, a few words may be welcomed by readers of this 
book who are not economists. 

Pareto was an Italian born in Paris, who taught in Lausanne, 
Switzerland, and left his deepest mark in the countries where he lived. In 
mathematical economics, his work followed upon Leon Walras (1834-1910) 
and sought to define and study economic equilibrium. But my interest in 
Pareto's work was restricted to his empirical law for the distribution of 
personal income, the topic of several chapters in this book. It is 
chastening to recall two sets of empirical statistical regularities discovered 
in the XIXth century. 

One set contains the old textbook examples concerned with Army 
conscripts: their heights were fitted by the normal distribution and the 
numbers of times they fell off their horses by the Poisson distribution. 
The statistical fits of each distribution were casual, but the Gaussian and 
the Poisson became pillars of statistics. 
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Far greater and more motivated effort was expended by Pareto in 
fitting personal incomes by power-law distribution. Never forgotten, 
Pareto's law never flourished either - not unlike the work of Zipf. 

Bachelier and belated followers. Louis Bacheller (1870-1946) is the pre­
cursor of all statistical approaches to finance. Bachelier 1900 (his Ph.D. 
dissertation) was eventually translated into English (and issued in Cootner 
1964). In 1995, the French original was reprinted in book form, and a 
French professional group that keeps close to the tenets of the Brownian 
motion model, without paying attention to its flaws, named itself Associ­
ation Louis Bachelier. It may be that the man's posthumous fame was 
helped by the biographical sketch found in M 1982F{FGN}. His works 
were not unknown in France, where I first heard of them. But they 
played a limited role when several distinguished American scholars came, 
independently of each other, to propose Brownian motion as a model of 
price behavior. I would like to produce a fair list, but mostly recall 
Osborne 1959 and Roberts 1959. 

Brownian motion would have sufficed as a claim to fame, but 
Bachelier went further. As is well-known, he originated the notion of effi­
cient market, and, to express it mathematically, created the general notion 
of martingale. Among martingales, as true for Bacheller as it is for us 
today, the special quality of Brownian motion resides in its being by far 
the easiest to handle analytically. 

Incidentally, to answer some revisionist historians, Bachelier stated the 
notion of martingale correctly on many occasions. The handiest is on pp. 
27-28 of the English translation in Cootner 1964 and reads: "The math­
ematical expectations of the buyer and the seller are zero, [a property that 
follows from] this fundamental principle: The mathematical expectation of 
the speculator is zero." For 1900, this was perfectly rigorous. 

It is a second but little-known achievement of Bachelier that makes it 
appropriate to mention him here: he pioneered both in discovering the 
Gaussian random-walk model and in noting its major weakness. He saw, 
as noted in Section 1.1 of M 1967j{E156}, that the Brownian model diverges 
from the evidence in at least two ways: Firstly, the sample variance of 
L(t, n varies in time. He observed that if the sample histograms are rela­
tive to mixtures of distinct populations, their tails could be expected to be 
fatter than in the Gaussian case. Second, Bachelier noted that no reason­
able mixture of Gaussian distributions could account for the sizes of the 
very largest price changes, and treated them as "contaminators" or 
" outliers." 
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Hurst. The M 1963 model of price variation owes to Levy, Pareto, and 
Zipf, but the M 1965 model came to economics via a power-law relation 
in hydrology. The trigger was a finding concerning persistence in water 
discharges, namely, an irritating puzzle contributed by Harold E. Hurst 
(1880-1978) that I recognized as being a symptom of scaling. A biograph­
ical sketch is provided in M 1982F{FGN}. Fractional Brownian motion 
strongly links my work in economics and the physical sciences. 

Morris. Moving beyond those who passed away, I want to mention 
that, in the 1960s, my main source of market wisdom and folklore was 
William S. Morris. When he was riding high, a Princeton University con­
ference on "Operations Research for Top Management" invited him to 
reveal his secrets; instead he read from Morris 1962, a lavish booklet from 
which I excerpted in Chapter E17. 

The pervasive role the computer now plays on Wall Street did not just 
happen. Morris has a strong claim to be hailed as the visionary who first 
used a computer for trading, in addition to accounting. "The timeworn, 
but little understood, rules of thumb used by jobbers in the practice of 
their trade can be ... programmed into a computer ... In my company, to 
underscore our conviction that computerization is feasible now, we have 
publicly offered to furnish computer, computer program, and the capital 
to bank the jobbing activity." 

The study of aggregation. When I was starting in economics, many of 
my new colleagues were investigating aggregation. This was the search for 
rules concerning "aggregates" such as families, when one starts from rules 
concerning individuals. What I was doing was to "aggregate" different 
sources of income or price changes over different time spans. The physi­
cists' renormalization (Section 6) went very much farther than the econo­
mists' aggregation, but started with the same idea. 

3. A nemesis of fractals: Gibrat and lognormality 

The relation of the lognormal probability distribution to economic inequal­
ities is the work of many hands, but dominated by Gibrat 1932. Robert 
Gibrat (1904-1980) was a prominent French civil servant. 

Thirty years ago, friends and referees were near-unanimous in 
advising me to give up the scaling distribution and acknowledge the 
authority of the lognormal. They all pointed out a revealing statement on 
pp. 101-2 of Aitchison & Brown 1957, which reads that" A number of dis­
tributions are given by Zipf, who uses a mathematical description of his 
own manufacture on which he erects some extensive sociological theory; 
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in fact, however, it is likely that many of these distributions can be 
regarded as lognormal, or truncated lognormal, with more prosaic founda­
tions in normal probability theory." 

Observe that the "description of Zipf's manufacture" was nothing but 
the scaling distribution. "Everyone knew" that a theoretical basis existed 
for the lognormal but not for the scaling. But Chapters E8 and E9 will 
show that motivations for the lognormal left me unconvinced. For 
example, right or wrong, everyone expected the Gaussian in additively 
aggregate phenomena and the lognormal in multiplicative phenomena. 
But I found that not all multiplicative phenomena yield the lognormal and 
no one has advanced a full explanation of why, to take one example, an 
oil field's capacity should involve a multiplicative process. 

Gibrat's claim that everything of interest is fitted by either the 
Gaussian or the lognormal distributions owed to a dearly held cliche that 
goes back to Auguste Comte (1798-1857) and holds that the more perfect 
fields, like physics, instruct and guide the less perfect ones, like economics, 
and serve as examples to emulate, while the converse is inconceivable. 

In particular, an often stated reason why empirical evidence in favor 
of scaling distributions was considered suspect was that they were not 
part of physics. In due time, a few hidden old examples did surface, but 
in the early 1960s they were not known. Also, there was no awareness of 
the material to be discussed in Section 6. The examples of scaling col­
lected by Zipf concerned social science and (as mentioned in Section 2) 
were held in low esteem. 

4. The theme of (greatly generalized) statistical thermodynamics 

I am a life-long student of thermodynamics for its own sake; thus, M 1964t 
advanced a variant of its foundation. More important, I treasure 
thermodynamics for bringing powerful tools and subtle methods of 
thought that transcend its original applications to gases. The approach to 
thermodynamics represented by Josiah Willard Gibbs (1839-1903) partic­
ularly attracted me. But for the very same reason it was criticized at one 
point by Ludwig Boltzmann (1844-1906), who spumed and dismissed its 
generality on the ground that it would only be useful when dealing with 
"assemblies of typewriters and sewing machines" (I quote from memory.) 

In my earliest work on Zipf's law (M 1951; see also Chapter 38 of M 
1982F{FGN} and Section 4.1 of Chapter E8), one of several variants 
involved explicit thermodynamics in a phase space of (lexicographic) trees. 
Later on, referees' pressure led me to abandon gradually all specific refer-
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ences to thermodynamics, therefore I came to scaling and renormalization 
through probability theory, before their tools became a major part of statis­
tical physics, as will be seen in Section 5. But thermodynamics remains 
one of the main conceptual threads throughout my work. A novelty con­
cerns the identification of applicable limit theorems of probability. The 
usual limit theorems characterize the usual state of randomness, which I 
call "mild", and must be replaced by very different theorems; Chapter E5 
describes them as characterizing "wild randomness." 

5. The themes of chaos and disorder as defined in physics 

As already mentioned, the editor's comments in Cootner 1964 describe M 
1963b{E14} as having "marshalled ... evidence of a more complicated and 
much more disturbing view of the economic world than economists have 
hitherto endorsed." Read today, these words unavoidably bring physics 
to mind: "disorder" became attached to materials studied by statistical 
physics, and "chaos," to phenomena studied by dynamics (also called, for 
no good reason, "theory of dynamical systems".) 

After I drifted away from finance, much of my scientific life was spent 
in those two fields, beginning with a problem that straddles both, namely, 
turbulence in fluids. But disorder and chaos became organized too late to 
influence my use of scaling and renormalization in finance. This is why, 
as already mentioned in the Preface, economists who took for granted and 
necessary that physics should lead, went on to mistrust as "premature" a 
tool that physics had not yet tested. 

Disorder in statistical mechanics, scaling and renormalization. Most 
readers probably know little about physics, therefore even a brief sketch 
would demand overly extensive preliminaries. But it is essential to 
mention that yet another source of scaling and renormalization is found in 
classic investigations by Murray Gell-Mann and Francis Low. Inspired by 
that work, the same key tools became essential in the theory of critical 
phenomena and disorderd materials. Major contributors include, listed 
alphabetically, Michael E. Fisher, Leo P. Kadanoff, Benjamin Widom and 
Kenneth Wilson. As already said, renormalization went far further than 
the economists' aggregation, but started with the same idea. 

It is worth pointing out that an expository paper, M 1982v included a 
section on "The Scaling Principle of Economics" (later adapted for FGN as 
Chapter 39.) There, it is predicted that "when the inevitable comes and an 
economist decides to look at collective phenomena of physics for inspira­
tion in economic modeling, he will find that part of the work has already 
been done without reference to physics." However, a warning is in order. 
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Powerful laws (expressed by "Hamiltonians") allow physics to explain 
scaling and exponents with great precision. But those laws have no 
counterpart in finance. Therefore, to present the use of scaling and renor­
malization in finance as coming from statistical physics, would contradict 
history and in addition would ring hollow. 

Chaos. Thirty to thirty-five years ago, while I was studying turbulence 
in prices and physical fluids, a quite separate event occurred when 
Edward Lorenz wrote the paper that introduced scientists and laymen to 
the "butterfly effect." The basic idea is now widely known (Gleick 1986) 
and was already well described in Hadamard 1898. That work came long 
before its time and became an excellent example of "prematurity" in the 
sense of Stent 1972. It was filed away in one of those deep vaults that 
shelter mathematics that is not immediately followed up. While called 
classical, it remained obscure until its time came. 

Lorenz became extraordinarily influential, and his work led to a dis­
tinction between well-behaved and chaotic determinism. It is parallel to the 
distinction between mild and wild randomness, which I was beginning to 
draw at the same time (see M 1987r); it is the topic of Chapter E5. A 
mutual MIT friend, Erik Mollo-Christensen, had the hunch, brilliantly con­
firmed by later events, that the intellectual efforts of Lorenz and myself 
may somehow be related. 

As the unavoidable and legitimate free association between fractals 
and chaos theory became widely known, there were many attempts to 
improve our understanding of financial fluctuations by invoking the 
theory of deterministic chaos ... and even the Mandelbrot set! (See Gleick 
1986 for a discussion of M 198On.) Those attempts were not a direct 
descendent of my papers of 1960-1973. In any event, the vague notion 
that "there is chaos in the market" used to be understood in a statistical 
fashion. To reinvent it in terms of deterministic chaos would require an 
algorithm to distinguish between the presence and absence of randomness. 
Such algorithms were put forward, accompanied by broad claims I always 
viewed as extravagant; the inadequacy of the Grassberger-Procaccia algo­
rithm is now patent. 

The hope to "explain" finance via deterministic chaos is part of a very 
deep trend. Would-be explanations are welcomed even when they are 
sketchy, and are less harshly scrutinized than excellent descriptions that 
are forthright and do not even pretend to explain. 
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6. Some other sources or uses of scaling 

M 1982F{FGN} describes how, as the uses of scaling multiplied in my 
work, I also became aware of independent additional sources of the same 
idea. They have deep roots in philosophical and poetic discourse (William 
Blake saw 1/ a world in a grain of salt" and far older sources are quoted in 
M 1982F{FGN}.) More importantly, their occurrences range all over the 
sciences and the arts. A discussion would not fit in this book, but men­
tioning a few will serve the cause of full disclosure. 

Scaling in the work of Jonathan Swift. Swift 1733, lines 337-340, tells us 
that 

So, Nat'ralists observe, a Flea 
Hath smaller Fleas that on him prey, 

And these have smaller Fleas to bit 'em 
And so proceed ad infinitum. 

It is reported that Swift was commenting on the literary society of his 
time. The following variant form was phrased a hundred years later by 
Augustus deMorgan: 

Great fleas have little fleas upon their backs to bite 'em 
And little fleas have less fleas, and so ad infinitum, 

And the great fleas themsleves, in turn, have greater fleas to go on, 
While these again have greater still, and greater still, and so on. 

Implicit in both ditties is the idea that all fleas have the same shape. It is 
hard not to think of the Ptolemaic planetary system, with its cycles riding 
on cycles that themselves ride on cycles. Those ditties establish beyond 
question that the process that led mathematicians to define their monster 
curves did not originate around 1900, but had been widely understood for 
a far longer time. 

Scaling in turbulence. Taking a path-breaking intellectual step, 
Richardson 1922, p. 66, adapted Swift as follows 

Big whorls have little shorls, 
Which feed on their velocity 

And little whorls have lesser whorls, 
And so on to viscosity 

(in the molecular sense), 
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The viscosity "inner cut-off" (the last two lines) has a counterpart in 
finance, due to the impossibility of trading in strictly continuous time. 

The next step after Richardson was taken in Kolmogorov 1941. In a 
class only with Levy, Andrei Nikolaievich Kolmogorov (1903-1987) was 
the greatest probabilist of this century. I barely knew him personally, but 
greatly admired his extraordinary range of achievement. At the math­
ematical end of his range of interest in probability theory, Kolmogorov 
1933 seemed to me too close for comfort to the work of the ultimate 
decorator who rearranges existing material. But Kolmogorov's papers on 
turbulence were filled with novelty and daring. 

Kolmogorov 1941 was beginning to be known when I was a student at 
Caltech (1957-9), but everyone dismissed the so-called "K41" spectrum in 
k- 5/3. However, as soon as my main papers in finance were completed, I 
moved on to the study of noise (Berger & M 1963{N5}). After Robert W. 
Stewart obtained an experimental vindication of "K41," listening to him 
made me see strong similarities between Berger & M 1963 and some near­
simultaneous papers on turbulence, including Kolmogorov 1962. Errors I 
found in that great but flawed work spurred me to multifractals (M 
1973j{N14}, M 1974f{N15}, and M 1974c{N16}, hence profoundly affected 
the course of my scientific life. Those events made me realize that scaling, 
as a fruitful principle in science, has many sources, but I have no recol­
lection of thinking of turbulence when scaling came to my mind in the 
contexts of income distribution, then finance. 

Elliott Waves. This section devoted to miscellanea is as good a place 
as any to mention Ralph N. Elliott (1871-1948). A former peripatetic 
accountant and expert on cafeteria management, he studied Fibonacci, the 
Secrets of the Great Pyramid and the prophecies of Melchi-Zedik, and in 
1938 announced a great "discovery," a "Wave Principle" that "really 
forecasts." A claim that he was a precursor of the use of fractals in 
finance prompted me to scan Elliott 1994. It is true that some of Elliott's 
diagrams are qualitatively reminisent of certain self-affine generators of 
the kind studied in Section 4 of Chapter E6. That is, they embody the 
wisdom present in Swift's qualitative metaphor quoted earlier in this 
section, but nothing more. Elliott's work fails the requirements of objec­
tivity and repeatability: in his own words, "considerable experience is 
required to interpret [it] correctly" and "no interpretation [is] valid unless 
made by [him or his direct licencees]." 

Scaling in biology: allometry. This topic is touched upon in Chapter 17 
of M1982F{FGN}. Galileo knew that, moving from small to big animals, 
weight and leg cross-sectional must be roughly proportional, hence by 
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diameter must scale as (overalllength)312. In words, big animals are 
expected to have thicker legs. Other scaling rules, concerning the 
branching of trees and rivers, are already mentioned in the Notebooks of 
Leonardo da Vinci. Since his Notes were largely records of his wide 
readings, it may be that those rules were already known to Middle Age 
engineers. Last point: observed allometric exponents need not be rational 
numbers. 

Scaling in geology. Ohmori's law is an empirical relation concerning 
earthquakes; it is almost as old as Pareto's law, and used to be even more 
deeply neglected or spumed, but no longer. The Gutenberg-Richter law, 
also concerned with earthquakes, was well-known but written in a form 
that disguised the fact that it expresses scaling. Both are now recognized 
as being scaling relations, and earth sciences are now rife with fractals. 

Comment, a puzzle and a challenge. In most contexts, the idea of scaling 
failed to be acknowledged (like in geology), remained peripheral (like 
allometry), or was acknowledged but remained circumscribed (like in the 
study of turbulence.) Scaling has also many sources in decoration. My 
own odd combination of the two oldest "academic" sources is described in 
Sections 1 and 2; it too remained circumscribed as long as it was limited to 
finance and was wholly accepted by few investigators. 

In due time, however, fractal geometry brought together existing 
flavors of scaling and discovered new examples. The combination became 
recognized as a new "structure" of pattern, and its fortunes soared. Our 
century has seen many other "structuralist" syntheses, among them the 
mathematical school of "Bourbaki." 

Was the eye the main unifying factor in the synthesis based on scaling 
and fractals, or just one of many factors? This is a question for the histo­
rian of science. 



PART II: MATHEMATICAL PRESENTATIONS 

This part, written specially for this book, incorporates the substance of reports and 
memoranda written over the years. Deliberately, the chapters do not follow each 
other in strict logical order, and their contents overlap; therefore, they can, to a 
large extent, be read independently of each other. The topics of Chapters E5 and 
E6 are largely new but concern themes that long influenced my work. The topic 
of Chapter E9 is important in practical statistics. The topics of Chapters E7 and 
E8 have long traditions plagued with casual, questionable, or erroneous writings. 

&&&&&&&&&&&&&&&&&&&&&&&&&&& 

E5 

States of randomness from mild to wild, 
and concentration from the short to the long run 

• Abstract. An innovative useful metaphor is put forward in this 
chapter, and described in several increasingly technical stages. Section 1 is 
informal, but Sections 4 and 5 are specialized beyond the concerns of most 
readers; in fact, the mathematical results they use are new. 

At the core is a careful examination of three well-known distributions: 
the Gaussian, the lognormal and the scaling with infinite variance (a. < 2). 
They differ deeply from one another from the viewpoint of the addition of 
independent addends in small or large numbers, and this chapter pro­
poses to view them as "prototypes," respectively, of three distinct "states 
of randomness:" mild, slow and wild. Slow randomness is a complex inter-
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mediate state between two states of greater simplicity. It too splits more 
finely, and there are probability distributions beyond the wild. 

Given N addends, portioning concerns the relative contribution of the 
addends Un to their sum I.fun. Mildness and wildness are defined by cri­
teria that distinguish between even portioning, meaning that the addends 
are roughly equal, ex-post, and concentrated portioning, meaning that one 
or a "few" of the addends predominate, ex-post. This issue is especially 
important in the case of dependent random variables (Chapter E6), but this 
chapter makes a start by tackling the simplest circumstances: it deals with 
independent and identically distributed addends. 

Classical mathematical arguments concerning the long-run (N -+ 00) 

will suffice to distinguish between the "wild" state of randomness and the 
remaining states, jointly called "preGaussian." 

Novel mathematical arguments will be needed to tackle the short-run 
(N = 2 or "a few"). The resulting criterion will be used to distinguish 
between a "mild" or "tail-mixing" state of randomness, and the remaining 
states, jointly called "long-tailed" or "tail-preserving." This discussion of 
long-tailedness may be of interest even to readers reluctant to follow me 
in describing the levels of randomness as "states." 

In short-run partition, short-run concentration will be defined in two 
ways. The criterion needed for "concentration in mode" will involve the 
convexity of log p(u), where p(u) is the probability density of the addends. 
The concept of "concentration in probability" is more meaningful but 
more delicate, and will involve a limit theorem of a new kind. Long-tailed 
distributions will be defined by the very important "tail-preservation 
criterion" under addition; it is written in shorthand as PN - NP. 

Randomness that is "preGaussian" but "tail-preserving" will be called 
"slow." Its study depends heavily on middle-run arguments (N = 

"many") that involve delicate transients. • 

THE NOTION OF CONCENTRATION being central to the study of firm 
sizes and price changes, this chapter is of direct relevance to economics. It 
shows that the economics concepts of short, middle and long-run have 
unsuspected parallels in probability theory: they suggest a distinction 
between different "states of randomness" that should prove useful in 
many fields of science, and also involves new mathematical results that 
may have enough intrinsic interest to be worth developing. 

Section 1 is an informal introduction, close in style to Part I of this 
book. The middle part of the chapter is more technical, yet should interest 
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many readers. Section 2 is devoted to long-run portioning and Section 3 
to short-run portioning. The more specialized Section 4 proposes finer 
states of randomness. Section 5 is even more mathematical: it includes a 
proof and tackles some problems raised by the moments, and refers to 
"the moment problem" of classical mathematical analysis. The economic 
implications of short-run and long-run concentration are explored 
throughout the book, and serious flaws of the lognormal, in Chapter E9. 

Terminology and notation. Once again, a convention is often used in 
this book. When there is no loss of intelligibility and the context allows, 
words like "Gaussian," "lognormal," "Bernoulli," "Poisson," and "scaling" 
will be used as common names, to avoid endless and tiresome repetition 
of the terms "random variable," "probability distribution," "probability 
density," or "density." In addition, the tail probabilities and densities will 
be denoted, respectively, by P(u) = Pr{U > u} and its derivative - P'(u), and 
PN(u) = PrfL~=lUn' > u} and its derivative - P'N(U). 

1. BACKGROUND AND INFORMAL PRESENTATION 

The Gaussian distribution is often called "normal," because of the wide­
spread opinion that it sets a universally applicable "norm." In the case of 
the phenomena studied throughout my life and described in this book, 
this opinion is unwarranted. In their case, randomness is highly non­
Gaussian, but it is no longer possible to describe it as "pathological," 
"improper," "anomalous," or "abnormal." Therefore, any occurrence of 
normal in this book, as synonym of Gaussian, is the result of oversight, and 
I try not to think about the second and third syllables of lognormal. 

1.1. The ageless competition between scaling and lognormal fit, and a 
motivation for introducing the notion of "states of randomness" 

The innovation this chapter puts forward has many roots. One responds 
to a situation that plagues statistics and is a common reason for its unpop­
ularity and ineffectiveness. All too often, reliable and competent statisti­
cians split into camps that approach the same body of practically relevant 
data, and sharply disagree in their analysis. An example that concerns 
random variables is the very old disagreement about the distribution of 
income. Pareto claimed that it is scaling, and Gibrat, that it is lognormal 
(see Section 3 of Chapter E4, Chapter E9, and other chapters of this book). 
Current replays of those disagreements bring in random processes and 
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they concern the records of price changes (Chapter E1 and Parts IV and V 
of this book.) 

Could it be that both camps attempt to prove more than their data 
allow? Instead of seeking immediately to specify a distribution or a 
process by an analytic formula with its panoply of parameters, one should 
perhaps first sort out the possible outcomes into a smaller number of dis­
tinct discrete categories. The basic thought behind this classification is 
that, while the notion of randomness is unified from the viewpoint of 
mathematical axiomatics, it is of great diversity from the viewpoint of sci­
entific modeling and related statistical tools. 

Following this line of thinking, fractals led (first in finance and later in 
many other fields) to rather bold conclusions. To implement them, it is 
useful to inject a familiar metaphor and the terminology that comes with 
it. While a unique theory of physical interactions applies to every form of 
matter, the detailed consequences of those unique general laws differ 
sharply, for example, according to temperature and to whether the inter­
actions are short-range or long-range. This is why physics has to distin­
guish between several states of matter, whose traditional number is three. 

I propose in this chapter to argue that a similar distinction should be 
useful in probability theory. In the not-too-distant past, every book of sta­
tistics, as well as nearly every scientist engaged in statistical modeling in 
economics or elsewhere, used to deal with a special form of randomness, 
which will be characterized as mild. It will also be argued that entirely 
different states of randomness must be distinguished and faced. There is 
wild randomness exemplified by distributions with infinite variance. There 
is also an intermediate possibility exemplified by the lognormal: it is slow 
randomness - a term deliberately selected to imply what it says. 

When faced with a new phenomenon or fresh dataset, the first task is 
to identify its state of randomness. 

The implication is that, instead of ranging continuously, random vari­
ables are usefully sorted out in discrete categories exemplified by the 
Gaussian, the lognormal and the scaling with ct < 2. When the random 
variables U are defined by Pr(U > u) = P(u), the state of randomness differs 
sharply according to how fast the generalized inverse function p- 1 

decreases as its argument tends to 0, that is, according to how fast the 
moments Ul increase as q -+ 00. (To define p-l when P(u) is discontin­
uous, one fills each discontinuity by a vertical interval before the coordi­
nate axes are exchanged.) 
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The words mild, slow, and wild were chosen to be short and without 
competing technical connotations (discounting that everyday usage tends 
to view all randomness as wild). The word "state" is also carefully 
chosen. Its existing technical connotations denote gases, solids and 
liquids; they are strong, but do not compete with the new usage; even 
some of its ambiguities are helpful, as I propose to argue now. 

To begin with mildness, it is characterized by an absence of structure 
and in the case of random processes by a local level of statistical depend­
ence. That is, diverse parts can be modified without much affecting the 
whole. Remarkably, the same properties also characterize a gas. Their 
importance will be seen in Section 2 of Chapter ES, when discussing the 
legitimacy of random-walk models of scaling. 

Wildness, to the contrary, will be shown throughout this book to be 
characterized by the opposite qualities: presence of structure and long 
dependence. Remarkably, the same properties characterize a solid. 

Among the long-recognized states of matter, the third and least-well 
understood and explained is liquid. Characteristic of both physical liquids 
and slow randomness is a surprising degree of uncertainty in the defi­
nition and many technical imperfections. Consider a glass: it behaves 
from many viewpoints as a solid, but physicists know that in "reality" it is 
a very viscous liquid. This unresolved problem of physical characteriza­
tion has a surprising probabilistic counterpart in the distribution of per­
sonal income, as seen in several chapters of this book. 

Nobody would suggest that income distribution is soft and akin to a 
gas: it is clearly hard. What remains to be established is whether the 
better metaphor is a "real solid,"or a "very viscous liquid." Pareto's law 
presses the claim that income distribution is scaling, therefore like a solid. 
Gibrat's writings press the counter-claim that it is lognormal, therefore like 
a very viscous liquid. Chapter E9 will set up a case against the lognormal, 
and argue that the above disagreement may be of a kind that cannot be 
settled by inventing better statistical methods. 

1.2 The fallacy of transformations that involve "grading on the curve" 

Before describing the criteria that distinguish the different states of ran­
domness, it is necessary to dispose of a view that amounts to considering 
all forms of randomness as effectively equivalent. Indeed, scientists faced 
with clearly non-Gaussian data are often advised by statisticians to move 
on to a transformed scale in which everything nicely falls on the Gaussian 
"bell curve." In schools, the procedure is called "grading on the curve." 
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When pushed to its logical extreme, the underlying procedure leads to 
"grading by percentages." This transforms any U into a uniform random 
variable on [0, 1] defined by Pr{I < x} = x. Indeed, a random variable U 
defined by Pr{U> u} = P(u) is simply the non-decreasing transform of I 
defined as p-1W, where p-l is defined in Section I.I. 

Unfortunately, transformation ceases to look attractive as soon as one 
faces reality. A first complication, beyond the scope of this chapter, con­
cerns sequences of dependent variables: when each variable is made 
uniform, the rules of dependence need not transform into anything simple. 

A second complication is this: money is additive, but a transform 
such as log (money) is not; firm sizes add up to the size of an industry, 
but a transform like log (firm size) is not additive. In pedantic terms, con­
crete economics deals with numerical variables that can be added, not with 
ordinal variables that can only be ordered. 

A third and most important complication is that real-world distrib­
utions are not known exactly, but approximately. That is, a random vari­
able does not come up alone, but as part of a natural "neighborhood" that 
also contains other variables viewed as "nearly identical" to it. 

Of enormous significance are the neighborhoods that are automatically 
implied in every limit theorem of probability theory. For example, to say 
that a random variable tends to a limit, is to say that it eventually enters a 
suitably defined neighborhood of the limit. In the usual central limit 
theorem, the limit is Gaussian, and the neighborhood is defined solely on 
the basis of the central bell, disregarding the tails. Cramer's large devi­
ations theory splits the neighborhood of the Gaussian in a finer way that 
does not concern the bell, but the tails. The concrete usefulness of a limit 
theorem depends initially on whether or not this neighborhood it implies 
is a "natural" one from the viewpoint of a specific concrete situation. 

Now we can describe the major failing of the transformation of U into 
I : it fails to transform the natural neighborhood of U into the natural 
neighborhood of 1. 

Once again, the example of greatest relevance to this book is the 
notion that for some data the best methods of statistics conclude that 
log X is practically Gaussian. This means that the observed deviations 

from Gaussianity only concern the largest values of X that contribute a 
few percent of the whole. Faith in the significance of the Gaussian fitted 
to log X leads to the recommendation that these exceptional values be 
neglected or treated as "outliers." The trouble is that in many cases the 
most interesting data are those in the tail! It follows that differences 



E5 <> <> ... AND CONCENTRATION FROM THE SHORT TO THE LONG RUN 123 

between alternative notions of neighborhood are not matters of mathemat­
ical nit-picking. 

In the light of these three "complications," the suggestion that any var­
iable can simply be made uniform or Gaussian by transformation is ill­
inspired and must be disregarded. 

1.3 Portioning on the short or the long-run, and three states of 
randomness 

The proceeding motivation gave one example of each state of randomness. 
It is now time to define those states. Before we do so, recall that gases, 
liquids and solids are distinguished through two criteria: flowing versus 
non-flowing, and having a fixed or a variable volume. Two criteria might 
define four possibilities, but "non-flowing" is incompatible with "variable 
volume." Adding in uncanny fashion to the value of our physical meta­
phor, our three states of randomness are also defined by two mathematical 
criteria, both deeply rooted in economic thinking. Given a sum of N inde­
pendent and identically distributed random variables, those criteria hinge 
on two notions. 

Portioning concerns the relative contribution of the addends Un to the 
N 

sum Ll Un' 

The concentration ratio of the largest addend to the sum. Loosely 
speaking, concentration is the situation that prevails when this ratio is high. 
This idea will, later in this chapter, be implemented in at least two distinct 
ways. The opposite situation, prevailing when no addend predominates, 
will be called evenness. 

The issue must be raised separately on the short- and the long-run, 
and it will be seen that concentration in the long-run implies concentration 
in the short-run, but not the other way around. Hence, the contrast 
between concentration and evenness leads to three principal categories. 

• Mild randomness corresponds to short- and long-run evenness. 

• Slow randomness corresponds to short-run concentration and long­
run evenness. 

• Wild randomness corresponds to short- and long-run concentration. 

In mild and wild randomness, the short- and long-run behavior are 
concordant; in slow randomness, they are discordant. 

Here is another bit of natural and useful terminology. 
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• Taken together, the two non-wild states will be said to define 
preGaussian randomness, the counterpart of flowing for the states of matter. 
An alternative term is "tail-mixing." 

• Taken together, the two non-mild states will be said to define long­
tailed randomness, the counterpart of fixed-volume for the states of matter. 
An alternative term is tail-preserving. 

Let us now dig deeper, in terms of finance and economics. 

Long-run portioning and the distinction between wild and preGaussian ran­
domness. This distinction concerns asymptotics and the long-run. Exam­
ples are the relative size of the largest firm in a large industry, the largest 
city in a large country, or the largest daily price increase over a signif­
icantly long period of time. PreGaussian randomness yields approximate 
equality in the limit, as expressed by the fact that even the largest addend 
is negligible in relative value. By contrast, wild randomness yields undi­
minishing concentration, expressed by the property that the largest relative 
sizes remains non-negligible even in very large aggregates. 

The mathematical detail of long-run portioning is delicate and found 
in standard references, therefore it must and can be summarized. This 
will be done in Section 2. Additional information is found in Chapter E7. 

Short-run portioning, and the distinction between mild and long-tailed ran­
domness. The cleanest contrast to the long-run is the very short-run repres­
ented by two items. Given two independent and identically distributed 
random variables, U' and Uti, and knowing the value taken by the sum 
U = U' + U", what do we know of the distributions of U' and UtI? We shall 
describe U as being "short-run portioned between U' and Uti, " and 
wonder whether those parts are more or less equal, or wildly dissimilar. 

As a prelude, consider two homely examples. Suppose you find out 
that the annual incomes of two strangers on the street add to $2,000,000. 
It is natural and legitimate to infer that the portioning is concentrated, that 
is, there is a high probability that the bulk belongs to one or the other 
stranger. The $2,000,000 total restricts the other person's income to be less 
than $2,000,000, which says close to nothing. The possibility of each unre­
lated stranger having an income of about $1,000,000 strikes everyone as 
extraordinarily unlikely, though perhaps less unlikely that if the total were 
not known to be $2,000,000. 

To the contrary, the total energy of two sub-systems of a gas reservoir 
is evenly portioned: each molecule has one-half of the energy of the two 
together, plus a tiny fluctuation. A situation in which most of the energy 
concentrates in one subsystem can safely be neglected. 
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Rigorous mathematical argument supports the "intuition" that even 
portioning is very unlikely in one case, and very likely in the other. 
Indeed, the above two stories exemplify opposed rules of short-run por­
tioning. Even short-run portioning will define mild randomness, and con­
centrated short-run portioning will define long-tailed randomness. 

Unfortunately, the details of this distinction are not simple. In addi­
tion, short-run portioning is not a standard mathematical topic. The ques­
tion was first raised and discussed heuristically in Section 2.5 of M 
1960HElO} and again in Section V.A of M 1963b{E14}, but, to my know­
ledge, nowhere else. The first full mathematical treatment, which is new, 
will be presented in Sections 3 and 5. 

The middle-run. Short- and long-run considerations are familiar in eco­
nomics. They are essential, but, to quote John Maynard Keynes, "in the 
long-run we shall all be dead." Economic long-run matters only when it 
approximates the middle-run reasonably, or at least provides a convenient 
basis for corrective terms leading to a good middle-run description. 

Probability theory also favors small and large samples. Samples of a 
few items are handled by explicit formulas often involving combinatorics. 
Large samples are handled by limit theorems. Exact distributions for 
middle-size samples tend to involve complicated and unattractive series or 
other formulas that can only be handled numerically on the computer. In 
a way, this chapter proposes to bracket the interesting but untractable 
probabilistic middle-run between an already known and tractable long-run 
and a very different tractable short-run. 

Digression concerning physics. The model for all sciences, physics, was 
able for a long time to limit itself to two-body or many-body problems, 
that is, small or large aggregates. Intermediate ("mesoscopic") phenomena 
were perceived as hard and only recently did they impose themselves and 
physics became strong and bold enough to tackle a few of them. In a few 
examples (some of which occur in my recent work), it is useful and pos­
sible to distinguish and describe a distinct pre-asymptotic regime of large 
but finite assemblies. 

2. WILD VERSUS PRE-GAUSSIAN RANDOMNESS: CLASSICAL 
LIMIT THEOREMS DEFINE CONCENTRATION IN THE LONG RUN 

This Section is somewhat informal, the technical aspects being available in 
the literature, and/ or taken up in Chapter E7. 
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2.1 Introduction to long run portioning 

Probability theory solved long ago the problems of the typical size of the 
largest of N addends, relative to their sum, and the problem of distrib­
ution around the typical size. The most basic distinction is based is the 
boundedness of the second moment. Of the many possibilities that are 
open, the following are the most important. 

At one extreme, the addends are bounded, and the concentration is 
-liN. As N --+ 00, concentration converges to O. This last conclusion also 
holds when EU2 < 00. Since the inequality EU2 < 00 is generally taken for 
granted, most scientists view the notion of concentration for large samples 
as completely solved by probability theory. In particular, one of the justi­
fications of the role of the Gaussian in science is closely patterned after its 
role in the "theory of errors," as practiced around 1800 by Legendre and 
Gauss. It is taken for granted that each chance event is the observable 
outcome of a large number of separate additive contributions. It is also 
taken for granted that each contribution, even the largest, is negligible 
compared to the sum, both ex-ante (in terms of distributions) and ex-post 
(in terms of sample values). The economists' technical term for this 
premise is "absence of concentration in the long-run," and here it will be 
called "evenness in the long-run." This premise is widely believed to hold 
for all independent and identically distributed addends. In other words, 
identity of ex-ante distributions of the parts is believed to lead to evenness 
of ex-post sample values. 

This common wisdom claims to solve one of the problems raised in 
this chapter. Observed occurrences of concentration are viewed as tran­
sients, or possibly the result of strong statistical dependence between 
addends. 

In fact, and this is the main theme of this chapter and of the whole 
book, the common wisdom is simply mathematically incorrect. As sketched 
in Section 1.3 and discussed in this section, portioning in the long-run can 
take two distinct forms: even, with concentration converging to 0 as 
N -+ 00 and concentrated, with the largest addend remaining of the order of 
magnitude of the sum. 

This distinction largely relies on standard results of probability theory. 
This book discusses its impact in economics in many places, including in 
the reprints on income distribution and price variation, and Chapter E13 
concerned with firm sizes. 
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2.2 Alternative criteria of preGaussian behavior 

The prototype of mild randomness is provided by the "thermal noise" that 
marks the difference between the statistical predictions of the theory of 
gases and the non-statistical predictions of the older thermodynamics. 
Thermal noise consists in small fluctuations around an equilibrium value. 
For the "astronomically" large systems that are the (successful) physical 
analogs of the economic long-run, those fluctuations average out into rela­
tive insignificance. If such a system is divided into many equal parts, the 
energy of the part with the highest energy is negligible compared to the 
energy of the whole. 

Informal statement. More generally, the form of randomness this book 
calls preGaussian is defined by limit asymptotic properties that are best 
stated as follows. 

• The fluctuation is averaging, or ergodic. The law of large numbers 
(LLN) shows that sample averages converge asymptotically to population 
expectations. 

• The fluctuation is Gaussian. The central limit theorem (eLT) shows 
that the fluctuations are asymptotically Gaussian. 

• The fluctuation is Fickian. The central limit theorem also shows that 
the fluctuations are proportional to jN, when N being the number of 
addends. For random processes, an alternative, but equivalent statement 
(less well-known but essential) is that events sufficiently distant in time 
are asymptotically independent. 

More formal questions and answering statements. 

Question: Take the sequential sum 2.~ = 1 Un for a sequence of inde­
pendent and identically distributed random variables Un' 1 ~ n < 00. Is it 
possible to choose the sequences AN and BN and define the notion of "con­
verges to", so that AN{2.~=lUn - BN} converges to a limit? 

An answer that defines preGaussian behavior: Under certain conditions 
described in numerable textbooks, a choice of AN and BN is possible in two 
distinct ways: 

The choice of AN = liN and BN = 0 yields the law of large numbers, in 
which the limit is EU, that is, non-random. 

The choice of the Fickian factor AN - 1/ jN and BN = NEU yields the 
central limit theorem, in which the limit is Gaussian~at is, random. It 
follows that I~ = 1 Un is asymptotically of the order of 'IN . 
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The notions of attraction and universality. In many contexts, physicists 
have no confidence in the details of their models, therefore distrust the 
models' consequences. An important exception is where the same conse­
quences are shared by a "class of universality," that also includes alterna­
tives that differ (not always slightly) from the original model. Although 
the word universality is rarely used by probabilists, the basic idea is very 
familiar to them. For example, few scientists worry about the precise 
applicability of a Gaussian process, because the Gaussian's domain of 
attraction is very broad, and slight changes in the assumptions provoke 
slight deviations in the consequences drawn from the model. The domain 
of universality of attraction to the Gaussian includes all U satisfying 
EU2 < 00, but also some cases when EU2 diverges slowly enough. 

2.3 Exceptions to preGaussian behavior 

The preGaussian domain of universality is broad, but bounded. The prop­
erties of being averaging, Gaussian, or Fickian may fail. The failure of any 
of these properties defines the wild state of randomness. 

Failure occurs when the population variance, or even the expectation, 
is infinite, when the dependence in a random process is not "short-range" 
or local (contrary to the locality of the Markov process) but "long-range" 
or global, or when total probability must be taken as infinite. Most 
notably, the scaling variables with a < 2 satisfy EU2 < 00, and are not pre­
Gaussian. 

Wild randomness and practical statistics. The preface quoted the editor's 
comments on M 1963b{E14} found in Cootner 1964. They, and countless 
other quotes by practically-minded investigators, some of them scattered 
throughout this book, show that non-averaging, non-Gaussian, and/or 
non-Fickian fluctuations were long resisted and viewed as "improper" or 
even "pathological." But I realized that many aspects of nature are ruled 
by this so-called "pathology." Those aspects are not "mental illnesses" 
that should or could be "healed." To the contrary, they offer science a 
valuable new instrument. In addition, a few specific tools available in 
"pure mathematics" were almost ready to handle the new needs. The new 
developments in science that revealed the need for those tools implied that 
science was moving on to a qualitatively different stage of indeterminism. 

The editor's comments in Cootner 1964 also noted that, if it is con­
firmed that economic randomness is wild, some tools of statistics will be 
endangered. Indeed, tools developed with mild randomness in mind 
become questionable in the case of slow randomness. As a rule with 
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many exceptions, they are not even close to being valid for wildly random 
phenomena, such as those covered by my models of price variation. 

Sketch of the domains of universality of attraction to nonGaussian limits. To 
be outside of the Gaussian domain of attraction or universality is a great 
complication. In particular, each value a. < 2 defines its own domain of 
universality. In addition, in sharp contrast to the width of the domain of 
the Gaussian, each of those domains is extremely narrow and reduces to 
the variables for which Pr{U > u} - u-aL(u), where L(u) is logarithmic or at 
most slowly varying in the sense that for all h, limu_",,L(hu)/L(u) = 1. The 
term L(u) is largely a nuisance, and we shall not invoke it unless neces­
sary. 

If Un is in the domain of universality of a. < 2, the limit is a random 
variable called L-stable, which is widely discussed and used in the papers 
reprinted in this book. 

In the absence of slowly varying term L(u), the choice of AN is 
AN = N1/ a for all a., therefore U~ is asymptotically of the order of N1/ a . The 
choice of BN is NEU when 1 < a. < 2, and 0 when 0 < a. < 1. 

2.4 Comments on the middle-run and slow randomness 

Adding new evidence that the world is not a simple place and science is 
more difficult than mathematics, the limit theorems of probability do not 
really matter, unless they also help describe the middle-run. Unfortu­
nately, the middle-run is complicated, hence the existence of a third 
"middle" state did not fully impress itself on my work until a recent 
careful look at its foremost example, the lognormal (Chapter E9). Since 
industrial concentration is incontrovertible (see Chapter E13), the very fact 
that the lognormal is continually proposed to model industrial concen­
tration means that it cannot really be counted as mild. What is it? 

On the long-run, it is indeed averaging, Gaussian and Fickian, there­
fore, preGaussian. In the middle-run, however, its "nice" asymptotic 
properties are irrelevant and give no hint of the fact that the strict 
lognormal yields a "very erratic" sample averages. The statistician who is 
invited to examine those averages, and not the distribution itself, should 
conclude that those averages behave "as if" the addends were wild. In 
other words, a more correct interpolate of the middle-run behavior is 
obtained if one does not start with the lognormal, but a wild approxi­
mation to the lognormal. For actual data that are neither exactly 
lognormal nor exactly wild, my long-term goal has been to develop view-
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points and techniques that illuminate the middle-run and can be used as 
the starting point for improvements. 

3. MILD VERSUS LONG-TAILED RANDOMNESS: 
CONCENTRATION IN THE SHORT RUN, CONVEXITY OF log p(u) 
AND THE TAIL PRESERVATION RELATION P~u)-NP(u) 

Section 2 divides all forms of randomness into wild - defined by concen­
trated long-run portioning, and preGaussian - defined by even long-run 
portioning. Our next goal is to subdivide this second category into two 
categories to be called mild and long-tailed. This will be done in stages. 

• A first criterion will be based on concentration in mode; it is very 
simple, but has many flaws. 

• A more intrinsic second criterion of wider applicability will be 
based on asymptotic concentration in probability. It will lead to the "tail­
preservation" relation PN(u) - NP(u). 

The term slow, is justified by arguments that cast doubt on the accepta­
bility of slow random models in scientific work. It is best to phrase those 
arguments in the specific context of the lognormal distribution. This will 
be done in Chapter E9. 

The tail-preservation relation is not, in itself, new to probability 
theory, since it occurs in the classical "extreme value problem." Indeed, 
let the random variables Up ~ j ~ N) be independent and identically dis­
tributed, with the tail probability P(u), and let PN(u) be the tail probability 
of aN = max (U/ It is well-known that 1-PN(u) = {l- p(u)}N. In the tail 
where P(u)~l and PN(u)~l, we find in all cases that PN - NP. 

However, the material that follows does not concern the extreme value 
problem, it merely injects some considerations relative to extreme values 
into the classical study of sums. A striking consequence is that, in this 
new context, the tail preservation relation for sums holds for some, but not 
all, probability distributions. By ceasing to hold universally, it ceases to be 
a trivial property; instead, it takes up a central role in a fundamental dis­
tinction between one state of randomness (mild) and the other states taken 
together (long-tailed.) 

3.1 The doubling convolution and the short-run portioning ratio 

As agreed, we denote the common probability density of 
U' and U" by p(u). The probability density of U = U' + U", denoted P2(u), is 
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given by the doubling convolution P2(X) =fp(u)p(x - u)du. When u is 
known, the conditional probability density of u' is given by the following 
expression, to be called "portioning ratio" 

p(u')p(u - u') 

P2(U) 

The denominator is a constant and it remains to study the numerator. 

Min (U', U") and max (U', U") can be compared in many different 
ways. The conditional expectation of U', knowing U = u, is of no help, 
since it is always u/2, and the conditional expectation of min(u', u") is not 
given by any manageable expansion. 

To the contrary, it is often easy to study the location of the most prob­
able values of min(u', u") and max(u', u"), which statisticians call "modes." 
Those locations lead to a criterion based on the convexity of log p(u), 
which will serve to define "concentration versus evenness in mode." 

The mode is of little use in probability, but in this instance turns out 
to be surprisingly close to being satisfactory. Indeed, a more searching 
stage of this study shows that, under suitable additional assumptions, the 
integral fp(u')p(u - u')du' is dominated by values the conditional density 
p(u')p(u - u') takes in intervals near the modes, while the remaining inter­
vals have a negligible contribution. The underlying mathematical theorem 
concerns concentration "in probability," but in some cases also holds in 
the "almost sure" sense. 

The proof of this basic theorem also yields the fundamental "tail­
preservation criterion" written in shorthand as PN - NP. In due time, the 
assumption of the basic theorem are bound to be improved. Therefore, I 
propose to define "long-tailedness" as meaning "tail-preserving." 

3.2 Sufficient criterion of evenness or concentration "in mode": the 
graph of log p(u) is cap- or cup-convex for sufficiently large values of u 

In many important cases, the maximum of the product p(u')p(u - u') occurs 
either near u' = u/2, or near u' = 0 and u' = u. Take logarithms and write 

a(u) = 2 log p( ~ ) - [ log p(O) + log p(u)]. 

When the convexity of log p(u) is uniform for all u, the sign of a(u) is 
independent of u. 
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• The case when the graph of log p(u) is cap-convex, like the 
typographical sign n. In that case, the portioning ratio is maximum for 
u' = u/2, and portioning is even in terms of the mode. 

• The boundary case when the graph of log p(u) is straight. In that 
case, the addends are exponential, and the portioning ratio is a constant. 

• The case when the graph of log p(u) is cup-convex, like the 
typographical sign U. In that case, the portioning ratio is minimum for 
u' = u/2 and portioning is concentrated in terms of the mode. 

Distributions with uniform convexity of log p(u) suffice to show that 
the distinction between mild and long-tailed randomness cannot be identi­
fied with the distinction between even and concentrated short-run por­
tioning. 

3.3 Simple examples of uniform convexity 

Every Poisson always yields even short-run portioning in mode. When 
p(u) = e-ryu /u!, the convexity of log p(u) is that of log u!, which is cap­
convex all u > O. The portioning ratio is 

p(u')p(u - u') 

P2(U) 
u! 

u'!(u - u')! 

The non-constant third term is a binomial coefficient that peaks at u = u/2 
if u is even, and at (u±1)/2 if u is odd. At those points, the portioning 
ratio p(u')p(u - u')/p(u) has a maximum. Even portioning was to be 
expected: the Poisson distribution rules the number of points of a Poisson 
process that fall in an interval of given length. 

Every Gaussian yields even short-run portioning in mode. Here, log p(u) 
is essentially - u2, which is cap-convex uniformly for all u. The portioning 
ratio is 

1 (u2 ) 1 {(U - U,)2 } 

~exp -2 ~exp - 2 __ 1_ {_( '_1!...)2} 
{} 

- C exp u 2 . 
1 u2 yrr --exp --

~2rr 2 

Thus, a Gaussian is evenly partitioned with a Gaussian "error-term" 
for which variance is 1/2, that is, does not depend on u. 
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Every scaling yields concentrated short-run portioning in mode for all a. 
When p(u) = au - a-I for u > I, log p(u) is cup-convex uniformly for all 
u> 1. The same is true of log p(u) + log p(x - u), and the portioning ratio 
is 

,-a-1( ,)-a-1 1 u u-u 
2 u- a - 1 

It is cup-convex and largest for u = 1 and u = x - 1. 

The family p(u) = exp( - uw), is split, the nature of short-run portioning 
being dependent on the sign of w - 1. The convexity of log p(u) is, again, 
uniform for all u > 0, but here it depends on the sign of w - 1. Portioning 
is even for w> 1 and concentrated for w < 1. The family exp (- uw) is 
often praised in the literature for the ability of one analytic expression to 
account for very different behaviors, according to whether w> 1 or w < 1. 
This versatility can also be interpreted in a negative light, as a form of 
insensitivity to profound differences. 

3.4 The lognormal and other examples of non-constant convexity of log 
p(U)i mixed rules of short-run portioning 

For many usual distributions, the graph of log p(u) is cap-convex for all u. 
But a bell where the graph of log p(u) is cap-convex is often flanked by 
one or two tails where the graph is cup-convex. In those mixed cases, 
portioning depends on u: it is even for u near the mode (i.e., where p(u) is 
largest) and concentrated for large u. Let us examine a few examples. 

The Cauchy. Here, 

p(u) = 1 and P2(U) = 1 
rr(1 + u2) 2rr(1 + u2 / 4) 

Here the convexity of log p(u) changes for u = ±1. Hence, portioning is 
in mode even for I u I < 2, and concentrated for I u I > 2. 

The "Cournot" (positive L-stable density with a = 1/2). Here, 

The lognormal. If EU = 1, there is a single parameter cr /2, and 
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. ~ ( log u + eT /2)2 
log p(u) = - log (Uy2TT ) - log u - 2eT 

Here, the convexity of log p(u) changes when log Uo = 1 - 3eT /2. 
Hence, Eortioning is even when u < 2uo' and concentrated when u > 2uo. 
When cr is large, so that the lognormal is very skew, the bell lies almost 
entirely to the left of EU = 1 and its total probability is small. Portioning is 
then most likely to be concentrated and the non-mild character of the 
lognormal is obvious. When eT is small, so that the lognormal is near­
Gaussian with a small tail added, the bell includes EU = 1 and its total 
probability is near 1. Portioning is then most likely to be even, and the 
lognormal may seem mild. 

Note. This example raises an issue of wider applicability. Ostensibly, 
portioning in the case N = 2 is a short-run notion. But in the case of near­
Gaussian lognormals, concentration only occurs in very large assemblies. 

The log Bernoulli l. This is the exponential of a Bernoulli; it has a finite 
upper bound exp(max B), therefore the limit arguments concerning u -+ 00 

have no meaning for it. As the sum of two addends approaches 2 
exp(maxB), the portioning between the addends necessarily becomes even. 

3.5 The problematic gamma family p(u) = uy-1e-Utr(y); portioning in 
mode is even for y > 1 and concentrated for y < 1 

The concentration in mode based on the convexity of log p(u) proves 
unreasonable in the case of the gamma distribution. In that case, U' + U" 
is a gamma of parameter 2y, hence 

p(u')p(u - u') 

P2(U) 

r(2y) u,y -1(U - u')y -1 

[r(y)f u 2y - 1 

The exponential special case y = 1 marks the boundary between two 
opposite rules of portioning in mode. 

When y> 1, portioning in mode is even and the maximum at u/2 
becomes increasingly more accentuated as y -+ 00. For integer values of y, 
this result was to be expected, because the resulting gamma is the sum of 
y independent exponential variables, therefore becomes increasingly close 
to Gaussian. 

When y < I, to the contrary, portioning in mode is concentrated. 
However, this behavior is not due to the tail behavior of the gamma, rather 
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to its behavior near u = O. The tail is shorter in the cap-convex case y < 1 
than in the cup-convex case y> 1. 

In summary, the gamma shows the need of a criterion of "mildness" 
that goes beyond the convexity of log p(u). 

The multiplicative character of concentration in mode is the gamma case. 
For the gamma, W = u' /U is independent of u, and has the beta density 

Therefore, the fluctuating term can be described as multiplicative. 
Now apply the same argument formally to the asymptotically scaling. 
The concentration ratio converges to w- a- 1(1- w)-a-l. This limit is non­
integrable near w > 0 and w = I, implying that for the scaling, w --> 0 or 1 
as u --> 00. The underlying reason is that in the scaling case, the distrib­
ution of min(u', u - u') is independent of u for large u, hence the fluctu­
ating term is not multiplicative but additive. 

3.6 Evenness and concentration "in probability," and the criterion 
P2(U) - 2p(u) of tail preservation under addition as defining 
long-tailedness 

The study of concentration in mode has the virtue of extreme simplicity. 
The results are surprisingly adequate, but exceptions must be avoided 
without artificiality. The smallness of the number of exceptions is largely 
serendipitous, because the criterion based solely on the maxima of 
p(u')p(u - u') is an extraordinarily crude one. The real question is more 
searching: is the relative value U' / u likely to lie in a suitably narrow 
neighborhood of the maximum or maxima? 

Definition of short-run concentration in probability. This definition is 
geared to the case when there is concentration in mode, that is, 
p(u')p(u - u') is maximum for u' near 0 and u' near u. In that case, given a 
value of fl that satisfies fl < u!2 and may depend on u, one can split the 
doubling convolution in three parts, as follows 

p,(x) = L'p(U)p(X - u)du = {I: + fi + LJ(U)p(X - u)d. 

=IL +10+ lR• 
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I propose to describe p(u) as short-run concentrated in probability if it is 
possible to select fl(u) so that the middle interval (fl, u - fl) has the fol­
lowing two properties as u -> 00. 

• The relative probability in the middle interval I/piu), tends to O. 

• The relative length of the middle interval (u - 2fl)u does not tend to O. 

This second requirement opens two sub-possibilities. 

• When p(u) is only moderately long-tailed, the relative length of the 
middle interval tends to 1. The density p(u)p(o. - u) concentrated arbi­
trarily tightly around its mode. Concentration in probability is replaced 
by a stronger property: almost sure concentration. 

• When p(u) is extremely long-tailed, the relative length of the middle 
interval tends to a limit, or may have a lower bound> 0 and an upper 
bound < 1. 

The "tail-preservation criterion." Section 5.1 will insure that short-run 
concentration in probability prevails when log p(u) is smoothly varying, 
decreasing and cup-convex and its derivative p'(u)/p(u) tends rapidly 
enough to 0 as u -+ 00. 

In addition to concentration in probability, the same proof yields a 
very perspicuous criterion, namely P2(U) - 2p(u). In terms of the tail proba­
bilities P(u) and Piu) of U and U' + U", this criterion reads 

More generally, writing P(u) and PN(u) for the tail probabilities of U and 
of a sum of N variables with the same distribution, one obtains 

This criterion expresses that the tail behavior of U is preserved under 
finite addition. The notion of tail preservation, first introduced in M 
1960i{E10}, recently turned out to be related to classical and seemingly 
unrelated considerations in classical "fine mathematical analysis," to be 
described in Section 5. 

Rescaling of tails and a property of scaling distribution. When the tail is 
asymptotically scaling as in the case of the L-stable distributions, the tail 
conservation relation acquires a special meaning. It shows that 

"scale of U" = "scale of U' X 21/ a ." 
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This result also holds when p(u) = u-aL(u), where L(u) is slowly 
varying, that is, it satisfies L(hu)/L(u) -+ 1 for all h > 0) as u -+ 00. 

Tail conservation holds for lognormals, but fails to have this special 
meaning. Lognormality is not preserved by addition. 

3.7 Mild randomness and mixing behavior when log p(u) is cap-convex 

To appreciate the meaning of the criterion PN - NP, let us examine cases 
where it does not hold. 

The borderline exponential case. Here, If': = 1 U is a gamma variable; there­
fore as u -+ 00, PN/P does not tend to the constant N, but increases like 
UN-I. 

The case of evenness in mode. When the convolution integrand 
p(u)p(x - u) has a maximum at u = 0./2, the tail of P2(U) is little affected by 
the behavior of p(u) in the tail. But it is greatly affected by its behavior 
part-way through the tail. The result is that PN/P can increase very fast. 
In the Gaussian case with EU = 0, when N~l, PN/P -l/l.jN P], which 
grows very fast as u -+ 00. Instead of tail preservation, one encounters an 
interesting "mixing" behavior whose intensity can be measured by the rate 
of growth of PN/P. 

3.8 Portioning and the tail-preservation relation PN - NP, when N is a 
small integer above 2 

In an equilateral triangle of height u, the distances from a point P to the 
three sides add up to u, therefore can represent u', u" and UO in the por­
tioning of the sum u = u' + u" + UO into its contributing addends 
u', u' and uo. When the U are exponential, the conditional distribution of P 
is uniform within this triangle. When U is mild, the conditional distrib­
ution concentrates near the center. When U is short-run concentrated in 
probability, the conditional distribution concentrates near the comers. 

The same distinction holds for N = 4, 5 etc.... It is of help in gaining a 
better understanding of the problematic gamma family. The y exponent of 
a sum of N gammas is Ny, which exceeds 1 as soon as N> 1/y. Therefore, 
U can conceivably be called mild if L.~ = 1 U has a cap-convex log PN(U) for 
all N above some threshold. Starting with y = 2, where k is a large 
integer, evenness decreases until y = 1. There, a boundary is crossed and 
portioning becomes increasingly concentrated. 

However, as N -+ 00, an altogether different classification takes over, as 
seen in Section 3. 
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Next, consider portioning of a sum of four addends U1 + U2 + U3 + U4 

into two sums of two addends U1 + U2 and U3 + U4• Indeed, even when 
log p(u) is cup-convex for all u, one part of the graph of log piu) is bell 

shaped. In the scaling case, the bell continues by a cup-convex tail. In the 
gamma case with 1/2 < Y < 1, the tail is cap-convex. 

A seeming paradox of immediate practical importance: when PN(u) - NP(u), 
the cup-convexity of log PN(u) for large u is preserved for all N; this is true both 
when U is wild and when it is preGaussian. Taking the word "addends" as 
model, "limitands" is a self-explanatory term for "items" that are made to 
tend to a limit. The items may be sets, graphs of functions, or analytic 
expressions. Let P(Ln) and P(L) be properties of each limitand Ln and the 
limit L = limn _00 ,respectively. The "intuition" that P(L) = lim n _ooP(Ln) is 
often wrong. It used to be that it only failed for artificial mathematical 
counter-examples, but no longer. Define LN as the graph of the function 
log PN(U) relative to the sum of N long-tailed random variables U and the 
property P(LN) as asserting that, for all N, the graph LN is cup-convex for 
large u. Two possibilities are open: When U is wild, this convexity prop­
erty is indeed preserved in the limit; However, when U is slow, this prop­
erty fails in the limit, since the limit is the graph of log p(u) for the 
Gaussian. 

4. A MORE REFINED TENTATIVE SUBDIVISION, YIELDING SEVEN 
STATES OF RANDOMNESS 

The criteria stated in Section 1 and elaborated in Sections 2 and 3 leave 
open many conceptual and practical "details." 

4.1 The boundary between mild and long-tailed and "borderline mild" 
randomness 

Sections 3.3 to 3.6 and Section 4 imply that the exact separation between 
the mild and the long-tailed states of randomness is not unique, and 
depends upon the definition selected for the notion of concentration. 
Within the problematic gamma family (Section 3.6), the convexity of 
log p(u) defines a different boundary for each value of N. Granted this 
fuzziness, one may as well accept the existence of a transitional state 
between proper mildness and proper long-tailedness. 
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4.2 Extreme randomness 

Wild randomness was characterized by the fact that the largest of many 
addends is of the same order of magnitude as their sum. But it is possible 
for concentration to be even more extreme. In the example of the tail 
probability P(u) = 11 log u, concentration converges to 1 as N -- 00; 

asymptotically, it becomes absolute. The same is true whenever P(u) is a 
"slowly varying function," in the sense that, for all 
h > 0, limu _ oo P(hu)/P(u) --1. Those P(u) define a state of randomness 
beyond the wild. I never encountered it in practice. 

4.3 The contrast between localized and delocalized moments 

Take a hard look at the formula El.fI =,fo' uqp(u)du. For the scaling, the 

integrand is maximum at the trivial values 0 or 00. But in non-trivial 
cases, the integrand may have a sharp global maximum for some value Uq 
defined by the equation 

d q d log p(u) o = du (q log u + log p(u» = u - I du I . 

The dependence of Uq on q is ruled, once again, by the convexity of 
log p(u). 

• When log p(u) is rectilinear, the Uq are uniformly spaced. 

• When log p(u) is cap-convex, Uqlq is decreasing; that is, the U are 
increasingly tightly spaced. q 

• When log p(u) is cup-convex, UqI q is increasing; that is, the Uq are 
increasingly loosely spaced. 

However, knowing U is not enough; one must also know uqp(u) in the 
neighborhood of Uq• The lunction uqp(u) often admits a "Gaussian" approx­
imation obtained by the "steepest descents" expansion 

log [uqp(u)] = log p(u) + qu = constant - (u - ii/0-;2/2. 

When uqp(u) is well-approximated by a Gaussian density, the bulk of El.fI 
originates in the "q-interval" defined as [uq - uq, uq + ol 

The usual typical examples yield the following results. The Gaussian 
q-intervals greatly overlap for all values of u. The Gaussian's moments 
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will be called delocalized. The lognormal's q-intervals are uniformly spaced 
and their width is independent of q; therefore, when the lognormal is suf­
ficiently skew, the q-interval and the (q + I)-interval do not overlap. The 
lognormal's moments will be called uniformly localized. In other cases, 
neighboring q-intervals cease to overlap for sufficiently high q. Such 
moments will be called asymptotically localized. 

The notion of localization involves an inherent difficulty. Working in 
the "natural" scale is essential to problems involving addition, but here it 
is irrelevant. That is, it suffices to show that uqp(u) has a good Gaussian 
approximation in terms of either u or any increasing transform v = y(u). 

Example of the density exp( - uW). Here, q = Wfl:, hence, 
fJ.fl = fl - fl - qllW -1. in addition i't- 2 = wqfl- 2 hence i't _ qllW -1/2 It 1 q q-l r-- 'q q , 'q . 
folows that i't/ fJ.flq - ~q . That is, the q-intervals overlap for all values of 
w. (The same result is obtained using the free variable v = log u. ) 

Example of the density exp[ - ( log u)W]/u. The expression uqp(u)du, if 
reexpressed in the variable V = log U, becomes exp[ - (vw - qv)]. One 
finds 

and 

- 1 (W_l)-1/2q(2-w)/2(W-l). 
CTq - W - 2(w _ 1) 

It follows that i't /fJ.fJ - q(W-2)!2(W-lJ. When w> 2 all the moments of q q , 
U are delocalized. When w ::::; 2, they are localized. In the lognormal case 
w = 2, i't/ fJ.fJq is a constant that -> 0 as w -> 00 and in the case beyond the 
lognormal, w < 2, i't/ MJq decreases as q -> 00. 

4.4 A tentative list of seven states of randomness 

We see that the "slow" state between mild and wild splits into distinct 
states. Altogether, we shall face seven states of randomness, which we 
now list, together with examples. Alternative criteria involve the rate of 
increase as function of q of the moment EUq or the scale factor [EUq]lIq.) 

• Proper mild randomness. Short-run portioning is even for N = 2. 
Examples: the Gaussian, the distribution P(u) = exp( - uW ) with w > 1, and 
the gamma density - P'(u) = uy - 1 exp( - u)/rcy) with y > 1. 
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Mild randomness is loosely characterized, either by P- 1 increasing near 
x = 0 no faster than I log x I, or by [Elfi]l/q increasing near q - 00 no faster 
than q. 

• Borderline mild randomness. Short-run portioning is concentrated for 
N = 2, but becomes even when N exceeds some finite threshold. Examples: 
the exponential P(u) = e- u, which is the limit case of the preceding non­
Gaussian examples for w = y = 1, and more generally the gamma for y < 1. 

• Slow randomness with finite and delocalized moments. It is loosely char­
acterizeq?r!ither by p- 1 increasing faster than I log x I but no faster than 
I log x I , with w < 1, or by [Elfi]l/q increasing faster than q but no faster 
than a power ql/W. Examples: P(u) = exp( - uW) with w < 1, and 
P(u) = exp[ - ( log uY\] with A > 2. 

• Slow randomness with finite and localized moments. It is lool\%Y charac­
terized by either P- 1 increasing faster than any power I log x I but less 
rapidly than any function of the form exp( I log x I Y) with y < 1, or by 
[Elfi]l/q increasing faster than any power of ~ but remaining finite. Exam­
ples: the lognormal and P(u) = exp[ - ( log u) ] with A ~ 1. 

• Pre-wild randomness. It is loosely characterized either bi P- 1 

increasing more rapidly than any functions of the form exp( I log x I ) with 
y < 1 but less rapidly than X- 1/ 2, or by [Elfi]lIq being infinite when 
q ~ a > 2. Examples: the scaling P(u) = u- a with a > 2. The power lfi 
becomes a wild random variable if q > a/2. 

• Wild randomness. It is characterized by EU2 = 00, but Elfi < 00 for 
some q > 0, however small. Examples: the scaling P(u) = u- a with a < 2. 

• Extreme randomness. It is characterized by Elfi = 00 for all q > O. 
Example: P(u) = 1/ log u. 

4.5 Aside on the medium-run in slow randomness: problems of 
"sensitivity" and "erratic behavior" 

In the slow state of randomness, the middle run poses many problems. 
The case of the lognormal is investigated in Chapter E9, to which the 
reader is referred. A more general discussion begins in a straightforward 
fashion, but is too lengthy to be included here. 

5. MATHEMATICAL TREATMENT OF THE TAIL PRESERVATION 
CRITERION PN-NP, AND ROLE OF LONG-TAILEDNESS IN 
CLASSICAL MATHEMATICAL ANALYSIS 
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This Section, more mathematical in tone than the rest of this chapter, 
begins with an important proof and then digresses on some definitions 
and references. 

5.1 Theorem: the tail-preservation criterion P2 - 2p and short-run (N = 2) 
concentration both follow when the function log p(s) is decreasing and 
cup-convex and has a derivative that tends rapidly to 0 as 5 - 00 

Let us repeat the definition of Iu 10 and IL: 

P2(U) = (P(S)P(U - s)ds = {IoU + (-U + (_Jp(S)P(U - s)ds 

=h +Io+IR' 

Bounds on IL = IR. To establish concentration in probability, it suffices 
to prove that, as s - 00,10/1 - 0 but 1- 2u/u does not tend to O. But we 
shall prove a far stronger result, namely that IL = IR can be approximated 
by p(s), in the sense that, given E > 0, one can select u so that, for large 
enough u, 

(1 - E)p(U) < IL = IR < (1 + E)p(U). 

The assumption that p(u) is decreasing yields the following bounds valid 
for all U. 

- -
p(u) IoU p(s)ds ~ h = IR ~ p(u - u) (P(S)dX ~ p(u - u). 

The desired lower bound of IL = IR is achieved if 18 p(s)ds > 1 - E. This 
inequality will follow automatically from the fact that the upper bound 
will require that u- 00 with u. 

The desired upper bound is insured if p(u - iJ)/p(u) ~ 1 + E. Assuming 
E~1, this reads log p(u - u) - log p(u) < E. Assume that 
g(s) = - (d/ ds) log p(s) exists and - 0 as s - 00. Then the desired upper 
bound requires u < Eg(U). The condition that g(s) - 0 insures that u- 00 

with u, therefore insures the validity of the lower bound to IL = IR• 

Examples: The scaling cases p(u) - u- a - 1 yields a/u < E/(a + 1), a con­
stant. The cases p(u) - exp ( - uw) yield u < EU1 - W /w, which increases 
with u , while u/u < EU- w /w decreases. Now assume that L(u) is slowly 
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varying, which means that, for every p, we have L(pu)/Uu) -+ 1 as 
u -+ 00, and consider the density p(u) - exp ( - u/L(u»; the fact that this 
density is cup-convex implies that L(u) -+ 00; the resulting densities p(u) 
yield a < EL(u), which again increases while a/u decreases. 

Finally, let us check that in the problematic gamma case, the desired 
upper bound is not available. This case is an example of 
p(u) = exp [ - u - L(u)]; the fact that this density is cup-convex, again 
implies L(u) -+ 00. Now, a decreases as u --+ 00, albeit slowly. Therefore, 
the lower bound fails to hold, and the approach is not effective. 

Upper bound on 10 • Because of the cup-convexity of p(s)p(u - s), one 
has 

10 < (u - 2ii)p(ii)p(u - ii). 

The condition u - 2a :::; u, and the selection of an upper bound for lL = lR 
have already insured that p(u - a) :::; p(u)(1 + E); hence 

10 < (1 + E)p(u)[up(ii)]. 

Return to the example of pes) considered in discussing the upper 
bound for lL = lR . Aside from pes) = exp( - u/L~), they yield uP(a) -+ 0, as 
u -+ 00. The example pes) = exp [- uL~)] is more complicated and depend 
on L~). Indeed, as s -+ 00, log [up(il)] - log u - EL(u)/L[EL(u)] behaves 
like log u - EL(u). This expression may converge to - 00, as for example 
when Uu) = ( log U)2; in those cases 10 -+ O. But this expression may also 
converge to + 00; in those cases, it does not yield, it is a bound of 10' and 
more detailed study is needed to tell whether 10 -+ O. Obviously the issue 
is far from settled, but this is not the place to pursue the finer study of the 
domain of validity of the concentration in probability theory. 

5.2 A digression: complications concerning the moments, the moment 
problem, and roles of long-tailedness in classical analysis 

Thus far in this chapter, the finiteness of the moments was important, but 
their actual values and this behavior of EUq as q --+ 00 were barely men­
tioned. In the slowly random case with E~ < 00, this behavior of EUq is a 
genuinely hard problem. It is even a topic in what is called "fine (or 
hard) mathematical analysis" that repeatedly attracted the best minds. 
Unfortunately, the pure mathematical results are not of direct help to 
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users: the complications that attract the mathematicians' interest prove to 
be a burden in concrete uses. 

Convergence of the Taylor expansion of the characteristic function, and a 
related alternative definition of long-tailed randomness. It is widely taken for 
granted that the characteristic function (Fourier transform) 

<p(s) = Eeisu = IoOO eisUp(u)du 

always has the Taylor expansion 

When lim q~Elfl 1 q! exists, this limit is the inverse of the radius of conver­
gence of this Taylor series. (When there is no limit, limit sup q~Elfl 1 q! 
always exists and is the inverse of the radius of convergence.) 

For the exponential, the series expansion does indeed represent the 
analytic fun<;:tion <p(s) = 'Liqsq = 1/(1- is). The radius of convergence is 1, 
and y(s) = Eelsu• 

For the Gaussian <p(s) = exp( - 2crs2). Here, Elfl = 0 if q is odd and 
Elfl = q!/2(q/2)! if q is even. The formal Taylor expansion has an infinite 
radius of convergence, defining exp( - 2cri) as an "entire function." 

But the lognormal yields lim sup q~Elfl Iq! = 00. The function y(s)EeiSU 

is well-defined, but its formal Taylor series fails to converge for s =F- O. 

There is a strong temptation to dismiss those properties of the 
lognormal as meaningless mathematical blips. But they could also provide 
yet another alternative definition of long-tailed randomness. To do so, it 
is useful, when q~Elfl Iq ! becomes infinite for q ~ a., to also write lim sup 
q~Elfl 1 q! = 00. When this is done, the criterion 

lim supq~EUq Iq! < 00 versus lim supq~EUqlq! = 00 

is a criterion of mild versus long-tailed randomness. 

The moment problems and additional possible definitions of long-tailed ran­
domness. The following questions were posed by Thomas Stieltjes 
(1856-1894). Given a sequence Mq, does there exist a measure U (a gener­
alized probability distribution) such that Elfl = Mq? If U exists, is it 
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unique? Stieltjes 1894 gave the lognormal as one of several examples 
where U exists, but is not unique. (See also p. 22 of Shohat & Tamarkin 
1943). This property was rediscovered in Heyde 1963, recorded in Feller 
1950 (Vol 2, 2nd edition, p. 227), and mentioned in studies of turbulence, 
including M 1974f{N15}, without suggesting any practical consequence. 

The the available partial criteria are either sufficient or necessary, and 
are not the same on the line and the half-line. Loosely speaking, each 
known criterion is a way to distinguish between short and long-tailedness 
the murky border region around mild randomness. The same is true of 
the criteria encountered in the theory of II quasi-analytic" functions. Some 
criteria are worth mentioning: 

Krein implicitl~ defines long-tailedness by the convergence of 
J =.JO log p(u)(1 + u )-ldu. Koosis 1988-92 is a two-volume treatise that 
describes many problems where the conditions J = - 00 and J > - 00 are, 
respectively, the correct ways of expressing that the density p(u) is short or 
long-tailed. Krein's definition is far more general than the convexity of 
log p(u). It is also a little more restrictive, because of the difference it 

makes between the forms - u/ log u and - u/( log U)2 for log p(u). 

Carleman implicitly defines long-tailedness by the convergence of 
C = L{ElJI )-1/(2q). For a distribution on the positive half-line to be deter­
mined by its moments, a sufficient condition is C = 00. When U is 
bounded, ElJI = (umax )Q, therefore C = 00. The exponential or the Gaussian 
also yields C = 00. But C < 00 holds for the scaling and the lognormal. 

To conclude, my doubling criterion P2 = 2P is a new addition to an 
already overflowing collection. Who knows, perhaps this newcomer may 
add fresh spice to an aging mathematical game, or conversely. 
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Self-similarity and panorama of self-affinity 

• Abstract. This long and essential chapter provides this book with two 
of its multiple alternative introductions. The mathematically ambitious 
reader who will enter here will simply glance through Section I, which 
distinguishes between self-Similarity and self-affinity, and Section 2, which 
is addressed to the reader new to fractals and takes an easy and very brief 
look at self-similarity. Later sections approach subtle and diverse facets of 
self-affine scaling from two distinct directions, each with its own signif­
icant assets and liabilities. 

Section 3 begins with WBM, the Wiener Brownian motion. In strict 
adherence to the scaling principle of economics described in Chapter E2, 
WBM is self-affine in a statistical sense. This is true with respect to an 
arbitrary reduction ratio r, and there is no underlying grid, hence WBM 
can be called the grid-free. Repeating in more formal terms some material 
in Sections 6 to 8 of Chapter El, Section 3 discusses generalizations that 
share the scaling properties of WBM, namely, Wiener or fractional 
Brownian motion of fractal or multifractal time. 

Section 4 works within grids, hence limits the reduction ratio r to 
certain particular values. Being grid-bound weakens the scaling principle of 
economics, but this is the price to pay in exchange for a significant benefit, 
namely the availability of a class of self-affine non-random functions 
whose patterns of variability include and exceed those of Section 3. Yet, 
those functions fall within a unified overall master structure. They are 
simplified to such an extent that they can be called "toy models" or 
"cartoons." 

The cartoons are grid-bound because they are constructed by recursive 
multiplicative interpolation, proceeding in a self-affine grid that is the sim­
plest case prescribed in advance. The value of grid-bound non-random 
fractality is that it proves for many purposes to be an excellent surrogate 
for randomness. The properties of the models in Section 3 can be 
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reproduced with differences that may be viewed as elements of either 
indeterminacy or increased versatility. Both the close relations and the 
differences between the cartoons could have been baffling, but they are 
pinpointed immediately by the enveloping master structure. At some cost, 
that structure can be randomly shuffled or more deeply randomized. Its 
overall philosophy also suggests additional implementations, of which 
some are dead-ends, but others deserve being explored. 

Wiener Brownian motion and its cartoons belong to the mild state of 
variability or noisiness, while the variability or noisiness of other functions 
of Section 3 and cartoons of Section 4 are wild. The notions of states of 
mild and wild randomness, as put forward in Chapter E5, are generalized 
in Section 5 from independent random variables to dependent random 
processes and non-random cartoons. Section 5.4 ends by describing an 
ominous scenario of extraordinary wildness. 

Being constrained to scaling functions, this chapter leaves no room for 
slow variability. • 

WHEN DISCUSSING THE ORGANIZATION OF THIS BOOK, the 
Preface mentions several welcoming entrances. This and the preceding 
chapters are the entrances most suited for those who do not fear math­
ematics. (This chapter grew to become too long, and may be best viewed 
as several chapters bound together. 

While Chapter E5 restricted itself to independent random variables, 
this chapter allows dependence, either deterministic or statistical, but 
restricts itself to self-affine scaling. This allows for mild and wild random­
ness, but not for slow randomness. That is, this chapter describes 
dependent functions or processes in continuing time that generalize a 
special family considered in Chapter E5, namely sequences of L-stable var­
iables, with their Gaussian limit case. 

The term Panorama in the title is meant to underline that, beyond the 
specific needs of this book on finance, this chapter also opens vistas that 
involve many other fields. Indeed, self-affine random variation is by no 
means restricted to economics. It is also often encountered in physics, for 
example, in l/f noises. Different examples of those noises involve several 
of the variants in this Panorama, but there is no field in which all variants 
have been fully implemented. Fuller versions of the same text, updated 
and with different biases, are scheduled for M 1997N and M 1997H, which 
mention l/f noise in the title. Those versions will be more technical and 
perhaps more practical. 
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The text can first be skimmed and later read in increasing detail. Stu­
dents of finance who do not favor mathematics may be satisfied to 
examine the illustrations, and to be aware that this chapter helps organize 
and relate the Bacheller "B 1900 model," and my successive models in 
finance, M 1963, M 1965, M 1967 and M 1972, as sketched in Sections 6 to 
8 of Chapter E1. 

The strong term "cartoons" used to describe the "grid-bound" implementa­
tions of self-affinity collected in Section 4. A political cartoon's effectiveness 
hinges on its being highly simplified, yet preserving the essentials of what 
it refers to. In the same spirit, as known to readers familiar with elemen­
tary fractals and sketched below in Section 2 for the sake of other readers, 
the non-random Koch islands were mathematical curios until I injected 
them as "cartoons" of realistic fractal models of coastlines; in turn, those 
random models are cartoons of real coastlines. Some of the non-random 
self-affine constructions in Section 4 are cartoons of the random self-affine 
process in Section 3; the latter, in turn, are cartoons of real price records. 
Cartoons being unavoidable, the user should learn to like them, and the 
provider must develop ways to make them simple yet instantly recogni­
zable. 

Disclaimers. This Panorama is by no means the last word on its topic, 
in part, because the field of fractals has not yet become unified. Some 
studies grow from the top down: they first set general principles and then 
proceed to the consequences. To the contrary, fractal geometry grows 
from the bottom up. It continues to draw new substance from a suc­
cession of explorations with focussed ambitions. In parallel, it continues 
an effort to rethink the available substance in fashions that are increasingly 
organized, and suggest new explorations. 

Use of the cartoons to resolve a widespread confusion between the M 1963 
and M 1965 models. Between the L-stable motion behind the M 1963 
model, and the fractional Brownian motion behind the M 1963 model, 
mathematicians see a number of parallelisms often described as 
"mysterious." Fortunately, Section 4 suggests that self-affinity may be one 
of those cases for which order and simplicity are restored, and confusion 
vanishes, when a) the standard models are made more, rather than less, 
general, and b) the resulting wider family of possibilities is presented in 
very graphic fashion. 

In particular, very simple arguments relative to the cartoons suffice to 
eliminate a confusing complication that concerns the value of the fractal 
dimension. Depending on which feature is being singled out, the dimen­
sion is as follows: 
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• Either Dc = 2 - H or DT = 1/ H for the graphs or trails of fractional 
Brownian motions (M 1965 model; see Section 3.3). 

• Either D = 2 - 1/ a or DT = a for the graphs or trails of L-stable proc­
esses (M 1963 model). 

• Moreover the M 1972 model (see Section 3.13) yields two values, 
DT and Dc> DT that are not functionally related to each other. Other 
dimensions also enter into contention. 

A multiplicity of binary splits. It is useful to underline the versatility of 
self-affine constructions by describing how they split in several overlap­
ping ways. The following list uses terms that will not be defined until 
later in this chapter, therefore should be viewed as merely suggestive. 

• Between grid-free and grid-bound. 
• Between mildly and wildly variable. 
• Between continuous and discontinuous. 
• Between monotone, either non-decreasing or non-increasing, and 

oscillating up and down. 

• Between non-intermittent, that is, allowing no interval of clock time 
when motion stops, and intermittent, with variation concentrated on a 
fractal trading time. Variation can also be relatively intermittent, if it is con­
centrated on a new construct: a multifractal trading time. 

• Between unifractal, characterized by a single exponent H, mesofractal, 
which also includes other values of H restricted to be 0 and/or infinity, 
and multifractal, characterized by a distributed exponent H . 

• When H is single-valued, between the case H = 1/2 and the cases 
H"# 1/2. 

• Finally (but this will not be discussed in this book), between con­
structions that are stable or unstable under wild randomization. 

1. CONTRAST BETWEEN SELF-SIMILARITY AND SELF-AFFINITY 

This chapter concerns scaling behavior in the graph of a function, more 
precisely, linearly scaling behavior. Before seeking examples, one must 
know that this scaling has two principal geometric implementations: self­
similar fractals, and the more general self-affine fractals. Self-similarity, 
the narrowest and simplest, is the most standard topic of fractal geometry, 
and it is good to begin by briefly considering it in Section 2. But the 
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remainder of this chapter and this book are limited to functions whose 
graphs are self-affine fractals. 

This distinction is essential, and it is most unfortunate that many 
authors use one word, self-similar, to denote two concepts. I gave a bad 
example, but only until M 1977F, when I found it necessary to introduce 
the term self-affine. This term is now accepted by physicists, engineers, 
and mathematicians who study non-random constructs. Unfortunately, 
many probabilists persist in using self-similar when they really mean self­
affine; this is the case in the book by Baran 1994 and Somordnitsky & Taqq 
1994. 

Let us elaborate. Many geometric shapes are approximately isotropic. 
For example, no single direction plays a special role when coastlines are 
viewed as curves on a plane. In first-approximation fractal models of a 
coastline, small pieces are obtained from large pieces by a similarity, that 
is, an isotropic reduction (homothety) followed by a rotation and a trans­
lation. This property defines the fractal notion of self-similarity. Self­
similar constructions make free use of angles, and distances can be taken 
along arbitrary directions in the plane. 

But this book deals mostly with geometric shapes of a different kind, 
namely, financial charts that show the abscissa as the axis of time and the 
ordinate as the axis of price. The scale of each coordinate can be changed 
freely with no regard to the other. This freedom does not prevent a dis­
tance from being defined along the coordinate axes. But for all other 
directions, the Pythagorean definition, 

distance = ~(time increment)2 + (price increment)2 , 

makes no sense whatsoever. It follows immediately that circles are not 
defined. Rectangles must have sides parallel to the axes. Squares are not 
defined, since - even when their sides are meant to be parallel to the axes 
- there is no sense in saying that time increments = price increment. 

There is a linear operation that applies different reduction ratios along 
the time and price axes. It generalizes Similarity, and Leonhard Euler 
called it an affinity. More precisely, it is a diagonal affinity, because its 
matrix is diagonal. It follows that for graphs of functions in time, like 
price records, the relevant comparison of price charts over different time 
spans involves the scaling notion of self-affinity. Self-affinity is more com­
plicated and by far less familiar than self-similarity, therefore this chapter 
begins by surveying the latter. Readers already acquainted with fractals 
may proceed to Section 3. 
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On the measurement of texture, irregularity or roughness. The very irreg­
ular and rough shapes often encountered in Nature never tire of exciting 
the layman's imagination, but science long failed to tackle them. Thus, no 
serious attempt was made to define and measure numerically the irreg­
ularity of a coastline or a price record. 

Topology provides no answer, even through its name seems to 
promise one. For example, consider a chart or time record of prices when 
filled-in to be continuous; this curve can be obtained from the line without 
a tear, using a one-to-one continuous transformation. Disappointedly, this 
property defines all price charts as being topological straight lines! 

Nor does statistics provide a useful answer. For example, examine the 
perennial and objective problem of measuring the roughness of physical 
surfaces. Statistics suggests following a procedure familiar in other fields: 
first fit a trend-like plane (or perhaps a surface of second or third degree), 
then evaluate the root-mean-square (r.m.s.) of the deviation from this 
trend. What is unfortunate is that this r.m.s., when evaluated in different 
portions of a seemingly homogeneous surface, yields conflicting values. 

Does the inappropriateness of topology and statistics imply that irreg­
ularity and roughness must remain intuitive notions, inaccessible to math­
ematical description and quantitative measurement? Fractal geometry is a 
geomety of roughness, and it answers with a resounding no. It shows that 
in many cases, roughness can be faced and overcome to a useful extent, 
thanks to scaling exponents that underlie the scaling principles of math­
ematical and natural geometry. 

For example, coastlines are nearly self-similar, and the most obvious 
aspect of their roughness is measured by a quantity called fractal 
dimension, which is described in Section 2. Many irregular physical sur­
faces are self-affine, and their roughness is measured reliably by two 
numbers. One is the exponent H introduced in Section 3; engineers have 
already come around to call it simply the "roughness exponent," but 
mathematically, it is a Hurst-Holder exponent and a fractal co-dimension. 
The second characteristic number is a scale factor similar to a root-mean­
square, but more appropriately defined. (This topic is treated in M 
1997H). The study of roughness in terms of self affinity has become a sig­
nificant topic in physics; see Family & Vicsek 1991. 
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2. EXAMPLES OF SELF-SIMILAR RECURSIVE CONSTRUCTIONS 

2.1 Getting answers without questions to work on questions without 
answers 

Of the five diagrams in Figure 1, the largest and most complicated is the 
composite of two wondrous and many-sided broken lines. One of them is 
violently folded upon itself, and gives the impression of attempting a 
monstrous task for a curve: to fill without self-contact the domain 
bounded by the less violently folded second curve. This impression was 
intended, since we witness an advanced stage of the construction of a 
variant "space-filling curve," an object discovered by Giuseppe Peano 
(1858-1932). 

Actually, "space-filling curve" is an oxymoron. An improved substi­
tute that I proposed is "space-filling (or Peano) motion." Thus, Figure 1 
illustrates a variant of the original Peano motion, bounded by a less 
violently folded fractal "wrapping." By construction, both curves are pre­
cisely as complicated in the small as in the large. The wrapping, intro­
duced in M 1982F{FGN}, Chapter 6, is patterned after one that Helge von 
Koch used in a celebrated shape called "snowflake curve." The filling was 
introduced in M 1982t. Never mind that Koch's motivation was purely 
mathematical: he was seeking a curve without tangent anywhere, 
meaning that the direction of a cord joining any two points has no limit as 
these points converge to each other. To achieve this goal, the simplest 
was to demand that this cord fluctuate exactly as much in the small as in 
the large. 

Fractal geometry preserved this demand, but changed its motivation 
from purely mathematical to very practical. When irregularity is present 
at all scales, it is simplest when, whatever the magnification, the fine 
details seen under the microscope are the same (scale aside) as the gross 
features seen by the naked eye. Using the vocabulary of geography, the 
fine details seen on a very precise map are the same as the gross features 
seen on a rough map. Concrete reinterpretations of Koch's recursive pro­
cedure continually inspire me in empirical work. In summary, one can 
state two guiding principles. 

A) Scaling principle of natural geometry. Shapes whose small and large 
features are largely identical except for scale, are useful approximations in 
many areas of science. 
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B) Scaling principle of mathematical geometry. Sets wherein small and 
large features are identical except for scale are interesting objects of study 
in geometry. 

FIGURE E6-1. Construction of a Peano motion "wrapped" is a squared Koch 
curve that it fills. 
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Part of my life-work consists in viewing B as providing a collection of 
answers without question, and setting them to work on the questions 
without answers summarized under A. 

2.2 Examples of self-similar fractal shapes 

To implement the goal that Koch stated in his way before I restated it in 
mine, the easiest is to proceed step by step. Select an initiator, often an 
interval, and a generator, also a broken line. The first construction stage 
replaces each side of the initiator by an appropriately rescaled, translated 
and rotated version of the generator. Then a second stage repeats the 
same construction with the more broken line obtained at the first stage, 
and so on. 

The early stages of the constructions shown on Figure 1 are illustrated 
by four small diagrams to be followed clockwise from left center, in order 
of increasing complication. The initiators are the four sides of a unit 
square for each of four repeats of the wrapping of Peano motion and one 
side of this square for the Peano motion itself. The generator of the 
motion is an irregular o~n pentagon that does its best to fill the square, 
using sides equal to INS. One perceives an underlying square lattice of 
lines 1/ J5 apart, and the Peano generator crosses every lattice vertex con­
tained in the or~inal wrapping. The wrapping generator has N = 3 sides 
of length r = 1/ ~S . 

In the next stage of the construction, each side of the ,£.entagon is 
replaced by an image of its whole reduced in the ratio of INS, and suit­
ably rotated. The result no longer fits within the square, but fills uni­
formly the cross-like shape obtained by replacing each side of the square 
by the wrapping generator. The same two constructions are then repeated 
ad infinitum in parallel. Zooming in as the construction proceeds, one 
will constantly witness the same density of filling; watching without 
zooming in, one sees a curve that fills increasingly uniformly a wrapping 
whose complexity keeps increasing. 

The Peano motions which mathematicians designed during the heroic 
period from 1890 to 1922 filled a square or a triangle, but the present 
boundaries are more imaginative. 

Figure 2 carries the construction of a curve of Figure 1 one step further 
and the filling is interpreted as the cumulative shoreline of several juxta­
posed river networks; the wrapping is the combination of a drainage 
divide surrounding these networks and of a portion of seashore. To build 
up the network, one proceeds step by step: (1) Each dead-end square in 
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the basic underlying lattice - meaning that three sides belong to the filling 
- is replaced by its fourth side, plus a short "stream" with its source at the 
center of the dead-end, and its end at the center of the square beyond the 
newly filled-in side. (2) One proceeds in the same fashion with the 
polygons left in after the processed dead-ends are deleted. (3) And so on 
until the filling is changed from a broken line with no self-contact to a col­
lection of "rivers" forming a tree. At this point, the wrapping becomes 
reinterpreted as the river network's external drainage divide. 

To use an old sophomoric line, after you think of it imaginatively, 
carefully, and at great length, it becomes obvious that a plane-filling 
motion fails at its assigned task of being a mathematical monster. I 
proved it to be nothing but a river network's cumulative shore. The con­
verse is also true. Much better-looking river networks are given in my 
book, M 1982F{FGN}, but the basic idea is present here. There is not much 
else to Peano motions. Thus, the mathematicians who used to tell us that 
Peano motions are totally nonintuitive had deluded themselves and 
misinformed the scientists. 

2.3 The notion of fractal dimension of a self-similar geometric shape 

Each stage of a Koch construction replaces an interval of length 1 by N 
intervals of length r, therefore multiplies a polygon's length by a fixed 
factor Nr> 1. It follows that the limit curves obtained by pursuing the 
recursions ad infinitum are of infinite length. Furthermore, it is tempting 
to say that the filling is "much more infinite" than its wrapping, because 
its length tends to infinity more rapidly. This intuitive feeling is quanti­
fied mathematically by the notion of fractal dimension. The original form 
was introduced by Hausdorff and perfected by Besicovitch. It is inappli­
cable to empirical science, and had to be replaced by a variety of alterna­
tive definitions. 

The explanation of the underlying idea begins with the very simplest 
shapes: line segments, rectangles in the plane, and the like. Because a 
straight line's Euclidian dimension is 1, it follows, for every integer y > 1, 
that the "whole" made up of the segment of straight line 0 ::5 x < X may be 
"paved over" (each point being covered once and only once) by N = y seg­
ments of the form (k - I)X/y ::5 x < kX/y, where k goes from 1 to y. Each of 
these "parts" can be deduced from the whole by a Similarity of ratio 
r(N) = I/N. Likewise, because a plane's Euclidian dimension is 2, it follows 
that, whatever the value of y, the "whole" made up of a rectangle 
o :S x < X; 0 ::5 y < Y can be "paved over" exactly by N = l rectangles 
defined by (k - I)X/y ::5 x < kX/y and (h - I)X/y ::5 Y < hY /y, where k and h 
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go from 1 to y. Each part can now be deduced from the whole by a simi­
larity of ratio r(N) = l/y = I/N1I2. Finally, in a Euclidian space whose 
dimension is E > 3, a D-dimensional parallelepiped can be defined for any 
D :::; E. All those classical cases satisfy the identity 

D = --:--_lo-:=g:-:N,­
logr(N) 

logN 
logO/r) 

This expression is the self-similarity dimension. Its value lies in the 
ease with which it can be generalized. Indeed, the fact that it was first 
used for a segment or a square is not essential for its definition. The crit­
ical requirement is scaling, meaning that the whole can be split into N 
parts deducible from it by a self-similarity of ratio r (followed by trans­
lation, rotation, or symmetry). Such is precisely the case in Figure 1. For 
the wrapping, N = 3 and r = 1/,j5, hence 

D = log3/log,j5 = log9/log5 = 1.3652. 

For the filling, N = 5 and r = 1/ ,j5, hence 

D = log5/log,j5 = 2. 

FIGURE E6-2. The third diagram of Figure 1, reinterpreted in terms of a river 
network. This interpretation led M 1982F{FGN} to boast of having "harnessed 
the Peano Monster Curves." 
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Thus, the impression that the filling is "more infinite" than its wrap­
ping is both confirmed, and quantified by the inequality between their 
dimensions. The impression that the filling really fills a plane domain is 
confirmed and quantified by its dimension being D = 2. 

The preceding argument may seem overly specialized, so it may be 
comforting to know (a) that fractal dimension can be defined using alter­
native methods of greater generality and full rigor and (b) that the result 
behaves in many other ways like the old-fashioned integer-valued dimen­
sion. For example, consider the notion of measure. If a set is self-similar 
and measure is taken properly, then the portion of this set that is con­
tained in a sphere of radius R is of measure proportional to RD. 

3. SELF-AFFINE FRACTAL MODELS IN FINANCE 

Joined by readers who knew about fractals and skipped section 2, we now 
turn from self-similarity to self-affinity and to a collection of possible 
models of price variation that follow the scaling principle of economics. 
Sections 3 and 4 cover roughly the same material in two very different 
ways. There is enough overlap to allow Sections 3 and 4 to be read in 
either sequence. 

The bare facts were already sketched in Sections 6 to 8 of Chapter E1, 
but one need not read these sketches before this Section. Furthermore, this 
chapter has no room for a full treatment of L-stable motion, fractional 
Brownian motion and multifractals; L-stable motion is the topic of much of 
the second half of this book; fractional Brownian motion is the topic of M 
1997H, and multifractals are the topic of M 1997N. 

3.1 The 1900 model of Bachelier, Brownian motion 

B(t) is defined as being a random process with Gaussian increments that 
satisfies the following "Fickian" diffusion rule: 

for all t and T, E{B(t + n - B(t)} = 0 and E{B(t + n - B(t)}2 = T. 

A Fickian variance is an automatic consequence if the increments are 
assumed independent. Conversely, Fickian variance guarantees the 
orthogonality of the increments. Adding the Gaussian assumption, it 
guarantees independence. 
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3.2 Tail-driven variability: the M 1963 model and the L-stable processes 

Reference. The concept of L-stability is discussed throughout the second 
half of this book, and it would be pointless to repeat here the definition 
due to Paul Levy. It is enough to say that L-stability means that the sum 
of N independent L-stable variables is itself L-stable. The Gaussian shares 
this property and indeed it is a limit case of the L-stable variables, when 
the parameters a tends to 2. Moreover, consider a weighted index of inde­
pendent variables IWgXg, When the weights are not random, the variables 
X and the weighted index are L-stable. 

The "ruin problem" for the L-stable processes. Suppose a speculator is 
called ruined if his holdings fall beyond a prescribed level called 
"threshold." What is the probability that ruin occurs before a time tmax? 
Questions of this type are thoroughly explored for Wiener Brownian 
motion. For L-stable processes, the literature is limited, but includes 
Darling 1956 and Ray 1958. 

Invariance under non-randomly and randomly weighted forms of addition. 
This digression is addressed to readers who know the concept of fixed 
point of a (semi-)group of transformations. L-stable variables are fixed 
points in the operation that consists in transforming independent random 
variables by taking a non-randomly weighted average. A distribution invar­
iant under addition of independent addends used to be thought as neces­
sarily Gaussian until M 1960i{EI0} injected L-stable addends in a 
down-to-earth concrete situation. The M 1972 model, to be presented in 
Section 3.8, involves an actual generalization of L-stability, and it is good 
to mention how this generalization relates to Levy stability. The consider­
ations in M 1974f{N15} and M 1974c{N16} also involve a weighted index 
IW~g ; but there is the important innovation that the weights Ware not 
constants, but independent values of the same random variable W. 

Given Wand N, I investigated the variable Y such that IWgYg has, up 
to scale, the same distribution as Y. Using the terminology already 
applied to L-stable variables, my variables Yare fixed points in the opera­
tion that consists in taking randomly weighted averages of independent 
random variables. The variables Y range from being close to L-stable (a 
limit case) to being very different indeed. 
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3.3 Dependence-driven variability: the 1965 model and fractional 
Brownian motion 

159 

The fractional Brownian motion (FBM) BH(t) is the random process with 
Gaussian increments that satisfies the following diffusion rule 

for all t and T, E[BH(t + n - B~t)] = 0 and E[B~t + n - B~t)]2 =~. 

The value H = 1/2 yields the Wiener Brownian motion, whose diffusion is 
called "Fickian." However, the exponent H is only constrained to 
0< H < 1. For H ':F-1/2, the diffusion of FBM is widely called "non­
Fickian." In a different terminology, a mysterious but widely used one, H 
is called "strength of singularity" at time t. 

This process was introduced in M 1965h{H} and fully described in M 
& Van Ness 1968{H} as a model of diverse phenomena that exhibit cyclic 
non-periodic variability at all time scales. The oldest recorded example 
concerned the annual discharge of the Nile River and is associated with 
the Biblical story of Joseph, the son of Jacob. Therefore, I refer to non­
periodic cyclicity as the Joseph Effect. The use of FBM is economics was 
pioneered in M 1970e, M 1971n, M 1971q, M 1972c and M 1973j. Recent 
mathematical references are Baran 1994 and Samorodnitsky & Taqqu 1994 
(Section 7.2). Unfortunately, as already mentioned, both books use the 
word self-similarity where the correct concept, hence the correct term, is 
self-affinity). A recent book for engineers is Bras & Rodriguez-Iturbe 1993 
(pages 210-261). 

The property of uniscaling. The above definition implies that the scale 
factors based on moments satisfy 

q l/q 
{E[ I BH(t + n - B~t) I} = (a constant) TH 

for all powers q > -1. (For q::;; -1, this expression becomes infinite.) That 
is, q-th order scale factor defined by the left hand side, is independent of q. 
(For q < - 1, the left hand side is infinite, therefore the equality holds trivi­
ally, with an infinite constant). This obvious corollary is said to express 
uniscaling. It will become important in Section 3.8 and 3.9, and the cases 
when the q-th scale factor depends on q will be called multiscaling. By 
contrast, B~t) will be called uniscaling, and no complication can arise from 
writing ABH - MH. 
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Hurst, Holder, and an exponent that bridges mathematics and concrete needs. 
With a suitable definition of the symbol , the functions 
BH(t), including B(t) = B1/ 2(t), satisfy 

log IABHI 
-7""----,-=---- - H. 

log At 

Observe that, in this definition, At and ABH are increments over a non­
vanishing interval, not infinitesimal quantities. One says that, as defined 
here, H is a coarse quantity, not a fine or local one. In addition, H is 
defined for all values of t. 

The idea behind the exponent H has two thoroughly disparate historic 
roots. When introduced in M 1965h{H}, BH(t) was motivated by a difficult 
problem from civil engineering, and referred to the initial letter of the 
hydrologist H. E. Hurst (1880-1978), briefly mentioned in Chapter E. But 
H also has a second set of deep roots in pure mathematics, namely, in the 
work of 1. O. HOlder (1859-1937). Serendipitously, the names of Hurst 
and HOlder shared the same initial letter. However, Holder's original defi­
nition had to be very much generalized. In Section 4, the underlying idea 
will split further. 

BH(t) and the phenomenon of long-run statistical dependence. The most 
striking single property of B/t) concerns the quantities 
[BH(O) - BH( - Dl/T, called past average and [BH(D - BH(O)/T, called future 
average. Both are Gaussian random variables, and their correlation is 
easily seen to be 

That is, C is independent of T. This fact could be called "intuitive" 
because it follows from self-affine scaling. But an older form of 
"intuition" of the nature of randomness is more demanding, and insists 
that a distant past and a distant future "should" become statistically inde­
pendent. This second intuition is correct in the Wiener Brownian case, 
where C = 0, and in other cases of mild randomness. But it must be "un­
learned" in all other cases. 

More precisely, C> 0 in the "persistent" case 1/2 < H < 1 and C < 0 in 
the "anti-persistent" case 0 < H < 1/2. In both cases, BH(t) is definitely 
neither a martingale nor a Markov process. 
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Spectral properties: the fractional Gaussian noise B'I1t) as a "continuing" or 
"humming" form of " l/f noise." BH(t) is continuous but not differentiable. 
However, one can define for it a "generalized derivative" B'H(t). The spec­
tral density of B'H(t) is ocr- B, with the exponent B;;;:: 2H -1 ranging 
between 1 and - 1. Physicists denote such phenomena by the curious term 
of "l/f noises." When 1/2 < H < 1, the spectral density diverges at f;;;:: O. 
This is one token of long-run statistical dependence. When 0 < H < 1/2, 
the integral of the spectral density is 0, which is a different (and far less 
"robust") token of long-run statistical dependence. 

The multiplicity of co-existing fractal dimensions for BH(t), including the 
value Dc;;;:: 2 - H, and the larger value DT ;;;:: l/H. Section 2.3 describes how 
the irregularity of a self-similar fractal curve is in large part measured by a 
number called its "fractal dimension" D. Self-affine curves are signif­
icantly more complicated, as M 1997H will show from several distinct 
viewpoints. 

A first complication is this. While self-similar fractals have a unique 
fractal dimension, I showed that self-affine fractals demand several, 
depending on which aspect is being considered. In the case of BH(t), some 
careful authors only quote the value Dc;;;:: 2 - H, while other careful 
authors only quote DT ;;;:: 1/ H > 2 - H. 

Those two sets of authors report different answers because the values 
2 - H and 1/ H refer to different geometric objects. 

The value 2 - H can be shown to be the box dimension of the graph of 
X(t), hence the suffix G. 

The value l/H can be shown to be the box dimension of a different 
but related geometric object, namely a "trail," hence the suffix T. 

The distinction between graph and trail is developed in M 
1982F{FGN}, but the main facts can be summarized here. First consider a 
Wiener Brownian motion in the plane. Its coordinates X(t) and Y(t) are 
independent Brownian motions. Therefore, if a 1-dimensional Brownian 
motion X(t) is combined with another independent 1-dimensional 
Brownian motion Y(t), the process X(t) becomes "embedded" into a 
2-dimensional Brownian motion {X(t), Y(t)}. The value DT ;;;:: 2 = l/H is the 
fractal dimension of the three dimensional graph of coordinates t, X(t) and 
Y(t), and the projected "trail" of coordinates X(t) and Y(t). However, the 
dimension Dc = 2 - H applies to the projected graphs of coordinates t and 
X(t) or t and Y(t). A heuristic derivation of this value is best postponed to 
Section 3.13, where it will be generalized. 
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An FBM with H * 1/2 can only be embedded in a space of dimension 
E ~ max (2, 1/H). 

We are done now with explaining how two values of the dimension 
coexist peacefully in the unifractal case of the FBM BH(t). Thinking ahead, 
Section 3.13 tackles the next case, to be called multifractal, and shows that 
Dr and Dc cease to be related functionally. 

There is a second complication (but it is beyond the scope of this 
book): in the self-affine case, the notion of fractal dimension splits into 
local and global forms. The above-mentioned values are local, and the 
global values are different. 

3.4 Trading time, compound processes, and a fundamental fact: 
preservation of the trail dimension Dr under compounding 

The variation of most prices is neither tail- nor dependence-dominated, 
but ruled by both contributions in combination. To model such combina­
tions, one must go beyond the M 1963 and M 1965 models. This is a task 
I first attacked piecemeal, by seeking suitable random functions and later 
attacked systematically, by introducing a flexible general family of random 
functions. (Actually, several options were considered, but the present dis­
cussion will be limited to one.) 

Trading time and compound processes. The processes in this family are 
"compound," "decomposable," or "separable" in the following sense: by 
construction, their variation is "separated" into the combination of two 
distinct contributions. The first is a trading time 8, a random non­
decreasing function of clock time t. In the terminology in Feller 1950 (Vol. 
II, p. 347), 8(t) is called directing function. The second, which yields price 
as function of trading time, X(8), will be called compounding function. 

In the absence of further restrictions, the notion of compounding is 
useless. Indeed, given a function Pet), an arbitrary choice of 8(t) automat­
ically defines also a function X(8) such that X[8(t)] = P(t). Our attention 
will be restricted to the case when the two components are statistically 
independent. 

Furthermore, we wish to insure that the compound process is self­
affine, that is, follows the scaling principle of economics. The easiest is to 
demand that both 8(t) and X(8) be self-affine functions. In addition, the 
directed functions will be WBM and FBM, thus preserving something of 
the Bachelier model and the M 1965 model. The hope, of course, is that 
the outcome provides a sensible approximation to interesting data that are 
driven by a combination of tail and dependence. 
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Preservation of the trail dimension 1/ HT under continuous compounding. 
Section 3.3 distinguishes between the graph of X(t) and an embedded trail 
of coordinates X(t) and Y(t). Compounding can be continuous or discon­
tinuous, as will be seen momentarily. When it is continuous, it modifies 
the graph of X(t), but leaves unchanged the trail of coordinates X(t) and 
Y(t). In particular, the trail dimension remains l/H. When compounding 
is discontinuous, it modifies both the graph and the trail. 

Comment. In this section, trading time is a notion that is borrowed 
from our historical, and therefore intuitive, knowledge of how markets 
operate. In Section 4, trading time will enter in a far more intrinsic 
fashion. 

3.5 A major but unrecognized "blind spot" of spectral analysis: spectral 
whiteness is insensitive to change of trading time, therefore misleading 

To engineers, successive increments AB of Wiener Brownian motion define 
a white noise. They are independent, therefore uncorrelated ("orthogonal"), 
and their spectral density is a constant, defining a white spectrum. Now, 
let us follow Brownian motion in a trading time chosen at will (self-affine, 
or not). The increments of the compound motion are very strongly depen­
dant. However, most remarkably, they are uncorrelated, therefore they 
remain spectrally white. In other words, spectra as applied to a compound 
process are only sensitive to the whiteness of the directed function, and 
completely blind to the properties of the directing function. 

Indeed, given two non-overlapping time increments d't and d"t, the 
corresponding increments d'B(t) and d"B(t) are, by definition, independent. 
It is obvious that this property continues to hold when B is followed in a 
trading time 0 that is in a non-linear non-decreasing function of t, and B(t) 
is replaced by B*(O) = B[t(O)]. The increments of B* exhibit very strong 
dependence, yet they are white, that is, uncorrelated. 

Remark concerning statistical method. When interpreting spectra in a 
non-Gaussian and non-Brownian context, this dangerous possibility must 
be kept in mind. This serious "blind spot" was noted, but not developed, 
in my papers on noise of the 1960s, to be collected in M 1997H.It consti­
tutes a fundamental limitation of spectral analysis that statistics must face. 

Remark concerning the spectral whiteness of financial data. During the 
1960s spectral analysis was introduced into economics with fanfare, but 
never lived to its promise. The "blind spot" of spectra suffices to account 
for many puzzling observations reported in the literature. Indeed, Voss 
1992 and the contributors to Olsen 1996 are neither the first nor the only 
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authors to report on such whiteness. Both parties also examined records 
of absolute price change, or of price change squared. The spectrum is no 
longer white but instead takes the "1/f' form characteristic of FBM. It will 
be shown at the end of Section 3.9 that this apparent contradiction is char­
acteristic of the M 1972 model, namely, of the Brownian motion in 
multifractal time. 

Remark concerning Rand R/ S analysis. This form of analysis is men­
tioned and referenced in Section 7.4 of Chapter E1 and discussed in M 
1997H. Changes in tradhg time leaves the range unchanged, but removal 
of the trend (as it is practiced in R/ S ) does modify the range. This topic 
must be withheld for consideration in M 1997H. 

3.6 A special form of discontinuous compounding, "subordination;" the 
notion of fractal time 

Definitions. The simplest directing function e(t) are functions with non­
negative statistically independent increments. This form of compounding 
is denoted by the term subordination, which is due to S. Bochner. The most 
general implementation is a non-decreasing random function with infi­
nitely divisible increments. The topic is discussed in Feller 1950 (Vol. II, p. 
347). When the compounding function is Markovian, so is the com­
pounded function. 

Self-affine subordination and the fractal devil staircases. When the 
directing function is self-affine, it must be an L-stable non-decreasing func­
tion, sometimes called "stable subordinator." This is a non-decreasing 
function of trading time whose graph is an inverse Levy devil staircase, 
the latter being a Cantor devil staircase made random. 

M 1982F{FGN} discusses Levy staircases in Chapter 31 and illustrates 
them on Plate 286 and 287. It discusses Cantor staircases and illustrates 
one in Plate 83 of Chapter 8. The term "staircase" is motivated by the 
presence of flat steps. The steps are infinitely numerous, and most are 
infinitesimally small. Between its steps, a fractal staircase moves up by 
infinitesimal amounts. The values of e where steps end form a "Cantor 
dust" or a "Levy dust." The latter is fully characterized by a single expo­
nent a which is a fractal dimension. Conversely, trading time followed as 
function of physical time, reduces to a series of jumps of widely varying 
size. The idea of subordination is that, a fleeting instant of clock time 
allows trading time to change by a positive amount, generating the price 
jumps to be considered in Section 3.7. 
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M 1977F proposed that a trading time ruled by a devil staircase be 
called a fractal time. 

Subordination came to play an important role in many aspects of 
fractal geometry, therefore is discussed in detail in Chapter 32 of M 
1982F{FGNJ, where it is illustrated and interpreted in a variety of contexts. 

3.7 Fractal compounding: LSM is identical to WBM, as followed in a 
trading time defined by a fractal devil staircase 

A representation of L-stable motion. The original and simplest form of subor­
dination was used in M & Taylor 1967{Sections 1 and 2 of E21}, to which 
the reader is referred. It takes price to be a Wiener Brownian motion of 
fractal trading time. The interesting fact is that the procedure happens to 
reproduce exactly the L-stable process that M 1963b{E14} proposed for the 
Noah Effect. The exponent a is "fed in" by the Levy staircase. 

A generalization that calls for detailed exploration: fractional Brownian 
motion of fractal time. This obvious generalization has two parameters: the 
a exponent of the Levy staircase, which is a fractal dimension, and the 
exponent of the compounding function. BH(t), the Holder exponent of the 
observed process, depends on a and H as we shall see in Section 3.9. 

As mentioned in Section 6 of Chapter E1 and Section 3 and Anno­
tations in Chapter E21, Clark 1973 proposed to preserve subordination, 
while replacing fractal time by a lognormal time, which is non-fractal. M 
1973c{E21, Section 3} argued against Clark's substitute. But I never 
implied that the M 1963 model, as restated in M & Taylor 1967{E21}, said 
the last word, quite to the contrary. However, instead of "patching up" 
the subordinator, I propose to replace subordination itself by a suitable 
more general form of compounding. 

3.8 A form of continuous compounding, called multifractal, and a form 
of variability driven by tail and serial dependence acting together 

A direct introduction of dependence into LSM had proven difficult, but 
compounding beyond subordination opened the gates to diverse possibil­
ities, to which we now proceed. Observe that LSM, FBM and subordi­
nation were part of the mathematical literature, but what follows is new, 
even from the mathematical viewpoint. 

Multifractality. The key step in moving beyond subordination consists 
in changing trading time from fractal to a more richly structured (and 
more complicated) form called multifractal. This step is explained in 
Chapter ix of M 19750 and in a section on "relative intermittency" on p. 
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375 of M 1982F{FGN}: both argue that many patterns that seem fractal in 
a first approximation prove on a second look to be multifractal. This step 
is now taken near-automatically in many fields. It was first taken in M 
1969b, a paper concerned with turbulence, and my first full publication in 
that field, M 1972j{N14} ends (p. 345 of the original) as follows: 

"The interplay... between multiplicative perturbations and the 
lognormal and [scaling] distributions has incidental applications in other 
fields of science where very skew probability distributions are encount­
ered, notably in economics. Having mentioned the fact, I shall leave its 
elaboration to a more appropriate occasion." 

Multifractal measures and functions. The concept introduced in M 
1972j{N14} and developed in 1974f{N15} and M 1974c{N16} involves non­
decreasing multifractal random functions with an infinite number of 
parameters. Their increments are called multifractal measures. The original 
example introduced in M 1972j{N14} is the "limit lognormal multifractal 
measure;" it remains after all those years the main example that is 
"homogeneous" in time. Most explicitly constructed multifractals are grid­
bound "cartoons;" they are defined and studied in Section 4. (In the same 
vein, the main example of fractal trading time with strong homogeneity 
remains the Levy staircase used in Section 3.6. Figure 4 of Chapter E1 is a 
plot of the measures contained within successive intervals of the abscissa, 
and was originally simulated on a computer in order to model the 
gustiness of the wind and other aspects of the intermittency of turbulence. 
But the resulting pattern reminded me instantly of something entirely dif­
ferent, namely, Figure 1 of M 1967j{E15} which represents the variance of 
cotton priee increments over successive time spans. 

The limit lognormal multifractal measures are singular, and the same is 
true of all the examples invoked in the early literature - but not of some 
more recent ones. Being "singular", the integral M(t) of the plot in Figure 
5 of Chapter E1 is monotone increasing and continuous, yet non­
differentiable anywhere. There is no trace of the step-like intervals corre­
sponding to vanishing variation that characterize the Cantor and Levy 
devil staircases. My immediate thought in 1972 was to use this function 
M(t) as graph of a multifractal trading time 8(t). In the simplest cases, the 
inverse function t(8) is also multifractal. This thought was not elaborated 
until recently and is published for the first time here and in three papers 
by M, Fisher & Calvet in different permutations. Tests delayed for 
twenty-five years suggest that my 1972 hunch led to a surprisingly good 
approximation, as will be seen in Section 3.15. I heard rumors of other 
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investigations of multifractals in finance; after all, once again, this is the 
next obvious step after fractals. But it is also an extremely delicate one. 

A remarkable novelty: Multifractals allow concentration to occur with or 
without actual discontinuity. The fact that the typical early functions M(t) 
are continuous is linked to the subtitle of this book and the topic of 
Section 1.3 of Chapter E2. Indeed, WBM and FBM of multifractal time are 
capable of achieving an arbitrarily high level of concentration without the 
actual discontinuity that is characteristic of L5M. 

As a matter of fact, L5M can be viewed as a limit case. If one looks 
very closely, this limit is atypical and the convergence to it is singular. 
But this book need not look close enough to be concerned. 

3.9 Characterization of multiscaling: "tau" functions that describe the 
moments' behavior for the directing and the compound functions 

Except for scale, FBM is characterized by one parameter, L5M by two, and 
the major properties of a self-similar fractal follow from one parameter, its 
fractal dimension. Multifractals are more complicated: the closer one 
investigates them, the larger the number of parameters. This is because 
multifractals are characterized by a plethora of scaling relations, with cor­
respondingly many exponents. The list of principal exponents defines a 
function "tau" which will now be described in two forms. (While this 
function is fundamental, it does not uniquely describe a multifractal.) 

The moment exponent function T D(q) of the directing function. In a 
multifractal measure, as first shown in M 1974f{N15} and M 1974c{N16}, 
the moments of AM. typically take the form 

(Digression. Some readers may be surprised by the equality sign, 
because other writers define a function T as a limit. The technical reason 
is that the original method I used to define multifractals focuses on "fixed 
points" for which equality prevails.) 

Moment-based scaling exponents. The q-th root of the q-th moment is a 
scale factor. For multifractals, 

1 + TD(q) 
{E(AM)q}l/q = lltU'D(q), where O"D(q) = q 

(A warning. The literature also uses the notation D(q) = T(q)/(q -1) ; 
except in the unifractal case, D(q) "# T(q) ). 
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The uniscaling cases. When multifractal time reduces to clock time, 
T D(q) + 1 = q, implying uniscaling, since U D(q) is independent of q. 

The multiscaling cases. In the cases to be considered in this chapter, 
T D(q) satisfies two conditions: a) E[(LlM)°] = 1, that is, T D(O) = -1, and b) 
E(LlM) = M, that is, T D(1) = O. However, the graph of T D(q) + 1 is not a 
straight line. It follows that U D(q) decreases as q -> 00. 

Interpretation of the quantity T'D(l) = D1. This quantity has a very impor­
tant concrete interpretation, as the fractal dimension of the set of values of 
e(t) where the bulk of the variation of e occurs. It is often denoted as Dl' 
and will be needed momentarily. 

The power eXfionent function T c(q) = T D(qH) of the compound function. 
Since dX = Cede) , where C is a reduced Gaussian, 

E[ I dX I q] = E[ I C I q]E[(de)qH] = (a numerical constant)(M)l + TD(qH). 

This important new result defines an additional "tau" function, 
namely, 

TC(q) = TD(qH)· 

"Multifractal jor11W.lism." This is the accepted term for the study of the 
functions T(q) and associated functions customarily devoted by fla). The 
latter are often called "singularity spectra," but they are best understood 
by generalizing to oscillating function, the original approach pioneered in 
M 1974c{N16}: they are limits of probability densiti~s of dX, but plotted in 
a special way. The general idea can be inferred from the discussion in 
Section 8.4 of Chapter E1, where it is pointed out that linear transforma­
tion cannot collapse the densities, but can collapse the quantities p cr(u). 
Calvet, Fisher & M 1997 sketches the role of the function fla) in the 
context of economics, and numerous chapters of M 1997N will fully 
describe my approach to multifractal measures and functions, and 
compare it to alternative approaches. 

3.10 The FBM of multifractal time accounts for two facts about the tails 
that constitute "anomalies" with respect to the M 1963 model 

It was mentioned repeatedly that reports came out very early that some 
price records disagree with the M 1963 model. Some authors report tails 
that follow the scaling distribution but with an exponent a that exceeds 
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Levy's upper bound a = 2. Other authors report distributions that fail to 
collapse when superposed with the proper scaling exponent. 

We shall now show that multifractals provide a framework compatible 
with either or both observations. 

The critical tail exponent qcrit' The equation T D(q) = 0 has always the root 
q = 1. In addition, the function T D being cap convex, the equation T D(q) = 0 
may also have a finite second root; when it exists, it is denoted by qcrit' 

The limit lognormal case always yields qcrit < 00. An important and 
suprising discovery is reported in M 1972j{N14}, M 1974{N15} and M 
1974c{N16}: when a second root qcrit exists, the distribution of t!.M has an 
asymptotically scaling tail of the form 

Thus, from the viewpoint of the tail, qcrit is a "critical tail exponent." It 
plays the same role as the Levy exponent a, namely, E(t!.M)q < 00 if, and 
only if, q < qcrit' The essential novelty is that the range of qcrit is no longer 0 
< qcrit < 2; instead it becomes 1 < qcrit < 00. 

A way to obtain a tail exponent of price change that exceeds the upper bound 
2 that is characteristic of L-stability. Now return to compounding, namely to 
a fractional Brownian function BH(t) of a limit lognormal trading time. Its 
increments will satisfy E(ABH)q < 00 if, and only if, q < qcri/ H = a. In the 
Brownian case H = 1/2, qcrit can range over [1,00], hence a can range over 
[2, 00], which conveniently extends the L-stable range [I, 2] of a. Further­
more, choosing H in the range [1/2, 1] extends the range of a to [1,00], 
which is the maximum conceivable in the case where expectations are 
finite. 

Nevertheless, qcrit need not exist, that is, a multifractal AM. need not 
have a scaling tail. This may sound confusing, but only means that not 
every property of every multifractal is scaling. 

It is nice that multifractal trading time makes it possible to extend the 
range of the asymptotic exponent a > 2, but this result is not achieved 
without major changes. Indeed, the multifractal increments AM. are not 
scaling in the sense that applies to the L-stable variables. They have more 
than one characteristic exponent, hence a structure, called multiscaling, that 
is far richer and has many distinct aspects. 

Multiscaling implies that the tails of the compound process become increas­
ingly shorter as T increases. This is because the scale factors [E[AX]q]1/q are 
scaling and their exponent U D(q) = [1 + qD(TH)J! q decreases as q -+ 00. To 
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illustrate the importance of this fact, consider the renormalized increments 
~X/[E~X2]l/2. Contrary to the L-stable increments of the M 1963 model, 
those multiscaling increments do not collapse; instead, their distributions' 
tails become shorter and shorter as T increases. In other words, the 
multifractality of trading time is a sufficient explanation of the two anoma­
lies described in Section 3.8. 

3.11 Fourier spectral properties before and after rectification 

The spectral exponent Be of the increments of the compound process. The 
behavior of E[~X2] for M - 0 determines the behavior for f- 00 of the 
spectral density of the increments of X. That density takes the "1/f' form: 

spectral density - J Be, where Be = T e(2) = T D(2H). 

The WBM case, H = 1/2, yields Be = T D(l) = 0, as we already know 
from Section 3.5. When H :;,.1/2 but is close to 1/2, we have 

Be = T(2H) - TD(l) + (2H -1)T'D(l) = (2H -l)T'(l) = (2H -1)D1. 

Conclusion. In the white case H = 1/2, we encounter once again the 
very important blind spot of spectral analysis noted in Section 3.5. For 
H:;,. 1/2, compounding changes the spectral exponent. However, the 
nearly white cases exhibit an extraordinary and very welcome simplifi­
cation: the exponent Be of the compound process "separates" into a 
product. In the case Dl = I, which corresponds to FBM in clock time, it is 
confirmed that the spectral exponent and sole parameter of the increments 
of the compounding function is (2H -1). As to the directing function, it is 
not represented by its full function T D(q), only by a single parameter, the 
dimension D1. Additional structural details of the directing function, 
which may be complicated, do not matter. 

Value of the spectral exponent, after the increments of the compound process 
have been "rectified", in the sense of having their absolute values raised to the 
power 1/ H. Electrical engineers and applied physicists know (more accu­
rately perhaps, used to know) that to understand a "noise," it is good to 
study it in two steps at least: first in its natural scale, then after it has 
been "rectified," which usually means taking the absolute value or 
squaring. This approach motivated the tests carried out in Voss 1992 and 
mentioned at the end of Section 3.5, and perhaps also the tests in Olsen 
1996. In the present context, let us show that a particularly appropriate 
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rectification consists in "taking the power 1/H." When H = 1/2, this 
reduces to squaring. 

Indeed, take two non-overlapping intervals of duration At separated 
by a time s~an T, and form the "covariance" of the compounding incre­
ments (.1.'X) /Hand (.1." t) 1/H. We know that G' and G" are independent 
Gaussian variables .1.'X = G'(.1.'8)H and .1."X = G"(.1."8)H. Hence, 

The numerical prefactor E(G,)l/HE(G,,)l/H depends on H, but otherwise 
this last expression solely reflects the properties of the directing function. 
The covariance and the spectral density of .1.X can be shown to be propor­
tional, respectively, to 5- T D(2) and r 1- T D(2). For this reason, T D(2) acquired 
the strange name of "correlation dimension." 

Summary. In the WBM case H = 1/2, the appropriate rectification boils 
down to (.1.X)2. In the FBM case where H * 1/2 but H is close to 1/2, one 
needs corrective factors, but reporting them here would delay us too 
much. 

The spectrum reflects the form of dependence, but only in a limited 
fashion; it is distinct from, and only distantly related to, the features of 
T D(q) that affect the shape of the tails. A striking feature of the 
multifractals is this: scaling may, but need not, be present in the tails, but 
is always present in the dependence. A Brownian or fractional Brownian 
function of a multifractal trading time follows the same scaling rule of 
long-run statistical dependence as found in fractional Brownian motion. 

3.12 The notions of partition function, or q-variation, for the directing 
multifractal time and the compound process. 

Take the length of the available sample as time unit, divide it into non­
overlapping intervals of lengths .1./' and consider the expression 

To statisticians, this is a non-normalized "sample estimate" of the moment 
L l.1.iX ( To physicists who follow a thermodynamical analogy, XD(q) is a 
"partition function." To mathematicians who follow N. Wiener, XD(q) is a 
"q-variation." Extraneous difficulties are avoided by choosing the unit of X 
so that .1.iX < 1 for all i. 
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Unequal !!"}. For some purposes, as when we compare the q-variations 
taken along several alternative "times," it is important to allow the A/ to 
be unequal. One takes the infimum of Xv(q) for all subdivisions such that 
Al < At, then one lets At -+ O. The values of q such that Xv(q) -+ 0 and 
Xv(q) -+ 00, respectively, are separated by a critical value that will be 
denoted as 1/ HI' 

A very important observation concerning the contribution of the discontinui­
ties to the value of X. The case of direct interest is when HT < 1. If so, Xv 
can be divided into the contribution of the discontinuities and the rest. In 
the limit, the discontinuities contribute 0 if q > I, therefore if q > 1/ HI' As 
a result, it makes no difference whether or not the discontinuities are 
included. 

Equal A/ = At. For other purposes, however, one assumes that the A/ 
are equal to At. This makes it possible to follow X(q) as function of At, 
and one finds 

Xv(q, At) = (At)TD(q), with Tv(q) = log !!"X(q, dt)/ log At. 

The same argument can be carried out when the increments of trading 
time are replaced by the increments of the compounded process. It yields 
a new partition function 

3.13 A record's trail and graph have different fractal dimensions 

This topic is best approached by a roundabout path. 

The special case of FBM in clock time. The function T(q) is associated 
with multifractals, but can also be evaluated for BH(t). Its value is found to 
be yielding Xiq, At) = (At)Hq -I, hence T(q) = Hq - 1. 

We know from Section 3.4 that the trail dimension is DT = I/H with or 
without compounding. Now let us sketch a standard argument BUG that 
begins with the fact that T(1) = H - I, and concludes for the graph dimen­
sion with the value Dc = 1- T(I) = 2 - H. This argument consists in cov­
ering the graph with square boxes of side At. Each At and the 
corresponding Ax contribute a stack of l!J.x I / At boxes. (Actually, one 
needs the smallest integer greater than the ratio l!J.x I / At, but this ratio is 
- (At)-l/2, hence is large when At is small.) Denote by N(At) the total 
number of boxes in all the stacks and by Dc the box dimension. One has 
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"" I I T(l) -1 10gN(~q) 
N(M) = L Lll' 1M = (M) ,hence Dc = log(11 ~q) = 1 - T(1) = 2 - H. 

The general case of FBM of a multifractal trading time. The values 
obtained for T(l) and Dc are specific to FBM, but the bulk of the pre­
ceding argument is of wider applicability. The total number of boxes of 
side M needed to cover the graph is - I I Lll' I 1M = (M) Te(!) - 1. Taking a 
ratio of logarithms, this heuristic argument yields for the dimension of the 
graph of X(t) the value 

Dc = 1- Te(1) = 1- TD(qH). 

From T e(1) < 0, it follows that Dc ~ 1, as is the case for every curve, hence 
for every graph of a function. 

Under multifractal compounding, there is no functional relation between 
DT and Dc' The unifractal functions FBM are specified by a single param­
eter H, hence the values of DT and Dc are necessarily functionally related. 
Indeed, 

H = riT = 2 - Dc· 

A compound process is more complicated, since its specification 
includes both H and the function T D(q). Hence the values of DT and Dc 
cease to be functionally related. The best one can say is that an inequality 
established in M 1974f{N14} implies Dc < DT = 1/H ; in fact, Dc ~ 2 - H, 
which we know to be the value relative to FBM. 

3.14 Statistical estimation for multifractals, beginning with H, and 
continuing with the T c(q) function of the multifractal time 

The preceding title includes two statistical problems. The good news is 
that they can be faced separately. This is so because the asymptotic 
behavior of X(q) has the remarkable property of separating the properties 
of the compounding function X(O) from those of the directing function 
Oct). 

The estimation of H. It suffices to identify the value of q for which 
T e(qH) = O. Actually, H can be defined without injecting equal M's and the 
resulting function T(q). Indeed, l/H is a "critical value" of the exponent 
> 1 such that X(q) - 0 for q > l/H and X(q) - 00 for q < lIH. 
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The estimation of the directing function, once H is known. It suffices to 
plug H into T e to obtain T D' When one only wishes to obtain Dl' one can 
estimate the spectral exponent B and write Dl = B/(2H -1). Unfortunately, 
this is the ratio of two factors that may be small simultaneously, therefore, 
is not very reliable. 

The special case of WBM or FBM in clock time. The critical value is l/H. 
Consequently, the behavior of Xe(q) suggests a new method of estimating 
H, to be added to the standard correlation or spectral analysis and the less 
standard R (range) or R/S methods (see M 1997H). 

The case when the trading time 8 is multifractal and a continuous function 
of the clock time t. Once again, the test of whether X(q) -+ 0 or X(q) -+ 00 

does not require the Al to be identical, only that they all tend to O. When 
8(t) is a continuous function, the same critical value <p is obtained by using 
uniform intervals of 8 and uniform intervals of t. Uniform intervals of 8 
bring us back to the compounding FBM function BH(t), but trading time is 
not observable directly, and investigation of actual samples imposes 
uniform intervals of t. 

The discordant case of Ba-{8(t)}, when the trading time 8 is a discontinuous 
function of the clock time. This case occurs in the M 1967 representation of 
the M 1963 model, when compounding reduces to subordination. In some 
way, it is the limit of the case of continuous directing functions. However, 
this limit is extremely atypical, the reason being that the At can be made 
increasingly small, but not the A8. The illuminating behavior of X(q) when 
the A8 are equal and tend to 0 is inaccessible and not reflected in the 
behavior of X(q) when the At are equal and tend to O. 

In particular, recall that the L-stable process of exponent a is the WBM 
of a fractal time and is twice the exponent of the Levy devil staircase. In 
this case, the correct value H = 1/2 is not revealed by the critical exponent 
of X(q) evaluated with constant At. (Digression: this subtle point can be 
better understood be examining Plate 298 of M 1982F{FGN}.) 

The converse problems. Now suppose the preceding statistical analysis 
is carried out on a process that is not a FBM of a multifractal trading. The 
q-variation exponent is defined for every function, therefore the algorithm 
to estimate He yields a value in every case. 

3.15 The experimental evidence 

As mentioned in the Preface, empirical testing of the M 1972 model was 
slow and could not be as broad and complete as I wished. But we studied 
the changes in the dollar / deutschmark and other foreign exchange rates 
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obtained from Olsen Associates in Zurich; the results, which are extremely 
promising, will be published in three papers by M, Fisher and Calvet in 
different permutations. The principal figure of Fisher, Calvet & M 1997 is 
reproduced here as Figure 3. It is a log-log plot of the variation of 
XD(q, At) as function of At, for several values of q close to 2. Two distinct 
datasets were matched, namely, daily and high frequency data. 

The first observation is that the diagrams are remarkably straight, as 
postulated by multifactality. 

The scaling range is very broad, three and a half decades wide, from 
At of the order of the hour to At of more than a hundred days (at least.) 

The second observation concerns the value of q for which this graph is 
horizontal, meaning that T D(q) = O. This value of q defines the trail dimen­
sion Dp and the data show that it is close to the Wiener Brownian value 
Dr = 2. This value was implied when Voss 1992 and Olsen 1996 described 
the spectrum of the rate changes as being white. 

At closer look, however, Dr seems a bit smaller than 2, suggesting 
Hr> 1/2. If confirmed, this inequality would be a token of persistent frac­
tional Borwnian motion in multifractal time. 

Increments At below one hour seem to exhibit a different scaling, with 
Dr clearly different from 2. Once again, full detail is to be found in Fisher, 
Calvet & M 1997. 

3.16 Possible directions for future work 

A major limitation of the fractional Brownian motion of time was 
acknowledged in Section 9 of Chapter E1: the resulting marginal distrib­
utions are symmetric. A possible way out was also referenced, namely, 
the "fractal sums of pulses." 

This section's context instantly suggests an alternative way out: to 
replace BH(t) by an asymetric form of the L-stable process that underlies 
the M 1963 model. The presence of two parameters (an exponent a and a 
skewness parameter f3) can only help improve the fit of the data. But the 
resulting process remains unexplored and may prove to be unmanageable. 
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FIGURE E6-3. Doubly logarithmic plot of XD(q, At), as function of At in the case of 
the Olsen data for the US dollar/Deutschmark exchange rate. The main 
observations are a) the fact that the plots are straight from At of the order of 
one hour to the end of the data, which corresponds to At of more than a 
hundred days; the slopes of the plots define the function T D(q); b) the fact that 
the value of q = Dr for which T D(q) = 0 is close to 2. 

Observation a) is a symptom of multifractality and observation b) is a 
symptom that the process is close to being a Wiener Brownian motion that is 
followed in multifractal time. The true value of Dr is a bit smaller than 2, 
suggesting the inequality Hr> 1/2. If confirmed, this would be a token of 
persistent fractal Brownian motion in multifractal time. 
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4. DIAGONAL-AXIAL SELF-AFFINE CARTOON SURROGATES 

This section covers roughly the same material as Section 3, but in entirely 
different style. Section 3 concerned constructions that first arose in limit 
theorems of probability theory (some of them classical and/or difficult). 
Those constructions are of great independent interest and of "universal" 
rather than arbitrary character. But their origins are not coordinated, so 
that, they did not fit comfortably together. To the contrary, this Section 
proceeds in tightly coordinated fashion and the parts fit well together. 
The new feature is that those parts are non-universal and to a large extent 
arbitrary. Their baroque wealth of structure is a loss from the viewpoint 
of simplicity and esthetics; but it may be a gain from the viewpoint of 
apprehending the baroque wealth of structure found in nature. 

Let me elaborate. By abundantly illustrating self-similarity, M 
1982F{FGN}, demonstrated that the principle of recursive construction 
exemplified in Section 2 is very versatile. That is, it is not sharply restric­
tive but leaves room for many varied implementations. To an even larger 
extent, self-affinity is versatile almost to excess, hence insufficient by itself 
for any concrete purpose in science. The goal of this section is to trans­
form the 1900, M 1963, M 1967 and M 1972 models of price variation into 
constructions that fit together as special examples in a broader, well­
organized but diverse collection. The implementation of this goal is 
distantly inspired by a construction due to Bernard Bolzano (1781-1848). 
In a terminology that may be familiar to some readers, this implementa­
tion is "multiplicative." The more familiar "additive" constructions (pat­
terned on the non-differentiable functions due to K. Wierstrass) proved to 
be of insufficient versatility. 

4.1 Grid-bound versus grid-free, and fractal versus random constructions 

The role of grids in providing simplified surrogates. Fractal construction are 
simplest when they proceed within a grid. Grids are not part of either 
physics or economics. But suitable grid-based constructs can act as 
"surrogates" to the grid-free random process, like the 1900, M 1963, M 
1965, M 1967, and M 1972 models. When this is possible, the study is 
easier when carried out on the grid-based cartoons. Besides, the cartoons 
in this chapter fit as special cases of an overall "master structure" which 
relates them to one another, is enlightening and is "creative" in that it sug­
gests a stream of additional variants. I came to rely increasingly on this 
master structure in the search for additional models to be tried out for 
new or old problems. Striking parallelisms were mysterious when first 
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observed in the grid-free context, but became natural and obvious in this 
master structure. 

Fractality versus randomness from the viewpoint of variability. The main 
cartoon constructions in this chapter are non-random. To the contrary, the 
1900, M 1963, M 1965, M 1967 and M 1972 models in Section 3 are 
random, for reasons explained in Section 1 of Chapter E1. 

However, an important lesson emerges from near every study of 
random fractals. At the stage when intuition is being trained, and even 
beyond that stage, being random is for many purposes less significant than 
being fractal. It helps if the rules of construction are not overly conspic­
uous, for example, if no two intervals in the generator are of equal length. 
That is, the non-random counterparts of random fractals exhibit analogous 
features, and also have the following useful virtue: they avoid, postpone, 
or otherwise mitigate some of the notorious difficulties inherent to ran­
domness. Those non-random fractals for which acceptable randomizations 
are absent or limited, are also of high educational value. 

Distinction between the contributions of Wiener and Khinchin. In the spirit 
of the preceding remarks, the readers acquainted with the Wiener­
Khinchin theory of covariance and spectrum may recall that a single 
theory arose simultaneously from two sources: Wiener studied non­
random but harmonizable functions, and Khinchin studied second-order 
stationary random functions. The two approaches yield identical for­
mulas. 

A drawback: grid-bound constructions tend to "look "creased" or "artificial." 
This drawback decreases at small cost in added complication, when the 
grid is preserved, but the construction is randomized to the limited extent 
of choosing the generator among several variants. This will be done in 
Figures 4 and 5. Nevertheless, the underlying grid is never totally erased. 
To a trained eye, it leaves continuing traces even after several stages of 
recursion. (A particularly visible "creasing" effect is present in computer­
generalized fractal landscapes, when the algorithm is grid-based. Around 
1984, this issue was a serious one in the back-offices of Hollywood 
involved in computer graphics.) 

Addition versus multiplication. Specialists know that fractals are usually 
introduced through additive operations, and multifractals, through multi­
plicative operations. The reason for selecting the fractal examples that 
follow is that they can be viewed as either additive or multiplicative, 
making it unnecessary to change gears in the middle of the section. 
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FIGURE E6-4. Six alternative cartoon constructions explained on the next page. 
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FIGURE E6-S. Three additional cartoons. The following explanation applies to 
this figure and the preceding one. 

Each construction is illustrated by a square diagram and a longitudinal 
one. The generator is shown in a small window within the square diagram: it 
is either diagonal or diagonal-and-axial. The square diagram shows the 
level-2 approximation and the corresponding longitudinal diagram shows the 
increments of the level-2 approximation, taken over equal time increments. 

The diagrams juxtaposed on a horizontal row in Figure 4 are intimately 
related, as described in Section 4.9. 
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The power and limitations of the eye. The eye discriminates better 
between records of changes of a function than between records of the func­
tion itself. Therefore, the results of many constructions that follow will be 
illustrated in both ways. 

Recursiveness also allows many other possibilities that lie beyond the 
scope of this book: they include the "fractal sums of pulses" (M 1995n 
and several papers for which the co-author listed first is Cioczek-Georges). 

4.2 Description of the grid-bound recursive constructions with 
prescribed initiator and generator 

To start from scratch, each diagram in Figures 4 and 5 is drawn within a 
level-O box, whose sides are parallel to the coordinate axes of t and x. The 
"initiator," is an ordered interval (an "arrow") acting as a "hidden string" 
that crosses the level-O box from bottom left to top right. Therefore, it is 
useful to think of this and other boxes as "beads." The width and height 
of the level-O box are chosen as units of t and x, making the box a square. 
(The question of what is meant by a square in the affine plane is a subtle 
issue, to be tackled below, after the definition of H. ) 

In addition, each diagram contains a string generator that joins the 
bottom left of the initiator to its top right. Alternative descriptions for it 
are "string of arrows," "broken line," and "continuous piecewise linear 
curve." The number of intervals in the generator, b, is called "generator 
base". When the generator is increasing, b ~ 2; when the generator is oscil­
lating, the lower bound becomes b ~ 3. The larger b becomes, the greater 
the arbitrariness of the construction. Hence, the illustrations in the chap­
ters use the smallest acceptable values of b. 

Axial and diagonal generator intervals. To insure that the recursive con­
struction generates the graph of a function of time, the string generator 
must be the "filled-in graph" of a function x = G(t), to be called generator 
function. To each t, the ordinary graph attaches a single value of x. To 
each t where G(t) is discontinuous, the filled-in graph attaches a vertical 
oriented interval of values of x that spans the discontinuity. The resulting 
interval in the generator is called axial. (The general case, mentioned later 
but not used in this book, also allows for horizontal intervals.) A non­
axial interval is called diagonal, and the rectangle that it crosses diagonally 
from left to right defines a level-l box. In some cases the level-l boxes can 
be superposed by translation or symmetry, in other cases they cannot. 

Recursive construction of a self-affine curve joining bottom left to top right, 
using successive refinements within a prescribed self-affine grid. Step 0 is to 
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draw the diagonal of the initiator. Step 1 is to replace the diagonal of the 
initiator by the filled-in graph of the generator function G(t). Step 2 is to 
create a line broken twice, as follows. Each diagonal interval within the 
generator is broken by being replaced by a downsized form of the whole 
generator. To "downsize" means to reduce linearly in the horizontal and 
vertical directions. In the self-affine case, the two ratios are distinct. In 
some cases, one must also apply symmetries with respect to a coordinate 
axis. As to the generator's axial intervals, they are left alone. One may 
also say that they are downsized in the sense that the ratio of linear 
reduction in one direction is 0, collapsing the generator into an interval. 

The "prefractal" approximations of self-affine graphs can take one of 
two forms. They may consist of increasingly broken lines. Figures 6 and 
7 take up important generators and draw corresponding approximations 
as boundaries between two domains, white and black. This graphic 
device brings out finer detail, and helps the eye learn to discriminate 
between the various possibilities. Alternatively, each diagonal interval 
may be replaced by a rectangular axial box of which it is the diagonal. If 
so, the prefractal approximation consists in nested "necklaces" made of 
increasingly fine boxes, linked by axial pieces of string. 

As the recursive construction of an oscillating cartoon proceeds, its incre­
ments Au over increasingly small intervals At tend to become symmetrically dis­
tributed. That is, the ratio of the numbers of positive and negative 
increments tends to 1. {Proof: After k stages, each increment is the 
product of k factors, each of the form sign (Ajx). But II sign (Ajx) is > 0 if ~ 
sign (Ajx) is even, and is < 0 if ~ is odd. The distribution of ~ sign (Ajx) is 
binominal and smoothly varying, therefore even and odd values are 
equally frequent asymptotically.} 

4.3 The H exponents of the boxes of the generator 

This and the next sections show how the fundamental scaling exponent H 
of fractional Brownian motion splits into a number of significantly dif­
ferent aspects. 

Diagonal boxes and their finite and positive H exponents. Given a diagonal 
box f3 j of sides Al and Al., an essential characteristic is 

log Ajx log of the absolute height of the box f3i 
H· = = -:::..----------=--------'-

I log Ajt log of the width of the box f3j 

In other words, 
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FIGURE E6-6. The top line illustrates a cartoon of Wiener Brownian motion 
carried to many recursion steps. The generator, shown in a small window, is 
identical to the generator A2 of Figure 2. At each step, the three intervals of 
the generator are shuffled at random; it follows that, after a few stages, no 
trace of a grid remains visible to the naked eye. 

The second line shows the corresponding increments over successive 
small intervals of time. This is for all practical purposes a diagram of 
Gaussian "white noise" as shown in Figure 3 of Chapter El. 
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FIGURE E6-7. This figure reveals - at long last - the construction of Figure 2 of 
Chapter El. The top line illustrates a cartoon of Wiener Brownian motion fol­
lowed in a multifractal trading time. Starting with the three-box generator 
used in Figure 6, the box heights are preserved, so that Dr is left unchanged at 
Dr = 2 (a signature of Brownian motion), but the box widths are modified. 
(Unfortunately, the seed is not the same as in Figure 6.) 

The middle line shows the corresponding increments. Very surprisingly, 
this sequence is a "white noise," but it is extremely far from being Gaussian. 
In fact, serial dependence is conspicuously high. The bottom line repeats the 
middle one, but with a different "pseudo-random" seed. The goal is to dem­
onstrate once again the very high level of sample variability that is character­
istic of wildly varying functions. 

The resemblence to actual records exemplified by Figure 1 of Chapter El 
can be improved by "fine-tuning" the generator. 
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This identity concerns non-infinitesimal boxes, therefore Hi is a coarse 
coefficient. Now proceed to the limit At - O. If x(t) had a well-defined 
derivative x', one would have !:u - x' At. Therefore, differentiable functions 
yield a. = 1 (but the converse is not true). 

Hurst, HOlder, and a way to conciliate mathematical and concrete needs. 
Section 3.2 mentions that H has roots in the works of both the hydrologist 
H. E. Hurst (1880-1978), and the mathematician L. O. Holder (1859-1937). 
However, these concrete and mathematical contexts require a special effort 
before they fit comfortably together. For example, assume that all boxes of 
the same level are e~ual, with At = b- 1 and !:u = b' -1 for level-I, therefore 
At = b - k and !:u = b' - for level-k. It follows that Hi = log b' / log b = H for 
all boxes at all levels; level 0 yields log l/log 1 = 0/0, which can be inter­
preted as equal to H. However, if the level-O box had sides 1 and B, all 
the level-k boxes would yield 

10gb' + 10gB / k 
H= 10gb . 

In the pure mathematical interpretation due to Holder, H is a local 
concept that concerns the limit k - 00. Its value is not affected by B. By 
contrast, the concrete interpretation of H that I pioneered do not concern 
local asymptotics but concrete facts, therefore applies uniformly to all 
sizes. If the resulting "coarse" H is to serve a purpose, it must be inde­
pendent of all units of length; this is achieved by setting B = 1. 

Axial intervals and the values H=O and H = 00. One may say that hori­
zontal intervals yield H = 00, and discontinuities yield H = O. The value 
H = 00 can occur almost everywhere, and the value H = 0 can occur at most 
on a denumerable set, therefore, on a set of dimension O. 

Comments on the examples on Figure 4. The columns are denoted by 
letters (A, B, and C) from the left, and the rows by numbers (1, 2, 3, 4) 
from the top. Each example will first be listed by itself, then different 
examples will be shown to be related to one another. Figure 5 carries 
further the constructions based on generations A3 and B3, adding 
randomization for increased realism. 
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4.4 Unifractality for cartoons, and selected major examples 

This section proceeds beyond general statements on grid-bound cartoons. 
It introduces (by definitions and examples) some key distinctions that 
explain how those cartoons can serve as "surrogates" of the grid-free self­
affine processes described in Section 3. When a process is denoted by 
XYZ, its cartoon surrogate will be denoted by C(XYZ). 

Unifractality. Each box /3i of the generator has its own exponent Hi. If 
all the Hi are identical, > 0 and < 00, the cartoon construction will be called 
unifractal. The conditions H> 0 and H < 00 exclude axial generator inter­
vals. This case is very special, but of fundamental importance, because it 
includes cartoons of WBM and FBM. 

Unibox versus multibox constructions. In the unifractal case, the gener­
ator boxes can be either identical, defining the unibox case or not, defining 
the multibox case. All unibox constructions are unifractal. Many of their 
properties depend only on H, but other properties depend on the boxes' 
two sides, and some properties also depend on the details of the arrange­
ment of the boxes. Multibox constructions depend on a larger number of 
parameters; they are less regular, hence less "artificial-looking," therefore 
their fractality is a better surrogate for randomness. 

• Ct(WBM). (Generator AI). This cartoon of base b = 4 is a unibox 
(hence unifractal) surrogate for Wiener Brownian Motion. It has become 
widely used in physics (M 19861, M 1986t, Family & Vicsek 1991). To find 
where it comes from, consider the Peano-Cesaro motion illustrated (in 
approximation) on Plate 65 of M 1982F{FGN}. Follow this motion as it 
proceeds from the lower left to the upper right comer, moving through 
the upper left comer. The projection of this motion on the x-axis will have 
Al as its generator. Variants are described in M 1986t{H}, and in various 
articles collected in M 1997N and M 1997H. 

• C2(WBM). (Generator A2). The generator of this multibox cartoon 
contains b = 3 intervals, which is the smallest value that allows oscil­
lations. Denoting the side intervals by x, the middle interval is of height 
2x -1. Since H = 1/2 for WBM, the generating identity becomes 
2X2 + (2x - 1)2 = 1, yielding x = 2/3. 

• C3(WBM). (Generator A3). The novelty is that all three intervals 
were made unequal, to add realism to the construction. A form of it is 
carried over many stages in Figure 6. 

• C(FBM). (Generator A4). Cartoon C2 (WBM) is readily generalized 
to H::j: 1/2. It suffices to take for x the positive root Xo of the equation 
2x/H + (2x -1)/H = 1. For H> 1/2, Xo < 2/3; for H < 1/2, Xo > 2/3. 
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Two steps beyond unifraetality. The usual contrast to unifractality is 
provided immediately by multifraetality, but the present context makes it 
necessary to single out an intermediate case that did not, until now, 
warrant a special name. Since "in between" is denoted by the Greek root 
meso, this case will be called mesofraetal, a word that is used here for the 
first time. 

4.5 Mesofractality for cartoons, and selected major examples 

Mesofraetality. This term will denote cartoons whose generator includes 
vertical intervals with H = 0, in addition to diagonal intervals sharing a 
unique H satisfying 0 < H < 00. (The definition extends painlessly to allow 
horizontal intervals with H = 00; such cases are not needed in this book, 
but will be discussed in detail in the introductory material of M 1997N.) 

Like unifractality, mesofractality is a special case, but it too is of fun­
damental importance because it characterizes the several important car­
toons that follow. The first and the second can be described as surrogates 
of LSM, even though the first only includes negative jumps. The third is a 
surrogate of fractal trading time, a notion to be defined in Section 4.5. 

• C1(LSM). (Generator B2). Begin with C2(WBM) and modify the gen­
erator's boxes by the following transformation: keep the heights constant, 
expand the first and third box to be of width 1/2, and reduce the second 
box to be of width 0, hence H2 = O. All the jumps are negative. 

• C2(LSM). (Generator Bl). A more realistic surrogate of LSM must 
have both positive and negative jumps. To achieve this goal, it is neces­
sary to use a generator containing at least b = 4 intervals. Begin with 
CI(WBM), and modify the generator's boxes by the following transforma­
tion: keep the heights constant, expand the first, second and fourth box to 
be of width 1/3, and reduce the third box to be of width O. The new H 
values are HI = H2 = log32, H3 = 0, and H4 = log32. 

• C1(FTn and C2(FfT). (Generators Cl and C2). These are inverse 
functions of variants of the classical devil staircase. 

4.6 Multifractality for cartoons, and selected major examples 

Multifraetality. The most general category of cartoons allows the generator 
to include diagonal boxes with different values of Hi' ranging from 
Hmin > 0 to a maximum satisfying 0 < Hmax < 00. Those cartoons are neces­
sarily multibox. Boxes created at the k-th stage of recursion are character­
ized by H distributed over the interval [Hmin, Hmax1 in increasingly tight 
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fashion. The limit of this distribution is described by the multifracatal 
formalism fiu) mentioned at the end of Section 3.9. 

As defined above, multifractality allows some generator intervals to be 
axial, hence includes cartoons that combine continuous variation with 
jumps. However, jumps are absent, both from the bulk of the abundant 
literature on multifractals, and from the single grid-free multifractals of 
Section 3, like those in M 1972j{N14}, M 1974f{N15} and M 1974c{N16}. 
They will be discussed in M 1997N and M 1997H, but not in this book. 

• C1(MFM). (Generator B3). This example of oscillatory multifractal 
motion is a much simplified version of a construction due to Bernard 
Bolzano (1781-1848). Begin with C3(WBM thru FBM), and modify the gen­
erator's boxes by the following transformations: keep the heights constant 
and change the width to 1/3. (These linear transformations are invertible, 
therefore called affinities. The linear transformations used to define 
C1 (LSM) and C2(LSM) cannot be inverted.) 

• C2(MFM). (Generator B4). A three interval oscillating generator was 
chosen haphazardly. A form of this case is carried over to many stages in 
Figure 7. 

• C1(MTI). (Generator C4). A point was chosen in the unit square, 
and joined to the lower left and upper right comers by a non-decreasing 
broken line. 

• C2(MTI). (Generator C3). This is a three-interval generator yielding 
a multifractal trading time. 

4.7 "First step towards a compound cartoon" representation of a general 
cartoon: definition of the trail dimension DT and the trail exponent 
HT = l/Dp spectral density of the form r B where B = 1 - 21DT 

The major examples in Sections 4.4 to 4.6 include cartoons of WBM, LSM 
and FBM, which concern M 1900, M 1963 and M 1965 models, and other 
grid-bound self-affine functions that combine long tails and long memory. 
The generating functions are of great diversity, and innumerable addi­
tional examples immediately come to mind. Their very multiplicity might 
have been a source of disorder and confusion. 

Fortunately, it is not, thanks to a very strong result that will be estab­
lished in Section 4: every oscillating cartoon construction can be 
rephrased as a compound function, namely in the form of C(WBM) or 
C(FBM) as followed in suitable "multifractal" trading time that is a 
monotone non-decreasing function of clock time. 
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Recall that the grid-free constructions sketched in Section 3 consist in 
unifractal Wiener or fractional Brownian motions in a trading time that is 
either linear, or fractal, or multifractal. That collection of models grew 
step-by-step from 1963 to 1972, and lacked intrinsic cohesion or legitimacy, 
except as a rather abstract companion of the functions T c(q) and T D(q). 

The grid-based cartoons are much simpler in that respect. In their 
case, most remarkably, the notion of trading time is intrinsic, compelling 
and inevitable. We proceed by steps, and begin by defining 
DTandHT= I/DT· 

A simple identity that characterizes unifractal generators. In all cartoons, 
the box widths satisfy LAl = 1. In the unifractal case where Hi = H for all i, 
define DT as I/H. It follows that the box heights satisfy 

A simple identity that characterizes monotone multifractal generators. When 
Ajx > 0 for all i, the equality LAl = 1 trivially implies 

The dimension-generating equayon of a cartoon construction. This term 
will denote the equation L I Aix I = 1, the unknown being u. We know 
two cases already: in the unifractal case the only positive root is 
u = DT = 1/ H, and in the monotone case the only positive root is u = 1. We 
now proceed to the remaining possibility. 

A new and highly significant concept: generalized values of DT and 
HT = 1/ Dp as defined for oscillating multifractal cartoons. In the oscillating 
multifractal case, the quantities Hi cease to be identical. The generating 
equation ceases to be a restatement of a mildly relevant identity. 
However, it remains meaningful and becomes highly Significant. Its only 
positive root DT satisfies DT > 1 and is a fundamentally important character­
istic of the construction. 

Geometric interpretation of DT by embedding, as the trail dimension of a 
closely related vectorial process. As we know from Section 2, a set is a self­
similar fractal, when the whole is made of parts that are obtained from the 
whole by reductions. The generating equation for u is formally identical 
to the classical Moran equation that gives the dimension of such a set, 
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where the reduction ratios, ri = II1,x I, are not equal, therefore, the simplest 
formula D = 10gN /log(1/r), is inapplicable. 

The procedure that gives substance to this analogy is embedding. It 
was already used when Sections 3.3 and 3.4 interpreted a scalar FBM X(t) 

as a projection of a vectorial FBM of at least l/H coordinates. The argu­
ment had to refer to a known theorem, that l/H is the dimension of that 
vectorial FBM. In the present context, embedding is even simpler and 
requires no delicate reference. 

The argument is simplest when H = 1/2 and b = max i ~ 4. Consider, in 
a b-dimensional space, the pqint P of coordinates ,fb l1,x. The squared dis­
tance from 0 to P is L II1,x I = 1. Now consider projections on the main 
diagonal of our b-dimension space. The vector OP projects on an interval 
of length 1/,fb, and the vector of length l1,x along the i-th coordinate axis 
projects on an interval of length l1,x/~b . 

We are now ready to construct a self-similar curve in b-dimensional 
space, by taking OP as the initiator and the sequence of coordinate vectors 
of length l1ix as the generator. A classical theorem due to Moran tells us 
that the fractal dimension of that curve is the root DT of the dimension­
generating equation. This interprets DT as a fractal dimension, with no 
reference to the values of the I1t (The reason for postulating b ~ 4 is to 
some extent esthetic: in a space of b > 3 dimensions, one can obtain a 
spatial curve without double points.) 

The preceding construction relies on the Pythagoras theorem, which is 
why the case DT = 2 is the simplest possible, but the same result can be 
obtained for all DT> 1. 

Spectral density of the embedding vectorial motion. It can be shown to be 
of the " l/t " form JB, with B = 1 + 2HT for the motion itself and 
B = - 1 + 2HT for the "derivative" of the motion, which is a white noise 
when HT = 1/2. 

4.8 The graph dimension Dc of a cartoon; it is not functionally related to 
the trail dimension DT 

Having generalized DT beyond the value 1/ H relative to FBM, the next 
step is to generalize DG beyond the corresponding value 2 - H. 

The special case where I1l = l/b for all i. The derivation of DG for FBM 
was sketched in Section 3.13. The idea is to cover the graph with stacks of 
square boxes of side At. When 11/ = l/b for all i , take square boxes of side 
b- k• One defines T c(l) by writing 
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One can define He by writing 

For oscillating functions, b ~ 3, and the two exponents He and HT are 
distinct functions of b - 1 ~ 2 independent parameters Hi" Therefore, they 
are not linked by a functional relation. 

The general case. Multifractal formalism. Section 3.9 defines the func­
tions T c(q) and T D(q). The same definitions apply to the cartoon con­
structions. The details will be described in M 1997N. 

4.9 Constructions of an intrinsic "compound cartoon" representation of a 
general cartoon; trading time is fractal for meso fractal cartoons and 
multifractal for multifractal cartoons 

Before we complete the task of demonstrating that the cartoon con­
structions are surrogates of the compound functions examined in Section 
3, one last step is needed. Examine the three sets of cartoons that are 
shown in Rows 1, 2 and 3 of Figure 2, and mark the coordinates as 
follows: e and X in Column A, t and X in Column Band t and e in 
Column C. Seen in this light, each cartoon in Column B is reinterpreted as 
a compound cartoon involving its neighbors in the same row. It is 
obtained from its neighbor in Column A, by replacing the clock time by 
the fractal or multifractal time defined by its neighbor in Column C. Let 
us now show here that such a representation can be achieved for every 
cartoon. 

The intrinsic duration of an interval in the generator. We start with a 
recursive construction of fractal dimension as defined early in this section. 
To make it over into a cartoon of FBM with the exponent HT = 1/ Dr we 
must apply the inverse of the linear transformation that led from 
C1 (WBM) to C1 (LSM) and from C(FBM) to C(MFM). Starting from an arbi­
trary generator box, the recipe is in two steps: 

• keep the height A? constant, 
D 

• by definition of Aie, change the width from Ai to I AiX I r = Aie. 

Intrinsic definition of a cartoon's trading time. We are now ready to take 
a last and basic step. We shall show that an oscillating, but otherwise 
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arbitrary cartoon can be represented as a unifractal oscillating cartoon of 
exponent HT = 1/ DT of a multifractal (possibly fractal) trading time. In 
Section 3, the notion of trading time entered as a model of our historical 
and intuitive knowledge of competitive markets. Now, it enters through 
an inevitable mathematical representation. 

The idea is to construct trading time using a cartoon generator defined 
by the quantities fIJi and f!J../J. Each recursion stage ends with an "approxi­
mate trading time that becomes increasingly "wrinkled" as the interpo­
lation proceeds. The limit trading time may, but need not, involve 
discontinuity, but in all cases, its variation becomes increasingly concen­
trated in increasingly at each stage of interpolation, and in the limit mani­
fests a high degree of concentration in very short periods of time. How 
this process builds up is a very delicate topic that cannot be discussed 
here in detail, but constitutes a core topic of M 1997N. 

4.10 The experimental evidence 

The visual resemblence between Figure 7 and Figure 1 of Chapter El 
deserves to be viewed as impressive, because of the extraordinary (in fact, 
seemingly "silly") simplicity of the underlying algorithm. However, 
multifractal analysis, using Tc(q), as in Figure 1, or using the equivalent 
technique of fia.), shows that the resemblence is not complete. Indeed, the 
simulated data of Figure 5 yield slopes T c(q) that disagree with Figure l. 
This is as it sould be: indeed, in order to simplify the construction to the 
maximum, Figure 5 uses a single generator, except that the three intervals 
are randomly shuffled at each iteration. A closer agreement requires the 
fully random algorithm of M 1972J{NI4}, or at least a "canonical" algo­
rithm of in the sence M 1974f{NI5}, with lognormal weights. These topics 
are delicate and must be postponed to M 1997N. 

4.11 Why should price variation be multifractal, and would 
multifractality have significant consequences? 

Possibly explanatory power of multiplicative effects. This book is eager to 
study the consequences of scaling, but reluctant to look for its roots; in 
particular, Chapter E8 expresses doubts about explanations that involve 
"proportional effects". 

Nevertheless, such an argument underlies multifractals, and is worth 
sketching. 

The structure is especially clear in a generating method that is an 
alternative to the cartoons described in this section. It concerns the vari-
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ance of price movements and proceeds as follows. The originator is a 
uniform intensity, and it is pertubed by pulses independent of one another 
and random in every way. Metaphorically, the variability of the variance 
is attributed to an infinity of "causes," the effects of one cause being 
described by one pulse. The main feature is that the distribution of pulse 
lengths must be scaling; this means that the effects are very short-lived for 
most causes and very long-lived for some. 

There is little doubt that, ex-post, such "pulses" could be read into the 
data, but this is not the proper place to discuss the pulses' reality. 

Extrapolation of multifractals and an ominous and possibly inconceivable 
implication. This brief paragraph simply draws attention to Section 5.4. 

4.12 Possible directions for future work 

A sketch of directions cannot be comprehensive and comprehensible, 
without detailed acquaintance will further developments of the theory 
which are necessarily postponed to M 1997N,H. 

5. THE DISTINCTION BETWEEN MILD AND WILD VARIABILITY 
EXTENDS FROM RANDOM VARIABLES TO RANDOM OR 
NON-RANDOM SELF-AFFINE FUNCTIONS 

As applied to discrete-time sequences of independent random variables, 
the notions of "mild" and "wild" were discussed in Chapter E5. This 
section moves on, to establish the same distinction in two additional 
classes of functions: the continuous time grid-free random self-affine func­
tions discussed in Section 3 and the grid-bound non-random self-affine 
cartoon functions discussed in Section 4. Both classes involve numerous 
"either-or" criteria that sort out diverse possibilities: continuous or not, 
unifractal or not, and, in the cartoon case, unibox or not. But none of 
these "either-or" criteria is more important than the distinction between 
mild and wild. 

The fact that one can extrapolate those notions to a non-random 
context is a special case of the general and important fact, already men­
tioned in Section 4.1, that fractality is often an excellent surrogate for ran­
domness. The fact that this section is restricted to self-affine functions 
brings a major simplification, as compared to Chapter E5: there will be no 
counterpart as slow randomness. 
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Here is a summary of this section's conclusions. True WBM and its 
cartoons CCWBM) exhibit mild variability. The remaining processes 
described in Section 3 and other cartoons described in Section 4 contradict 
mildness in diverse ways, alone or in combination. Those contradictions 
exemplify different possible forms of wild variability. Thus, "Noah wild" 
recursive functions are cartoons of discontinuous wildly random processes 
whose jumps are scaling with a < 2. "Joseph wild" recursive functions are 
cartoons of Ccontinuous) Gaussian processes called fractional Brownian 
motions. The "sporadic wild" recursive functions are cartoons of wildly 
random processes that I called sporadic because they are constant almost 
everywhere and supported by Levy dusts Crandom versions of the Cantor 
sets.) 

5.1 The notions of mild and wild in the case of random functions 

The basic limit theorems. Given that self-affinity forbids slow randomness, it 
suffices to show that the limit theorems that define mildness remain mean­
ingful beyond random sequences of independent identically distributed 
variables. For many purposes - including the present one - those theo­
rems are best split into three parts, each concerned with the existence of a 
renormalizing sequence ACD, such that 'L;=IX(t)/ACD - BCt) has a non­
degenerate limit as T -+ 00. 

LLN. When such a limit exists for B = 0 and ACD = T, X satisfies the 
law of large numbers. 

GLT. When there exists two functions, ACD and BCD, such that 
X'f.CDACD - BCD converges to the Gaussian, X satisfies the central limit 
theorem with Gaussian limit. 

FLO. When ACD = TI/2, XCt) satisfies the Fickian law of diffusion, which 
says that diffusion is proportional to ,fT. 

Those theorems hold for independent Gaussian random variables such 
as the Gaussian, which deserved in Chapter E5 to be called mildly random. 
But all three theorems fail for independent Cauchy variables. And wild 
variables are those for which one or more of those three theorems fail. 

5.2 Extrapolation of recursive cartoon constructions as an lIecho" of 
interpolation 

To show that LLN, GLT and FLO have exact counterparts for the extrapo­
lated non-random "cartoons" in Figure 1, and that those counterparts 
statements may be true or false, we must first extrapolate the recursive 
construction of our cartoons. The conclusion will be that mild variability 
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is found only in the cartoon of Wiener Brownian motion. Every other 
cartoon exemplifies a form of wild behavior, with one added possibility to 
be mentioned momentarily. 

A complete self-affine fractal shape is not only infinitely detailed, but 
also infinitely large. This infinitely fine detail is absent in the case of 
sequences of random variables in discrete time and has no significance in 
either physics or finance. The sole reason why Section 4 did not use 
extrapolation is because interpolation is far easier to describe, study, and 
graph. The k-th level of extrapolation can also be called level-{ - k) of the 
construction. 

First examine the case where each level-l box is obtained from the ori­
ginallevel-O box by reduction of ratio bt horizontally and bx vertically. A 
straightforward procedure achieves both k levels of interpolation and k 
levels of extrapolation: it suffices to start with the prefractal inte~olate 
pushed to the 2k-th level of interpolation and dilate it in the ratios bt hor­
izontally and b~ vertically. This dilation transforms each level-{ - k) box 
into a unit square. 

While interpolation is a uniquely specified procedure, extrapolation is not. In 
order to specify it, it is necessary to first select the fixed point of the 
dilation. The simplest is the origin 0 of the axes of t and x. However, this 
is not the only possible choice: the fixed point can be the bottom left or 
upper right comer of any box in the generator (or the limit of a sequence 
of such points). The most natural procedure is to select the fixed point at 
random; in this sense, all extrapolated self-affine shapes are intrinsically 
random. (Interpolated sets do not become random until all selects an 
origin, but this is an optional step that one may not need to face.) 

Observe, however, that the fixed point cannot be located on a vertical 
interval of the generator. If extrapolation is attempted around such a 
point, the interval it contains will lengthen without bound, into an infi­
nitely large discontinuity characterized by H = O. (It is also impossible to 
select the fixed point on horizontal interval of the generator. The extrapo­
lation will lengthen this interval without bound, into an infinitely long gap 
characterized by H = 00. ) 

5.3 The notions of mild and wild in the case of extrapolated cartoons 

We shall examine the law of large numbers and the Fickian law of dif­
fusion. 

Counterparts of the law of large numbers (LLN). Several cases must be distin­
guished. 
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• The unifractal case. The function varies in clock time, H is unique 
with H.s; I, and aX - (M)H for every t. If so, the sample average is 
ax/ M - (M)H - 1. It follows that the LLN holds and the limit is O. 

• The mesofractal case. The function varies in fractal time, and H takes 
a unique non-degenerate value H < I, except that in interpolation, H = 0 for 
points in a discontinuity. In extrapolation, the fixed point is never in a 
discontinuity; therefore, the LLN holds. 

• The multifractal case. The function varies in multifractal time, and in 
interpolation replaces the single H by a collection of Hi' some of them > 1 
while others < 1. One can show that if the fixed point is chosen at 
random, LLN foils with probability 1. The set of fixed points for' which 
LLN holds is very small (of zero measure). We shall return to this issue 
in Section 5.3. 

Absence of counterpart of the central limit theorem (CLT). No choice of 
A(T) makes X(T)/ A(T) converge to a non-trivial limit. This is part of the 
price one has to pay for the replacement of randomness by non-random 
fractality. 

Counterparts of the Fickian law of diffusion (FLD). One tends to view the 
Fickian form A(T) = IT as a simple corollary of the Gaussianity of the 
limit. But it is not. When Hi = H for all i, only A(T) = yH makes X(T) / A(T) 
oscillate without end, rather than collapse to 0 or 00. The Fickian law of 
diffusion is satisfied when H = 1/2. This requirement allows the cartoon 
of WBM, of course. Mesofractal cartoons also allow H = 1/2, but a careful 
study (which must be postponed to M 1997N and 1997H) suggests that 
this case is of limited interest. 

5.4 An ominous and possibly inconceivable implication of the 
extrapolation of multifractals 

Thus far, the passage from fractals to multifractals deliberately avoided 
conceptual roadblocks and proceeded in as low a key as possible, but for 
the next topic a low-key tone would be hard to adopt. In the Gauss­
Markov universe and related processes, the effects of large excursions are 
well-known to be short-lived and to regress exponentially towards the 
mean. The multifractal world is altogether different and the following 
inference gives a fresh meaning to the term, "wildness". 

Consider a function x(t) drawn as a multifractal cartoon of the kind 
examined in Section 4, with both t and x varying from 0 to 1. Now hold 
M constant and extrapolate to a time interval of length 1 placed at a dis­
tance T away from the original [0,1]. A striking result concerns the incre-



E6 ¢ ¢ ... PANORAMA OF SELF-AFFINE VARIABILITY 197 

ments ax of x(t) over that increasingly distant interval. As T -> 00, those 
increments will not regress at all. For example (but we cannot stop here for 
a proof), the average of I axl llH will increase without bound, like T to the 
power - T D( - 1) > 0, if that power is finite, and even faster otherwise. 

In words, exponential regression to the mean is replaced by a power 
law "explosion." We already know that tail lengths explode as one 
interpolates, and now find that the same is true as one extrapolates. 

To understand intuitively the explosion that accompanies extrapo­
lation, the easiest is to reinterpret Figure 5, by imagining that it relates to 
time span much longer than 1 and that the unit time interval from which 
one will wish to extrapolate is chosen at random. We know that it is in 
the nature of interpolation for multifractals that a randomly chosen short 
interval will with high likelihood fall within a region of low variation (and 
a very short interval will fall within a region of very low variation.) A cor­
ollary is that the variation is likely to be wilder outside the unit interval 
than it is inside. 

The most likely response to this wildly "unstable" scenario is the 
usual one: to argue that, well before any explosion occurs, the process is 
bound to "cross over" to another process obeying different rules. Be that 
as it may, the consequences of this scenario are fascinating, and will be 
explored in a more suitable context. 



E7 

Rank-size plots, Zipf's law, and scaling 

.. Abstract. Rank-size plots, also called Zipf plbts, have a role to play in 
representing statistical data. The method is somewhat peculiar, but 
throws light on one aspect of the notions of concentration. This chapter's 
first goals are to define those plots and show that they are of two kinds. 
Some are simply an analytic restatement of standard tail distributions but 
other cases stand by themselves. For example, in the context of word fre­
quencies in natural discourse, rank-size plots provide the most natural and 
most direct way of expressing scaling. 

Of greatest interest are the rank-size plots that are rectilinear in log-log 
coordinates. In most cases, this rectilinearity is shown to simply rephrase 
an underlying scaling distribution, by exchanging its coordinate axes. This 
rephrasing would hardly seem to deserve attention, but continually proves 
its attractiveness. Unfortunately, it is all too often misinterpreted and 
viewed as significant beyond the scaling distribution drawn in the usual 
axes. These are negative but strong reasons why rank-size plots deserve 
to be discussed in some detail. They throw fresh light on the meaning 
and the pitfalls of infinite expectation, and occasionally help understand 
upper and lower cutoffs to scaling. .. 

THIS LARGELY SELF-CONTAINED CHAPTER covers a topic that goes 
well beyond finance and economics and splits into two distinct parts. 
Hence, the points to be made are best expressed in terms of two definite 
and concrete contexts. The bulk is written in terms of "firm sizes," as 
measured by sales or number of employees, but would be unchanged if 
firm sizes were replaced by such quantities as city populations. The 
second context to be invoked, word frequencies, warrants a digression 
from this book's thrust, if only because the straightness of a log-log rank­
size plot is explained most readily and simply in that context. 
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Restatement of the probabilists' notation. A capital letter, say U, denotes 
a quantity whose value is random, for example the height of man or the 
size of an oil reservoir selected at random on the listing of the data. The 
corresponding lower case letter, say u, denotes the sample value, as meas­
ured in numbers of inches or in millions of barrels. 

1. INTRODUCTION 

1.1 Rank-size plots for concrete quantities 

A concrete random variable is a quantity that is measured on an 
"extrinsic" or "physical" scale. Humans are measured by height, firms by 
sales or numbers of employees, and cities by numbers of iphabitants. More 
generally, statistical quantities such as "height" and "number of 
inhabitants" are originally defined in a non-stochastic context. Their phys­
ical scale serves to rank those random variables by increasing or 
decreasing value, through either F(u) = Pr{U:S; u} or the tail distribution 
P(u) = 1 - F(u). 

The concrete reality that underlies the notions of F(u) and P(u) can be 
also represented in the following alternative fashion. The first step is to 
rank the elements under investigation by decreasing height, size, and 
number. The largest item will be indexed as being of rank r = 1; the 
largest of the remaining items will be of rank r = 2, and so on. The second 
step is to specify size, or any other suitable quantity Q, as a function of 
rank. One way to specify the distribution of a random quantity is to 
specify the corresponding function Q(r). 

By definition, Q(r) varies inversely with r: it decreases as r increases. 
Granted the possibility of more than one item of equal size, Q(r) must be 
non-increasing. This is the counterpart of the fact that F(u) and P(u) are 
non-decreasing and non-increasing, respectively. 

Special interest attaches to the positive scaling case, when the assertion 
that Q varies inversely with r can be strengthened to the assertion that Q is 
proportional to the inverse of r, or perhaps that log Q varies linearly with 
log r. Unfortunately, some careless rank-size studies confuse different 
meanings of "inverse variation." 

1.2 "Static" rank-frequency plots in the absence of an extrinsic scale 

The occurrence of a word in a long text is not accompanied by anything 
like "a human's height" or "a city's number of inhabitants". But there is a 
simple and beautiful way out. Even when extrinsic "physical" quantities 
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are not present, every random event involves at least one intrinsic quan­
tity: it is the event's own probability. 

Thus, in the case of word frequencies, rank-size does not involve the 
usual functions Feu) and P(u), but begins with a function Q(r) that gives 
the probability of the word whose rank is r in the order of decreasing 
probabilities. To some authors, this looks like a snake biting it's tail, but 
the paradox is only apparent and the procedure is quite proper. In the 
scaling case, log Q varies linearly with log r. 

Furthermore, this ranking happens to be justified a posteriori in the 
theory of word frequencies introduced in M 1951, sketched in Section 1.2.4 
of Chapter E8, and developed in M 1961b. That theory introduces a quan­
tity that is always defined and often has desirable additivity properties 
similar to those of "numbers of inhabitants;" it is the function - log p, 
where p is a word's probability. By introducing -log p, the ranking based 
on frequency is reinterpreted as conventional ranking based on - log p 
viewed as an intrinsic random variable. In practice, of course, one does 
not know the probability itself, only an estimate based upon a sample fre­
quency. 

There are strong reasons to draw attention to a wide generalization of 
my derivation of the law of word frequencies. One reason is that it may 
bear on the problem of city population via a reinterpretation of the central 
place theory. A second reason is that this generalization involves a phe­
nomenon described in the next section, namely a built-in crossover for low 
ranks, that is, frequent words and large city population. The reader inter­
ested in the derivation is referred to M 1995f, and the reader prepared to 
face an even more general but old presentation is referred to M 1955b. 

1.3 Distinction between the terms, Zipf distribution and Zipf law 

The term "Zipf law" is used indiscriminately, but the concepts behind this 
terms distribution and law are best kept apart. The fairest terminology 
seems to be the following one. 

ZiP[ distribution will denote all instances of rank-size relation Q(r) such 
that, with a suitable "prefactor" <1>, the expression 

Q(r) _ <l>r- 1/0 

is valid over an intermediate range of values of r, to be called scaling 
range. This range may be bounded by one or two crossovers, r min ~ 1 to 
rmax::::; 00, to which we return in Section 1.7. Allowing crossovers automat-
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ically allows all values of a > O. When a < 1, the scaling range need not, 
but can, extend to r --> 00 with no crossovers; when a ~ 1, the scaling range 
is necessarily bounded from above. 

Zipf emphasized the special case a = 1. If so, Q(r) does not only vary 
inversely with r but varies in inverse proportion to r. In the special case 
of word frequencies, Zipf asserted a = 1 and <D = 1/10, which are very 
peculiar values that demand r max < 00. 

Zipf law will denote all empirical cases when the Zipf distribution is 
found to hold. 

1.4 Zeta and truncated zeta distributions 

"Zeta" and "truncated zeta" distributions are the terms to be used to 
denote exact statements valid for all values of r. 

The zeta distribution. When a < 1, hence 11 a> 1, the function 

00 

~(1/a) = 2.>-1/a. 
5=1 

is the mathematicians' Riemann zeta function. This suggests "zeta 
distribution" to denote the one-parameter discrete probability distribution 

-l/a 
per) = --==,---:r __ _ L tooos- 1/a 

r- l/a -l/a 
~(11 a) = <Dr . 

5=1 

In the coordinates log r and log per), the zeta distribution plots as an 
exact straight line of slope - 1/ a. Clearly, 

00 00 00 

f s-l/ads= __ a_< ",,",s-1Ia<1+f S- 1/ads= __ 1_. 
1 1-a L 1 1-a 

5=1 

When a is near 1, the two bounds are close to each other. 

Under the zeta distribution, the relative size of the largest firm is 
~-1(11 a). The joint share of the r largest firms is 
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r 

~-l(l/a) 2>-1/a. 

5=1 

The ratio: sum of sizes of firms of rank strictly greater than r, divided 
by the size of the r-th firm, is 

As r increases, the sum in braces becomes increasingly closer to the inte­
gral r,x- lIadx, and the preceding ratio becomes 

rO -l/aJrl/a ra 
(l/a -1) (l- a) 

Truncated zeta distribution. When a < 1 and V > - 1, define 

00 00 

~(l/a, V) = I s-l/a = I (r + V)-l/a. 

5=V+l 1 

I use the term "truncated zeta distribution" to denote the two­
parameter discrete probability distribution 

( V)-l/a 
r + (-l/a 

per) = ~(l/a, V) = <I> r + V) . 

Plotted in the coordinates log r and log per), the tail is straight, of 
slope - II a, as in the truncated zeta distribution, but this tail is preceded, 
for small ranks, by an appreciable flattening that extends to values of r 
equal to a few times V. 

1.5 Dynamic evolution of a rank-size plot as the sample-size increases 

The considerations in Sections 1.1 and 1.2 are called static because they 
concern a fixed sample. Some sort of dynamics enters if the rank-size plot 
is continually updated as data are drawn from this sample. Let us show 
that the examples of Section 1.1 and 1.2 behave very differently from that 
viewpoint. In other words, the commonality of structure that seems to be 
implied by the term Zipf law is misleading. 



E7 <> <> RANK-SIZE PLOTS, ZIPFS LAW, AND SCALING 203 

Firms. Create an increasing sample of firms from an industry by 
picking them at random. One approximation is to follow a list ordered 
lexicographically. As the sample develops, the largest firm will repeatedly 
change, and a given firm's rank will increase as new firms flow in. The 
rank-size plot will grow by its low rank end. Furthermore, however long a 
list of prices may be, it is certainly finite. Therefore, as the sample size 
increases, the straightness of the rank-size plot must eventually break 
down at the high-rank end. Additional reasons for breakdown will be 
examined in the next sub-section. 

Words. By way of contrast, increase a sample of words by reading a 
scrambled text, or perhaps a book by James Joyce. The most probable 
word will soon establish and maintain itself and other words' rank will 
gradually settle down to those words' probabilities. Experience suggests 
that in most cases the number of distinct words is so extremely high, that 
fresh words keep being added as the sample increases. Therefore, the 
rank-size plot will grow at its high rank end. 

1.6 Large estimated values of a are not reliable, hence not significant 

The scaling range from (rmin, Qmax) to (rmax' Qmin). might be reported in the 
form of a "number of decades," defined as the decimal logarithm of either 
of two ratios, namely loglO(QmaJQmin) or 10glO(rmaJrmin). When a -1, the 
two ratios are close to each other. When a is large and 1/ a is small, the 
two ratios differ significantly. One is tempted to report the larger of the 
two values, loglo(rmaxlrmin), but the proper value is the smaller. The 
reason is that the intrinsic quantity is not r but Q. The issue is discussed in 
Chapter E3. 

For example, consider the reports of phenomena for which 1/a = 1/4 
holds over a seemingly convincing range of 2 decades in terms of r. 
Restated in terms of Q, this range reduces to an unconvincing one-half 
decade. 

1.7 The many forms taken by the crossovers 

The difference Section 1.5 draws between the cases of firms and words is 
essential from the viewpoint of the width of the scaling ranges from 
(rmin, Qmax) to (rmax, Qmin). Let us run through a few examples. 

Personal income. Scaling was observed by Pareto and is discussed in 
several chapters of this book. But scaling breaks down for large values of 
the rank, because small incomes do not follow a scaling distribution. There 
is also an operational reason for breakdown: small incomes are neither 
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defined nor reported with accuracy. As a result, the log-log rank-size plot 
is expected to cross-over for high values of r into a near-vertical portion. 
Once again, however, and this is important to the discussion of incomes in 
this book, the evidence suggests that scaling holds for unboundedly large 
incomes, implying a straight log-log plot for small ranks. An exception is 
that the straightness is not expected to hold for r = 1, because, as Section 
3.2 will show, the largest value U(1, N) is expected to have extraordinarily 
high sample scatter. 

Firms. This notion breaks down into artificiality and irrelevance for 
very small sizes, because of legal reasons to register or not to register. 

City sizes. Both ends of the graph are affected by artificiality, for 
example by political boundaries that represent nothing worth studying 
quantitatively. 

Word frequencies. As already mentioned, Section 1.2.4 of Chapter E8 
describes my reasons why one should expect word frequencies to follow 
Zipf's law in the form Q(r) - <l>r-l/u . But those reasons rely on limit 
theorem of probability and say nothing about small values of r. In 
general, the model yields unrelated values of a. and <1>, which fail to satisfy 
the equality <1>- 1 = ~(l/ a.) that is characteristic of the zeta distribution. 
When such is the case, a crossover is inevitable. One can define a cor­
rection factor V by the relation 

and use as approximation the truncated zeta expression 

Q(r) = <I>(r + V)-l/u. 

In the context of word frequencies, this relation is often referred to as the 
Zipf-Mandelbrot law. 

Summary. All told, the expectation that one or both ends of the curve 
will cross over implies that the estimation of a. must often neglect the 
values of very low or very high rank. 

Analytic expressions for the behavior of a non-scaling distribution beyond the 
scaling interval: limitations to their usefulness. Many specialists in curve­
fitting insist that one can account for crossovers by replacing a linear log, 
log plot, by the plot of a second-order polynomial. When the second 
order is not enough, one moves to a polynomial of higher order. 
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A different approach is suggested by a different tradition that is very 
strong both in physics and in economics (where it goes back to Pareto; see 
(Chapter E2, Section 3.3). In that tradition, one multiplies r- l/n by 
r- l/n exp( - (3r), or perhaps by a factor that varies more slowly than an 
exponential, such as r- l/n I log r. 

Those "all-purpose" traditional corrective terms may improve the fit, 
or broaden the range in which a single formula prevails. But they are not 
useful, in my judgement, and draw attention away from the impact of 
approximate straightness. The only corrective terms I find valuable are 
not those imitated from physics, but those suggested by theory. 

1.8. The power of words and pictures 

Words are powerful. Probabilists who now speak of distribution used to 
speak of law, which sounds or "feels" more impressive. "Scaling" distrib­
ution and "power-law distribution" are neutral terms that do not seek 
mystery and do not promise much in common between the various occur­
rences of scaling. By contrast, experience shows that "Zipf's law" is a 
repulsive magnet to professional students of randomness, but an attractive 
magnet for non-professional dabblers of all kind. The same is true of "lI! 
noise," a term that necessity often forces me to both use and fight. Its 
near-synonym "self-affine function" makes no ringing statement, but expe­
rience proves that "II! noise" suggests a single underlying phenomenon, 
which happens to be very far off the mark. 

Zipfs law as attractor. Zipf 1949 put forward the bold claim that 
scaling is the "norm" for all social phenomena, while for physical phe­
nomena the "norm" is the Gaussian. His claims created quite a stir when 
I was a post-doc at MIT, in search for unusual facts to investigate. 

In 1953, I gained durable praise from linguists for having shown that a 
straight rank-size plot for word frequencies is devoid of meaning for lin­
guistics; there is nothing in it for syntax or semantics. However, Zipf's 
law proved interesting in probabilistic terms and (as tolq in Chapter 42 of 
M 1982F{FGN}) somehow started me on a path that led, first, to finance 
and economics, and eventually to fractals. 

Zipfs law as repeller. Very different is the conventional conclusion, 
already mentioned in Chapter E4, that is recorded in Aitchison & Brown 
1957. On pp. 101-2, we read that "A number of distributions are given by 
Zipf, who uses a mathematical description of his own manufacture on 
which he erects some extensive sociological theory; in fact, however, it is 
likely that many of these distributions can be regarded as lognormal, or 
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truncated lognormal, with more prosaic foundations in normal probability 
theory." This statement proves two things: a) Aitchinson and Brown did 
not feel it necessary to check; b) they did not know what they were 
talking about. Few other technically competent persons knew. 

As I write in 1997, the "bad vibes" that overselling had created in the 
nineteen fifties are forgotten, and Zipf's law is again oversold as a fresh 
and mysterious key to complexity or to a "linguistic" analysis of DNA 
structure. Those old dreams should crawl back in some hole. 

2. FAST TRACK FROM A SCALING DISTRIBUTION TO A 
STRAIGHT RANK-SIZE PLOT 

The themes of this section will be discussed again rigorously in Section 3. 

2.1 From scaling to straight rank-size plots 

The quantity U is called scaling when one has the relation 

Pr{U ~ u} = probability that U ~ u = P(u) - Fu - Q. 

a is called scaling exponent, and F is a numerical prefoctor that includes a 
scale foctor. The sign - expresses that the relation is valid only for large 
values of u. Scaling does not exclude negative values of u, but this 
chapter does not dwell on them. 

Assimilating the relative number of cases to a probability, a sample 
made of N independent drawings from a scaling distribution yields 

The quantity Nr {U ~ u} becomes the rank r of an item in the ordering by 
decreasing frequency, population or income. Once again, the biggest firm 
has rank r = 1 and size U(1, N), the second biggest has rank r = 2 and size 
U(2, N), etc .. 

Plotting this expression on transparent paper and turning the sheet 
around the main diagonal of the axes will yield u as function of r, 
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Diagrams are not neutral, and different presentations of the same set of 
data emphasize one thing or another. The eye tends to be drawn to the 
top of a figure. In the plot of Pr{U> U} - U- a, this position contains the 
many cases where u is small, while the other cases hide in the tail. In the 
plot of u - r- lIa, the opposite is true. When the values of u that matter 
most are the few largest ones, they are seen best in rank-size plots. 

2.2 Relative size, the prefactor and criticality of the exponent a. = 1 

Careful discussions of the rank-size relation consider the relative size 

( N) u(r, N) 
UR r, = N 

Lu(s,N) 
5=1 

We shall write 

This formula involves a new prefactor <l> for which a numerical value 
is often reported with no comment. This implies the belief that <l> is inde­
pendent of N. This strong statement is not obvious at all, in fact, it 
expresses a specific and unusual property. An essential role of this 
chapter is to tackle the case where the scaling range continues to umax = 00, 

and to give necessary conditions for the prefactor <l> to be independent of 
N. One condition is that the exponent should satisfy a. < 1. Another con­
dition is 1 < a. < 2 combines with EU = O. In all other scaling cases, we shall 
see that <l> is a decreasing function of N. 

3. CAREFUL DERIVATION: FROM A SCALING DISTRIBUTION TO 
A STRAIGHT RANK-SIZE PLOT 

This Section begins informally and becomes rigorous thereafter. 

3.1 Typical absolute size as function of rank 

A) Select the unit of "firm size" so that the tail distribution is 

Pr{U ~ u} = P(u) - u- a, 
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and take a random sample of N firms. A "typical value" of the number of 
firms larger than u is the expectation 

B) Exchange the role of variable and function, rank the firms in 
decreasing order of size, and define U(r, N) as the size of the r-th largest 
firm in this ranking. Inverting the preceding function for a group of N 
firms, the number of those of size U(r, N) or larger, will "typically" be 

C) Draw N firms independently from the same scaling distribution 
and rank them as in B). For given r, a "typical value" of U(r, N) will be 

3.2 Rigorous results replacing the #typical" values in Section 3.1 

The standard statistical theory of extreme values confirms that, as the 
number of firms in an industry increases, the size of the largest increases 
proportionately to N1/a. The precise results are as follows. 

Theorem concerning weighting by N1/a. (Many references, including Arov 
& Bobrov 1960, Formula 19). As N -+ 00, the sampling distribution of the 
ratio U(r, N)}T l/a converges to the truncated gamma distribution 

1· P { U(r, N) } 1 foo r - 1 - zd 
ImN _ oo r N 1/ a < x = [(k) x-a Z e z. 

The most probable value of U- a(r, N) / N is r - 1, giving some legiti­
macy to U - (r - 1)-l/a. More importantly, 

ll'm E{ [U(r, N)]q } - [(r - q/a) when r> q and = 00 otherwise. 
N-oo Nq/a - [(r) a' 

Double asymptotics. As N -+ 00 and r -+ 00, the Stirling formula yields 
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For q = 1, this Stirling approximation for r ...... 00 agrees with the 
"typical value" lI(r, N). Moreover, as N ...... 00 and r ...... 00, the variability 
factor EU2 I (EU)2 - 1 tends to 0; more generally, U(r, N)~ lIa becomes for 
all practical purposes non-random. This was implicitly taken for granted 
in the heuristic argument of Section 2, and has now been justified. 

Preasymptotic behavior. The Stirling formula is not a good approxi­
mation until very large values of r are reached. 

When a is estimated from the low range portion of the plot, there is a 
clear statistical bias. It is due to averaging of U(r, N) for fixed r, therefore 
represents a self-inflicted complication due to the use of rank-size plots. 

The fact that E{U(r, N)} = 00 for r < lIa is unfortunate; it is avoided 
using the following result. 

Theorem concerning weighting by U(1, N). (Arov & Bobrov 1960, formula 
21) As N ...... 00, the sampling distribution of the ratio U(r, N)IU(1, N) con­
verges to 

It follows that 

Asr ...... oo, 

1. P { U(r, N) } ( a r-1 
ImN -co r un, N) < x = 1 - 1 - x) . 

lim E{[ U(r, N) ]q} = rn + q I a)r(r) 
N-co U(1,N) nr+qla) 

lim E{[ U(r,N) ]q}-r(l !L) -q/a 
N-co U(1,N) + a r . 

For q = 1, this formula agrees with the ratio of "typical values" 
lI(r, N)/1I(1, N), except for the prefactor r(1 + 1/a) which is greater than 1, 
and implies that U(r, N) I U(1, N) remains scattered even when it is large. 
Since the variability of U(r, N) tends to 0 as r ...... 00, the variability of 
U(r, N)IU(1, N) solely reflects the scatter of N1/a IU(1, N). Of course, the 
moments of N1/ aIU(1,N) follow from the fact that ~l/aU(1,N) follows 
the Frechet distribution Pr{X < x} = exp( - xa). 

Clearly, 
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hence, 

lim E{ U(r, N)}a 1 
N-oo U(1, N) r· 

This means that E{U(1, N)- a} is near 1. The sizes of firms of low rank 
are very sample dependent, hence are not necessarily close to their typical 
values. To avoid this variability, it is best to take a different point of com­
parison. 

Weighting U(r, N) by the cumulative size of the firms of rank higher than r. 
From the rank-size argument, the ratio of the sizes of the r' largest firms 
and the r" largest firms is approximately equal to 

1 + ... s-l/a + ... r,-l/a 
l+···s- l/a +···r,,-lIa· 

This expression is the same as for the zeta distribution. It varies con­
tinuously with a; for a near one, and large r' and r", its order of magni­
tude is log r' / log r". 

3.3 Additional considerations 

Logarithmic plots. Log-log plots involve the expectation of 
10g[U(r,N)]/log[U(1,N)] rather than of [U(r,N)/U(l,N)]a. This change 
brings no difficulty as long as r is not too small: U(r, N) clusters tightly 
around its own expectation, which validates the approximation 

E{ log U(1, N) } _ E[ log U(1, N)] _ EV(1,N) 
log U(r, N) E[ log U(r, N)] - EV(r,N) , 

where V(r, N) is r-th largest among N exponential variables V = logp. 

Visual estimation of a from the rank-size plot on doubly logarithmic paper. 
Despite the encouraging values of the various expected values reported in 
this section, the small r sampling distributions of U(r, N) / U(1, N) are 
usually too scattered for complete statistical comfort. As the term of com-
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parison, it is better not to use the size of the largest firm but rather a firm 
of rank as large as practical; the larger, the safer. This feature bears on the 
problem of the estimation of a. The usual procedure is to fit a straight line 
to the tail of log U(r, N) considered as a function of log r, and to measure 
the slope of that line. When this is done, the points of rank I, 2 or 3 are 
too sample-dependent, and should be given little weight. The resulting 
informal procedure can be approximated in several stages. 

The first approximation would be to choose two values of r (say r" = 5 
and r' = 20 ), and draw a line through the corresponding points on a 
doubly logarithmic graph; the sampling distribution of this estimator of 
alpha could be derived from the second theorem of this section. 

A second approximation is to choose two couples (r', r") and fit a 
straight line to 4 points. The sampling distribution would no longer be 
known exactly because the U(r, N) are so defined that they do not provide 
independent information about a, but the precision of estimation naturally 
increases with the number of sampling points. The commonly practiced 
visual fitting amounts to weighting the estimates corresponding to various 
couples (r', r"), thus eliminating automatically the outlying estimates and 
averaging the others. It would be desirable to formalize this procedure 
and informal visual fitting should be studied more carefully, but it does 
not deserve its shady reputation. 

3.4 Total industry size when U> 0 : contrast between the cases a > 1 
(hence EU < (0) and a < 1 (hence EU = (0) 

The size of the industry is the sum of the sizes of the N firms it contains, 
L~=lUs' While the arguments in Sections 3.1 and 3.2 hold for all a, it is 
now necessary to distinguish between a> 1 and a < 1. 

01) The case when a > I, hence EU < 00. Firm size being positive, EU> 0, 
and "common sense" and the tradition of practical statistics take it for 
granted that the law of large numbers hold, so that the total industry size is 
approximately N times the expected size of a randomly selected firm. 

02) The case when a < I, hence EU = 00. The inequality EU < 00 cannot 
and must not be taken for granted: it fails when the random variable U is 
scaling with a < 1. Many authors describe this feature as being 
"improper," and failed to face it. But it is not improper, and must be 
faced. 

Applied blindly to the case EU = 00, the law of large numbers claims 
that the total industry size is apprOximately infinite. This ridiculous result 
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shows that one can no longer rely on common sense that is based on 
expectations. 

Heuristically, if expectation is replaced by a different "typical" value, 
the total industry size is the sum of the above-written typical values 
ri(r, N) 

N N 

'2)Hs,N) =N1/aIs-1/a. 
5;1 5;1 

The most important feature is that the customary proportionality to N has 
disappeared. For very large N, it must be replaced by proportionality to 
N1/a. For moderately large N, 

Because of a < 1, the factor in N1/ a grows faster than the factor in N. 

3.5 Relative shares when U> 0: contrast between a > 1 and a < 1; when 
a < 1 and N -- 00, <I> has a limit and the largest addend does not become 
relatively negligible 

The two paths started in Section 3.3 continue in profoundly different fash­
ions. 

E1) The case a> 1. As N -- 00, (due to ?n0int C), the r -th largest firm 
increases proportionately to the power N1 a, and (due to point Dl» the 
sum of all firm sizes increases proportionately to N. 

As N -- 00, this ratio tends to zero. This is a familiar and widely used 
property; for example, the relative size of the largest of N Gaussian, expo­
nential, Poisson, Gamma, or lognormal variables becomes negligible. 

E2) The case a < 1. Heuristics. As N -- 00, both the r-th largest firm 
(due to point C» and the sum of all firm sizes (due to point D2» increase 
proportionately to the power N1/a. It follows that the relative share of the 
r-th largest firm behaves roughly like 
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r- l/a 

N Is-lla 
5=1 

213 

When size is measured by the work force, the preceding relation gives 
an estimate of the probability that a worker chosen at random is an 
employee of the r-th firm. 

E3) The case a < 1, continued. Rigorous results. Given its significance, 
the argument yielding iiir, N) must be scrutinized carefully. This 
assumption that the numerator and denominator are statistically inde­
pendent as N - 00 is false, but the conclusion is correct. Darling 1952 
shows that Ui1, N) indeed has a distribution that is asymptotically inde­
pendent of N. The formulas look forbidding and are not needed here, 
therefore, were put in the Appendix. 

3.6 Comments 

Chapter E9 will study the lognormal distribution, and show that this chap­
ter's uncomfortable conclusion can be "papered over" by asserting that the 
observed facts concern an ill-defined "transient", but it is better to face it 
squarely. Against the background of the usual practical statistics, the fact 
that it is possible for CI> to be independent of N is astounding. The usual 
inference, once again, is that when an expression is the sum of many con­
tributions, each due to a different cause, then the relative contribution of 
each cause is negligible. Here, we find, not only that the predominant 
cause is not negligible, but that it is independent of N. 

The reader may be reminded of the distinction that Chapter E5 makes 
between mild, slow, and wild fluctuations. Most scientists' intuition having 
been nourished by examples of mild randomness, the preceding conclusion 
is wild and "counter-intuitive," but it will not go away. 

APPENDIX A: THEOREMS CONCERNING LONG-RUN 
CONCENTRATION FOR THE WILD SCALING DISTRIBUTIONS 

Theorem (Darling 1952). There exists a family of distribution functions, 
G(I, a, y), a special case of the distributions G(r, a, y) which will be exam­
ined later, such that 
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N 

{ L Un - U(1, N) } 

(A) if 0 < a. < 1, limN _ooPr n = 1 U(1, N) ~ Y = G(1, a., y). 

N 

{ L Un - NE(W - U(1, N) } 

(B) if 1 < a. < 2, limN _ooPr n = 1 U(1, N) ~ Y = G(1, a., y). 

(C) if 1 < a. < 2 and EU "* 0, one has, in addition 

N 

. n=I - -I-l/a a 
{ 

LUn } 
hmN _ooPr U(I, N) ~ yuN = exp { - [y / E(W] }. 

The distribution G(1, a., y) cannot be written as a simple analytic 
A 

expression but its characteristic function G(o., z) is known. It is as follows: 

If 0 < a. < 1, G( a., z) = ----::-1--'1=-------
1 - a. fo (e izs - l)s- (a + Dds 

1 

If 1 < a. < 2, G(o., z) = --------I-=I~-------
-1 + izo. a. fo (e isz -1- isz)s-(a+IJds 

(a. - 1) J( 

The essential thing about G is that it does not reduce to the degenerate 
value 0 as is the case in the distributions cited in Section 5, but has finite 
and non-vanishing moments of all orders. It is important to note the fol­
lowing: when 1 < a. < 2, then NE(W must be subtracted from I,Un in 
order to make its expectation even to zero. If 0 < a. < 1, one finds 

N 

{ 
~ Un - U(1, N) } =_0. 

E U(I, N) 1 - a. . 
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Theorems (Arov & Bobrov 1960). These theorems generalize the results 
in Darling 1952 to firms of ranks 2, 3, etc.. We have the following: 

N 

{
I Un - U(1, N) - ... - U(r, N) } 

If 0 < a < 1, limN_coPr n=l U(r, N) ~ y = G(r, a, y), 

where the distribution G(r, a, y) relates to the sum of r independent 
random variables, each following the law of distribution G(1, a, y); in par­
ticular, its expected value is ra/(l- a), 

N 

{
I Un - NE(U) - U(l, N) ... U(r, N) } 

If 1 < a < 2, limN_coPr n=l U(r, N) ~ y = G(r, a, y). 

APPENDIX B: TWO MEASURES OF CONCENTRATION AND THEIR 
DEPENDENCE ON THE FINITENESS OF EU AND EU2 

To establish the usefulness of the rank-size rule and of the preceding 
heuristics, it is good to examine their bearing on existing techniques of sta­
tistical economics. 

B.l An index that measures inequality by a second moment 

Herfindahl proposed the following statistical index of inequality 

H= i{ U(s,N) }2 ~1. 
5=1 IUn 

This index has no independent motivation, and we shall see that its 
behavior is very peculiar. It is odd that it should ever be mentioned in 
the literature, even solely to be criticized because it is an example of 
inconsiderate injection of a sample second moment in a context where 
even the existence of expectation is controversial. Three cases must be dis­
tinguished. 
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The case where EU2 < 00. For large N, the law of large numbers applies 
to both U and U2 and yields 

The ratio EU2/ (EU)2 is a normalized second moment, and H is expected to 
depend inordinately on the sample size N, in a way that is inextricably 
intertwined with its dependence on the distribution. 

The case where EU = 00, in particular where U is scaling with 0 < a < 1. 
For large N, the law of large numbers applies to neither U nor U2• To 
obtain a first order of magnitude of H, one can take the heuristic step that 
uses the rank-size argument. This yields 

N N -2 

H - if = (a constant) Is-2Ia{Is-lIa} . 
1 s = 1 

As N --+ 00, this ratio tends to the positive and finite limit 

- 2 
H(a) = (a constant )1;;(2/ a)1;;- (1/ a). 

When a is close to 1, which is the value claimed for firm sizes, 

- 2 
Hoo(a) - (a constant )1;;(2/ a) (1 - a) . 

The values of H do not depend much on N, but it amplifies the statis­
tical fluctuations around the rank-size typical value. 

The case when EU < 00 but EU2 = 00, in particular when U is scaling and 
1 < a < 2. According to the rank-size argument, Herfindahl's index is of 
the order of ~ 2 + 2/ a and tends to 0 as N -+ 00. 

According to reports, Herfindahl's index is taken seriously in some 
publications. This is hard to believe. 

B.2 Lorenz curves 

As a measure of concentration, Lorenz proposed the function 
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xN 

IUCs,N) 
L(x) = ....::5.,,-,=,.:...1 __ _ 

N 

IUCs,N) 
5=1 

This function yields the proportion L(x) of the total size as function of 
the proportion x of the number of firms, starting from the largest. It is 
taken for granted that the function L(x) is obtained by a simple transfor­
mation from the size distribution F(u) = Pr{U ~ u}, and that the graph of 
L(x), to be denoted by ;£, is visually "more telling" than either the graph 
of F(u) or the corresponding rank frequency graph Q(r). 

Skeptics respond that Lorenz curves emphasize a concept of inequality 
that involves the whole distribution and may be very misleading because 
the data in the bell of the distribution are frequently very incomplete. 
However, Lorenz curves also encounter a more serious theoretical 
objection. Indeed, it seems to be implicitly assumed that;;e only depends 
as the degree of concentration within a sample, not on the sample size N. 
Let us show that this implicit assumption is correct when EU < 00, but not 
when EU = 00. For scaling distribution, the implicit assumption is correct 
for a > 1 but not for a < 1. 

A) For distributions with moments of all orders, Lorenz curves are 
theoretically unobjectionable. But their reputation for being visually 
telling is undeserved. 

Indeed, in terms of P(u) = Pr{U > u}, the number of firms of size 
greater than u is NP(u) and their share of the sum of all firm sizes is 
- NkSdP(s). One can therefore write relative numbers and relative shares 
as functions of u as follows: 

x = P(u) and L(x) = - LooSdP(S). 

This means that both x and L(x) are independent of N, and define a 
curve;;e. When N is small, the sample Lorenz curve will be made up of 
segments of straight line; but it will tend towards the well-defined limit ;;e 
as N- 00. 

For example, if U is scaling with a > 1, P(u) - u- a and the curve 
behaves as follows near the point L = 0; x = 0: 
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This behavior has an unfortunate by-product: :£ may be well-defined 
independently of L, yet fails to deliver on its promise of being "visually 
telling." Indeed, if a - 1 is small, a large number of derivatives of the 
function x(L) vanish at the point x = 0, meaning that the curve :£ has a 
contact of very high order with the axis x = O. On computer-drawn Lorenz 
curves, the exact order of this contact is not at all clear to the eye. As to 
old-time draftsmen, they near-invariably destroyed any evidence of contact 
by drawing Lorenz curves with a slope that is neither zero nor infinite 
near x= L =0. 

B) When U is scaling with a < 1, sample Lorenz curves are unjustified 
and misleading, because they are greatly dependent on sample size. 
Indeed, we know that the relative share of the r largest firms is inde­
pendent of N. Therefore, any prescribed ordinate L(x) will be achieved for 
an abscissa x that tends towards zero as N - 00. This means that for 
0< a < 1, the sample Lorenz curve will tend towards the "degenerate" 
limit made up of the lower edge and the right edge of the unit square. 
Hence, the sample curves for finite N will not be representative of any­
thing at all. In particular, sample Lorenz curves will depend even more 
critically upon the thoroughness with which small firms have been tabu­
lated. 

When U is scaling near the borderline value a - 1, the convergence of 
:£ to its degenerate limit is very slow, which makes :£ especially mis­
leading. 
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Proportional growth with or without 
diffusion, and other explanations of scaling 

• Abstract. However useful and "creative" scaling may be, it is not 
accepted as an irreducible scientific principle. Several isolated instances of 
scaling are both unquestioned and easy to reduce to more fundamental 
principles, as will be seen in Section 1. There also exists a broad class of 
would-be universal explanations, many of them variants of proportional 
growth of U, with or without diffusion of log U. This chapter shows why, 
countering widely accepted opinion, I view those explanations as uncon­
vincing and unacceptable. 

The models to be surveyed and criticized in this expository text were 
scattered in esoteric and repetitive references. Those I quote are the ear­
liest I know. Many were rephrased in terms of the distribution of the 
sizes of firms. They are easily translated into terms of other scaling 
random variables that are positive. The two-tailed scaling variables that 
represent change of speculative prices (M 1963b{E14}) pose a different 
problem, since the logarithm of a negative change has no meaning. • 

THIS CHAPTER MEETS HEAD-ON the legitimate and widespread wish 
to explain the prevalence of scaling in finance and other fields. 

Section 1 describes scattered instances in which scaling is explained 
fully by a brief and mathematically straightforward argument: by elimi­
nating an intrinsic variable between two intrinsically meaningful exponen­
tials. Because there are so few of them, those instances acquire an 
otherwise undeserved standing. 

Section 2 provides a careful analysis and critique of a typical attempt 
to explain scaling by multiplicative diffusion of U, that is, ordinary 
("Fickian") diffusion of log U. Deep reservations about this approach 
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motivated a preference for viewing scaling as a postulate that brings econ­
omies of thought, good fit and a useful basis for practical work. The 
scaling distribution must be thoroughly understood, and consequences 
explored, without waiting for explanation. 

Section 3 describes a classic first-order model, in which randomness is 
limited to a transient, and models involving permanent randomness. 

Reasons why this text came to be. In the late 1950s and early 1960s, 
much of my research concerned scaling in economics. But questions I 
found fascinating kept being described by others as not worth detailed 
study. Stated in today's vocabulary, the reason was that scaling was 
viewed as haging been explained by very simple arguments involving a 
"principle of proportional effect." Therefore, scaling "should be 
expected," and there was not much to it. M 1982F{FGN} alludes to those 
events in Chapter 42, titled "The Path to Fractals." 

My constantly restated response involved several separate points. 

A) A successful explanation could be described as proceeding 
"upstream" from scaling, while the consequences scaling proceed 
"downstream." In the case of scaling, upstream considerations happen not 
to affect my downstream investigations and the latter prove to be sur­
prising or even shocking, therefore, extremely worthwhile. 

This first response rarely convinced my prospective audience, making 
additional responses necessary. 

B) A careful look shows that, with a few exceptions, the existing 
upstream explanations are oversold in one or more of several ways. 

B1) Nearly all lean heavily on probability limit theorems that concern 
the state of a system in a "long-run when we shall all be dead" (to quote J. 
M. Keynes once again). Arbitrarily set initial conditions do not affect the 
limit, but the pre-asymptotic behavior may be poorly approximated by the 
theoretical asymptotics. Chapter E9 shows that this "defect" is especially 
nefarious when the limit is lognormal. 

B2) In physics, the long-run is attainable, and "universality" often pre­
vails. This grand word means that the same result is obtained from seem­
ingly different assumptions, therefore details do not matter much. In 
particular, the interaction between particles leads to the same equilibrium 
distribution whether the total energy of a system is fixed, or allowed to 
fluctuate. To the contrary, would-be models of scaling outside of physics 
are overly sensitive to the choice between these last two assumptions, as 
will be argued in Section 2. 
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B3) In addition to clearly stated assumptions, many explanations of 
scaling use additional hypotheses that are rarely stated and by no means 
compelling. Seemingly imperceptible changes of unstated assumptions 
often yield a final outcome that is completely different and usually non­
scaling. For example, they generate the lognormal distribution, instead of 
the scaling distribution that one wishes to explain. 

B4) Some would-be "explanations" are circular and/or mathematically 
incorrect. It will be seen that diffusion demands second-order differential 
equations, yet some authors inplicitly believe that the same effects can be 
obtained by using a first-order difference equation. To achieve a scaling 
output, such models must begin with a scaling input. 

The above-listed features were either not noticed or not appreciated. 
Reluctantly, I wrote M 1959s, which overwhelmed many readers, then M 
1963g, which took a broader view. But at that point, the sudden wide 
interest in M 1963b{EI4} seemed to eliminate the need for M 1963g, and 
that text was left unpublished. Unfortunately, the hopes that led to ques­
tionable models prove to be durable. This motivates the present text, 
loosely based on M 1963g, with two short papers added in appendices. 
This survey leaves aside a very novel generation of scaling via 
multifractals (M 1972j{NI4}); Chapters El and E6 mention and use them to 
model price variation. 

Aside from Section 1.2.4, and the criticism of diffusion models, this 
chapter surveys the work of others. It does not pretend to be either 
exhaustive, or entirely accurate in terms of historical credit. But it hopes 
to discourage the tedious process of piecemeal and independent discovery 
of models that are essentially eqUivalent and equally unconvincing. This 
text should provide the reader with background to tackle other questions 
of interest. 

1. EXCEPTIONAL SCALING DISTRIBUTIONS THAT ARE 
COMPLETELY EXPLAINED IN A FEW LINES 

Some models sketched in this Section are properly random, others obtain 
the scaling distribution by straightforward elimination of a common vari­
able between two exponential relations. 

1.1 Properly random models 

Section 1.1.1. and 1.1.2. describe a few examples that take only a moment 
and yield scaling with a = 1. Section 1.1.3 refers to a classical example. 
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1.1.1. Ratios of independent random variables and the effects of small 
denominators. Ratios of Gaussian variables. The ratio R = Y I X of two inde­
pendent Gaussian variables X and Y with EX = EY = 0 and EX2 = Ey2 = 1 is 
well-known to be a Cauchy variable, with the density 1/[1T(1 + z2»). Here 
is a perspicuous geometric proof. It follows from the assumptions on X 
and Y that Z = X + iY is an isotropic random variable. Hence, its curves of 
equal probability density are circles, and 8 = tan -l(y I X) is uniformly dis­
tributed from 0 to 21T. The density of R = Y IX follows immediately. The 
Cauchy density is only asymptotically scaling of exponent a = 1 (it is 
L-stable). 

Ratios of exponential variables. When X and Yare both exponential with 
EX = EY = I, the curves of equal probability density of Z = X + iY are no 
longer circles (Z is not isotropic), but lines with an equation of the form 
X + Y = constant. For every given X + Y, hence also unconditionally, it 
follows that the ratio (Y - x)/(Y + X) is uniformly distributed from -1 to 1. 
That is, U being defined as uniform from 0 to I, R satisfies 

Y-X R-l 2 1 
Y + X = R + 1 = 1 - R + 1 = 1 - 2U, hence R = U - 1. 

Conclusion, R + 1 follows exactly the scaling distribution of exponent a = 1. 
No reference was found for this unbeatably simple result, but it would be 
surprising if it were new. 

The scaling character of ratios whose denominators are often enough very 
small. In the 1960s, interest was aroused by econometric techniques that 
conclude with ratios having a small denominator and infinite moments. 
Those moments' divergence was viewed as an anomaly to be avoided, but 
anyone interested in explaining scaling should hold the precisely opposite 
view. Indeed, "it would suffice" to reexpress scaling quantities as ratios in 
which the denominator can be small. Students of mechanics know, at 
least since Poincare, that small denominators lead to chaotic behavior. 

1.1.2. Car queues on a one-lane road. Starting with many cars trying to 
maintain a constant randomly selected speed, the system will evolve to 
one in which cars queue behind a slow car. What will be the steady-state 
distribution of the length of this queue? In the Simplest case, the intended 
speeds are independent and identically distributed random variables Urn 
with Pr{U < u} = F(u). The length of the queue is the first value of m such 
that Urn < Ur When u1 is known, Pr{M = m I U = u1} = [1 - F(u»)rn -1F(u1). 

Assume that there is a zero probability of anyone trying to drive at some 
minimum speed. Thus, 
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Pr{M = m} = J dF(u)[1- F(U)]m-lF(U) = ~ - m ~ 1 ; Pr{M ~ m} = ~ . 

The queue length follows exactly the scaling distribution of exponent a. = 1. 

1.1.3. Number of tosses of a coin before a prescribed high gain level is first 
reached. It is well-known that this number's tail probability is _ U- 1I2, 

which is asymptotically scaling with a. = 1/2. A concrete application of 
this distribution is inserted at the end of this Chapter as Appendix I. 

1.2 Straightforward elimination of an intrinsic variable between two 
intrinsically meaningful exponentials 

This section proceeds in more or less chronologic order, tackling 
mutations, gravitation cosmic rays and words in discourse. 

1.2.1. Attraction from within a very thin cone. In a Euclidean space of 
dimension E, create a cloud of unit point masses called stars, pick one star 
as the origin n and draw a very thin one-sided cone with apex at n and 
height R. If fluctuations are neglected, the proportion of stars found in 
this cone and also in a sphere of radius pis (p/R)E. Assume that attraction 
follows the generalized Newton's law u = p- N. Eliminating p, we find 

This is a scaling distribution. Three arbitrary features are the cutoff at 
a finite R, the restriction to a very thin cone, and the fact that we only con­
sider the attraction from one star other than n. 

Holtsmark's problem. Appendix III of M 1960HElO} carries out a full 
argument for the physical case E = 3 and N = 2, but the same method gen­
eralizes without problem to all cases where N> E/2. 

1.2.2. Bacterial mutations (Luria & Delbriick 1943). Disregarding the fact 
that numbers of bacteria are random and are integers, choose the time unit 
so that bacteria multiply and mutate deterministically and exponentially as 
follows: In the absence of mutation, a culture that contains bo bacteria at 
time t = 0 contains bi bacteria at time t. In the presence of mutations at 
the rate m, the size of the culture becomes bo exp[t(1- m)]. Also suppose 
that a clone that descends from a mutation attains the size exp(gx) at age 
x. The number of clones will increase without end, the biggest clone being 
the oldest one. 
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If a mutant clone is picked at random among those present after a 
long time t, Pr{age ~ x} = exp[ - x(l - m)], hence Pr{U ~ u} = exp( - gx). 
Eliminating x, we find in the limit the scaling distribution 

Pr{U~ u} = u- D with D = (1- m)lg. 

This argument helped molecular biology take off. A full and explicit 
treatment taking account of fluctuations was first provided in M 1974d, 
which is incorporated in this chapter as Pre-Publication Appendix II. 

1.2.3. The energy of incoming cosmic rays (Fermi 1949.) The energy of 
primary cosmic rays is found to follow a scaling distribution with 0. - 1.7 
over 11 units of 10glO (energy). The breadth of this range lies beyond 
economists wildest dreams; even in physics it is rarely encountered. 

Fermi's assumptions easily translate into terms of firm growth, disap­
pearance and replacement: all firms that exceed the size il grow exponen­
tially, until they die, but the population is replenished at a uniform rate to 
insure a steady-state distribution of sizes. We choose the unit of time so 
that T units of time after the size il was exceeded 

firm size = u(T) = lieT. 

Independently of its size u ~ il, a firm is given the probability o.dT of 
disappearing during the time increment dT. It follows that the average 
"lifetime" of a firm is 1/0., and that 

Pr { a firm survives for the time> T} = exp (- aT). 

Under these assumptions, 

Pr {U > u} = Pr {T> log (ulli)} = exp ( -log(ulli) = (ulli)-a. 

This means that Pr{size > u} is scaling with the exponent 0.. Q. E. D. 

The expected change of a firm's size. The probability of dying out in the 
next unit of time is adt, and the firms that do not die out will grow by the 
factor (1 + dt). Hence, neglecting second-degree terms 

E[U(t + dt) I u(t)] = u(t)(1- adt)(1 + dt) = [1 + (1- o.)dt - (dt)2]U(t), 
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hence 

E[U(t + dt) I u(t)] - u(t) = (1 - a)dt. 

Thus, an overall steady state will be established. But a given firm 
will, on the average, increase in size if a < I, and decrease in size if a > 1. 
If a = I, the expected change of U(t) vanishes; U(t) is a martingale (see 
Chapter El or M 1966b{EI9}). 

A Fermi-like model with variable immigration rate <pet). If <pet) = exp(/3t), 
the expected number of firms of size u is 

If a + /3 > 0, the number of firms surviving to time t will have a finite 
expected value equal to 

l"" ,\ exp(/3t) 
,\ exp( - an expeCt - n]dt = /3' 

o (a + ) 

Contrary to Fermi's original process, the number of firms now 
increases without bound, and there is no steady-state. But the expected 
relative number of firms of size u is scaling with exponent a + /3. 

More generally, the distribution of firm sizes is the Laplace transform 
of the immigration rate <pet). This model may yield any distribution of firm 
sizes, as long as the inverse Laplace transform is positive. 

1.2.4. A different example of straightforward elimination between two 
exponentials: word frequencies, lexical trees, and "Zipf's" law (M 1951, M 
1982F{FGN), Chapter 38.) Take an alphabet of M + 1 letters Lm, with Lo 
denoting the improper letter "space". Let "typing monkeys" use this 
alphabet to produce a random text in which Lo is used with the probability 
Po, and each of the other letters, with the probability (1 - Po) / M. There 
will be Mk distinct words made of k proper letters followed by space, each 
with the probability 

P = PoE (1 - Po) / MJ k = poe - k log B, by definition of B = (1 - Po) / M. 
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The most probable word, corresponding to k = 0, is the shortest one. 
Now rank the other words by decreasing probability. In this ordering, a k 
-letter word will have a rank satisfying 

r oe Mk; that is k = log r 
10gM' 

Eliminating k between r and P yields the scaling distribution 

with 

P oe n exp(-logr 10gB )=Rr-1/a 
rO log M 0 , 

1 log B - 10g(1 - Po) + log M 
a = log M = log M = 1 + IlogM (1 - Po) I > 1. 

This scaling expression was found to be obeyed by words in large but 
homogenous samples of homogenous natural discourse, such as some long 
books. In the (unattainable!) limit a = 1, this expression is called Zipfs 
law for word frequencies. 

There is nothing more to Zipf's law with a > 1. The derivation merely 
relies on compensation between two exponentials. 

Markovian discourse and other generalizations yield the same result 
for r -. 00 (M 1954b) But the probability distribution of "m-grams" formed 
by m letters is not expected to be scaling. Scaling does not take over until 
after the m-grams for all values of m have been sorted out in order of 
decreasing probability. 

For word frequencies, the compensation between two exponentials can 
be rephrased in several ways. There is a "thermodynamical" or 
"information-theoretical" restatement (M 1982F{FGN}, Chapter 38); it looks 
learned and is enlightening to the specialist, but brings nothing new for 
most readers. 

(In an amusing tongue-in-cheek etymology, Lee Sallows described the 
number of letters in a word as being its logorithm, from logos=word and 
arithmos=number. Thus, the simplest model described above assigns to .a 
word a logorithm that is proportioned to the logarithm of its inverse proba­
bility.) 
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2. "RANDOM PROPORTIONATE EFFECT" AND ITS FLAWS 

Improvements that inject randomness in the models of Luria-Delbruck and 
Fermi will be examined in Sections 3.2 and 3.3. But we begin by consid­
ering a widely popular approach that recreates the conditions of Section 
1.2, by introducing an artificial variable that enters into two exponentials, 
and can be eliminated to yield the scaling. 

2.1 Introduction to models in which the logarithm of the firm size 
performs a discrete random walk, a Brownian motion, or a diffusion 

The overall scheme is familiar: when U follows the scaling distribution 
Pr{U> u} - (u/fl)-a, the auxiliary variable V = 10ge(U/fl) satisfies the expo­
nential distribution Pr{V ~ v} = exp( - av). To explain U by explaining V, 
one must a) motivate the transformation from U to V, and b) explain why 
V should be exponential. Task a) is difficult, but task b) seems formally 
very easy, because the exponential distribution plays a central and well­
understood role in physics. It is not a surprise that a number of models of 
scaling are more or less obvious and/or conscious economic translations of 
various classical models of statistical thermodynamics. 

Section 3.1 will classify those models as being of either the first or the 
second order and, therefore, as leading to a flow or a diffusion. But 
certain issues must first be faced, and this is done best by focusing on a 
bare bones diffusion model. 

2.1 Tempting dynamic explanation of the exponential distribution for V 
by diffusion contained by a reflecting barrier 

We begin with a random walk that is the simplest example of second 
order and diffusion. The physics background is a collection of particles 
that a) are subjected to a uniform downward gravity force, b) form a gas 
at a uniform temperature and density, and c) are constrained to remain in 
a semi-infinite vertical tube with a closed bottom and an open top. These 
particles' final equilibrium distribution will be a compromise: a) gravity 
alone would pull them down, b) heat motion alone would diffuse them to 
infinity, and c) the tube's bottom prevents downward diffusion. The result 
is classical in physics: acting together, these three tendencies create at the 
height z an exponential density distribution of the form exp (- az), where 
l/a increases with the temperature. Therefore, scaling could be explained 
by any model which (consciously or not) will re-interpret the above three 
physical forces in terms of economic variables. 
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2.2. A surrogate for diffusion of log U, based on a biased random walk 

Let time t be an integer and logeU be of the form ke, where k is an integer 
and c > O. Between times t and t + 1, allow the following possibilities: 

a) logeU can increase by c, the probability being p; 
b) logp can decrease by c, the probability being 1- p. 

A necessary condition for equilibrium. For a distribution of log U to be 
invariant by the above transformations, it is necessary that the expected 
number of firms growing from size ela: to size e'k + 1)c be equal to the 
expected number of firms declining from size e(k + 1)c to size eke. This can 
be written 

Pr{lo&U> (k + l)c} - Pr{lO&U > kc} p 
= 

Pr{lo&U> kc} - Pr{logeU > (k - l)c} 1 - p . 

A steady-state solution in which P( log U> v) = exp ( - av) requires 
exp (- ac) = p/(1- p). The condition a> 0 requires p < 1- p or p < 1/2 
(this is an economic counterpart of the "force of gravity" referred to in 
section 2.1). Taken by themselves, the conditions a) and b) make firm 
sizes decrease on the average. Hence, to insure that the number of firms 
remains time-invariant above a lowest value il, one needs an additional 
factor, the counterpart of the closed bottom in Section 2.1. 

c) A reflecting barrier can indifferently be interpreted in either of two 
principal ways. The firms that go below logu = logeil- (1/2)c are given a 
new chance to start in life at the level il, or become lost but replaced by a 
steady influx of new firms starting at the level il. 

Altogether, P(k, t) = Pr { log p = kc at time t} satisfies the following 
system of equations 

P(k, t + 1) = pP(k - 1, t) + (1- p)P(k + 1, t) if k> kJo&il/ c, 

P(lo&(u/ c), t + 1) = (1 - p)POogil/ c, t) + (1- p)P(1 + loge(il/ c), t). 

Due to the "diffusive" character of these equations, there is a steady­
state limit function P(k, t), independent of the initial conditions imposed at 
a preassigned starting time l. That limit is the scaling distribution. (Proof: 
Under the steady-state condition P(k, t + 1) = P(k, t), the second equation 
yields pP(ko' t) = (1 - p)P(1 + ko' t), then the first equation gives the same 
identity by induction on ko + 1, ko + 2, and so on.) Therefore, conditions a), 
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b), and c) provide a possible generating model of the exponential distrib­
ution for log U. 

Champernowne's formally generalized random walk of log U. 
Champernowne 1953 offers a more general model. It seems sophisticated, 
but I came to view it as violating a cardinal rule of model-making, 
namely, that the assumptions must not be heavier and less transparent 
than the outcome. Details are found in M 1961e{Ell}. 

2.3 Aside on diffusion without a reflecting barrier: as argued by Gibrat, 
it yields the lognormal distribution, but no steady-state 

As mentioned in Chapter E, the scaling and lognormal are continually 
suggested as alternative representations of the same phenomena, and the 
lognormal is believed by its proponents (Gibrat 1932) to result from a pro­
portional effect diffusion. This is correct, but only up to a point. It is true 
that in the absence of a reflecting barrier, diffusion of log U does not yield an 
exponential, but a Gaussian, hence the lognormal for U. Indeed, after T 
tosses of a coin, logeU(t + n - logeU(t) is the sum of T independent vari­
ables taking the values c or - c with the respective probabilities 
p and 1- p. By the central limit theorem, 

log U(t + n - log U(t) - T c(2p - 1) 

[2 Tp (1 _ p]1/2 

will tend towards a reduced Gaussian variable. Hence, if at T = 0 all firms 
have equal sizes, logeU(t + n will become lognormally distributed as 
T -+ 00. The same holds for other diffusion models without reflecting 
barrier. 

While the above argument is widely accepted, it has a lethal draw­
back: the lognormal describes an instantaneous state, not a steady state 
distribution; for example, in time, its variance increases without bound. 

2.4 Misgivings concerning the relevance to economics of the model of 
scaling based on the diffusion of log U = V 

In the models for V that lead to a proper steady-state (Sections 2.1 and 
2.2), the transformation U = expV seems to work a miracle of alchemy: the 
metamorphosis of a mild variable V into the wild variable U, in the sense 
described in Chapter E5. But I propose to argue that no metamorphosis 
took place, because the conclusions reached ex-post destroy the intuition 
that justified ex-ante the diffusion of V. This contradiction between the 
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ex-post and the ex-ante comes on top of the limitations stressed under Bl) 
in the second page of this chapter. 

Reminder of why a diffusion of V is a reasonable idea in physics. Physics is 
fortunate to have a good and simple reason why diffusion models are 
good at handling the exchanges of energy between gas molecules. In 
gases, the energy of even the most energetic molecule is negligible with 
respect to the total energy of a reservoir. Hence, all kinds of things can 
happen to one molecule, while hardly anything changes elsewhere. This 
enormous source of simplicity is a major historical reason why the theory 
of gases proved relatively easy to develop. For example, the wonderful 
property of universality (described under B2 at the beginning of this 
chapter) implies that it makes no difference whether the total "energy" LV 
in a gas is fixed (as it is in a "microcanonical" system) or allowed to fluc­
tuate (as it is in a "canonical" system.) This is why the diffusion model's 
conclusions do not contradict its premises. 

Reasons why diffusion of log U seems not to be a reasonable idea in eco­
nomics. The transformation V = log U may seem innocuous, but it intro­
duces a major change when a. < 2. The original U (firm size, income and 
the like) is additive, but not the logarithm V = log U, and U is "wildly 
random." The concentration characteristic of wild randomness has very 
concrete consequences. 

Firm and city sizes are arguably scaling with a. - 1 (Chapter E13 and 
Auerbach 1913), and it is typical for a country's largest city to include 15% 
of the total population. It surely will matter, both intuitively and techni­
cally, whether LU is fixed or allowed to fluctuate. When the total employ­
ment or population are kept fixed, it seems far-fetched to assume that the 
largest firm or city could grow or wane without influencing a whole 
industry or country. I cannot even imagine which type of observation 
could confirm that such is the case. Ex-post, this would be an interesting 
prediction about economics. Ex-ante, however, this presumed property is 
surely no more obvious than scaling itself, hence, cannot be safely inserted 
in an explanatory model of scaling. 

Conclusion: a baffling embarrassment of apparent riches. The economic 
predictions yielded by the diffusion of log U are baffling. The model does 
yield a scaling distribution for U, but the model conclusion makes its 
premises highly questionable. Additionally, the argument ceases to be 
grounded in thermodynamics, because the latter does not handle situ­
ations where canonical and microcanonical models do not coincide. It is 
true that neither the success nor the failure of a model in physics can 
guarantee its success or failure in economics. 
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All told, the models of U based on the diffusion of log U leaves an 
embarrassment of riches. The user's response is a matter of psychology. 

The utter pessimist will say that flawed models are not worth further 
discussion. 

For the moderate pessimist, the diffusion of log U is questionable but 
worth playing with. I favor this attitude and M 1961e{Ell} is an example 
of its active application. 

The moderate optimist will not want to look too closely at a gift horse; 
even in physics, it is common that stochastic models yield results that con­
tradict their assumptions. For example, the search for the "most likely 
state" applies Stirling's approximation to the factorial N!; but this argu­
ment eventually yields Ns equal 0 or 1, so that Stirling's approximation is 
unjustified even though it is successful. This is true, but physics also 
knows how to read the same results without assumption that contradict 
the conclusions; economics does not know how to do it. The feature that 
saves many stochastic models is that errors somehow seem to "cancel 
out." But in the presence of concentration the counterparts of "the contrib­
uting errors" are neither absolutely nor relatively small. For this reason, I 
view the moderately optimistic position as very hard to adopt. 

The widespread very optimistic and unquestioning view of diffusion as 
explaining scaling is altogether indefensible. Models based on the dif­
fusion of log U do not make me change my policy of viewing scaling as a 
postulate that brings economies of thought, good fit and a useful basis for 
practical work. It remains my strongly held belief that scaling must be 
thoroughly understood, and its consequences explored, without waiting to 
explain them. Nevertheless, after a short digression, we shall devote 
Section 3 to an examination of variant models. 

2.4. A static characterization of the exponential: it is the "most-likely, 
"and the "expected" steady-state of Brownian motion with a barrier 

Among the other models proposed to account for an exponential V in 
finance and economics, most are also dynamic, if only because "static" is a 
derogatory word and "dynamic" a compliment. 

It is very well-known in thermodynamics that the state which a 
system attains as the final result of random intermolecular shocks can also 
be characterized as being lithe most likely." The exponential distribution 
P(v) = exp [- a(v - 0)] is indeed obtained by maximizing the expression 
- D'(v) log P(v) under the two constraints v ~ 0 and LVP(V) = constant. A 
longer proof shows that the exponential is also "the average state." 
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As applied to the distribution of income, this approach goes back at 
least to Cantelli 1921. I see no good reason for retaining it: in physics, the 
expressions LVP(V) and L - P(v) log P(v) have independent roles, the 
former as an energy and the latter as an entropy (communication theory 
calls it quantity of information.) But those roles do not give those 
expressions any status in the present context. 

Many variants seem to avoid the transformation V = logeU, Castellani 
1951 assumes without motivation the (equivalent) postulate that u is sub­
mitted to a "downward force" proportional to l/u. 

3. PROPORTIONATE GROWTH AND SCALING WITH EITHER 
TRANSIENT OR PERMANENTLY DIFFUSIVE RANDOMNESS 

Let us start from scratch. The basic idea of random proportionate effect is 
that when t increases by dt, the increment du is proportional to the present 
value of u, hence the change of v = log u is independent of v. However, 
those words are far from completely specifying the variation of V in time. 
Many distinct behaviors are obtained by varying the boundary conditions 
and the underlying differential equation itself. To end on a warning: due 
to time pressure, the algebra in this section has not been checked through 
and misprints may have evaded attention. 

3.1 First and second-order random proportionate effects 

Most important is the fact that the underlying equation can be of either 
first or second order. 

Flow models ruled by a first-order equation. Solution of first-order differ­
ential equations largely preserve their initial conditions and essentially cor­
respond to a nonrandom proportionate growth of U, in which the value of 
u only depends upon "age." This assumption must be recognized and may 
or may not be realistic. The model found in Yule 1924, corresponds to a 
first-order finite-difference equation. It predicts a random transient in 
youth, followed by effectively nonrandom, mature growth. This feature 
makes it inapplicable to economics, even though it is defensible in the ori­
ginal context of the theory of evolution, and its restatement in terms of 
bacterial mutation (see Appendix II) helped provide the first full solution 
of a classic problem in Luria & Delbriick 1943. The analysis in Section 3.2 
applies with insignificant changes to a slight variant of Yule's process 
advanced in Simon 1954. After a short transient, the growth postulated in 
that paper becomes non-random. 
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Diffusion models ruled by a second-order equation. An actual "diffusion" 
embodies a permanently random proportionate effect. The initial condi­
tions may become thoroughly mixed up, but lateral conditions (such as the 
nature of a side-barrier, the kind of immigration, etc.) have a permanent 
influence, even on the qualitative structure of the solution. 

In the model in Astrom 1962, the boundary is "natural," in the termi­
nology of Feller, and no lateral conditions need or can be imposed. 
However, the equation possesses certain special features that amount to 
additional hypotheses in the model that the equations embody. 

In any event, many assumptions are necessary if the diffusion model 
is to lead to the desired scaling solution and/or to a steady-state solution. 
One must not artificially stress some assumptions, while not acknowl­
edging others of special importance in the existence of the reflecting 
barrier that entered in Section 2.1, but not Section 2.3. 

3.2 The first-order finite difference model in Yule 1924 

Except for an initial genuinely stochastic transient, the model in Yule 1924 
is undistinguishable from the model in Fermi 1949 changed by the addi­
tion of exponential immigration, and restriction to a vanishing decay con­
stant a = o. The calculations are much more involved than Fermi's, but it is 
useful to analyze Yule's model fully and concisely because there are occa­
sions where it is applicable. 

The fundamental assumption is that firm size is quantized and that 
during each time increment dt, the size of a firm has a known probability 
dt of increasing by unity. It is well-known that a firm growth from size 1 
to size u during the elapsed time T has the geometric distribution for the 
probability that a firm grew from size 1 to size u during the elapsed time 
T. To this assumption, Yule adds the further hypothesis that new firms 
immigrate into the system with a probability dt during the time increment 
from t to t + dt. Then, at the calendar time t, the probability that one of 
these firms is of size u is given by 

To this, Yule adds another hypothesis: new firms immigrate into the 
system with a probability I:p(t)dt during the time-increment from t to t + dt. 
Then, at the calendar time t, the probability that one of these firms be of 
size u is given by 
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As to the number of firms at time t, its expected value is given by 

and the expected value of the total size of all firms is 

In Yule's case, 

cp(t) = aeat for t > o. 

Writing expel - t) = y, one obtains 

This is Euler's incomplete Beta integral. For e- t close to 1, 

fi) at rca + 1)rcu) 
U, t - ae rca + U + 1) . 

For large u, 

Yule's model predicts the birth rate 
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If 0.< 1, k(t) - -1 a /, and flu, k) - (1 - a)aa1 -ana + l)kau- (a+ 1). 
-a 

If a> 1 k(t) - _0._ eat and +Tu k) _ nO. + 1) ku- (a + 1) 
, a-I' j', a-I . 
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The relative rate of addition of new firms equals (1 - 0.)-1. In the case 
of firm sizes, the mechanism of proportional growth cannot be presumed 
to start until the size has exceeded some sizable quantity il. Therefore, the 
Yule model is not applicable, since the correspondingly modified model will 
be based upon the probability that a population grows from size il to size 
u in the time T, which is well-known to be given by the negative binomial 
distribution (Feller 1950). Therefore, 

flu, t) = ( __ r_(u_)---,<p_(t_)_dt_-- e - u(t - /)[1 - e - (t - /)t - u. 
Jo nu - il + l)nil) 

Using Yule's rate of addition of new population, 

If t is large, 

nul nil + a)r(u - il + 1) 
flu, t) = neat ------

nu - il + l)nil) nO. + u + 1) 

= ne 
at nil + a) nul 

nil) nO. - u + 1) 

As expected,f(u,t) is the Yule distribution truncated to u ~ il. 

Now examine non-exponential rates <pm. If il is large (e.g, if it exceeds 
100), the kernel function e- uX(1 - e - X)U - u becomes extremely peaked near its 
maximum for eX = u/il. To approximate this kernel, expand 
log [e- uT(1- e-T)U-U] in Taylor series up to terms of second-order. The 
exponential of the result is 
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{ - (u/u) - 0- u/U)} {[T I (/ _)]2 } e- uT(1_2- T)U-U_ (J:£) (1-J:£) u exp _ - og u u . 
u u 2(1/il-l/u) 

From this representation, it follows that the full integral that gives 
flu, t) can be replaced by the integral carried over a "four-standard­
deviation" interval around log(u/a), namely 

log( ~ ) - 2~ 1 - ~ ~ t ~ log ( ~ ) + 2~ 1 - ~ . 
That is, for all practical purposes, feu, t), will not depend upon the 

firms that started at any other times. 

As a consequence, suppose that the size u has exceeded a sizeable 
threshold, such as a = 10,000. Yule's model predicts that, from then on, 
u(t)/10,000 will differ from exp (t - t) by, at most, a quantity of the order 
of 10,000- 112 = 1%. That is, the growth of sizes will for all practical purposes 
proceed with little additional randomness. 

To summarize, except for insignificant "noise," Yule's model makes 
the prediction that the size of the larger firms increases exponentially. 
Among the firms larger than "Smith and Co.," almost all will have 
reached the threshold size 10,000 before Smith and Co., and all the 
ranking by size of most larger firms is identical to their ranking by date of 
achievement of the threshold size 10,000. 

It is easy to ascertain that the same conclusion will be reached if the 
definition of Yule's process is modified, as long as the modification does 
not affect the fundamental differential equations of that process. In all 
cases, U exhibits a stochastic transient during take-off, lasting as long as a 
firm is small. However, if and when its size becomes considerable, all 
sources of new randomness will have disappeared. This makes Yule's 
model indistinguishable in practice from Fermi's with zero death-rate, and 
there is little gain from Yule's far heavier mathematics. In Simon 1955, the 
independent variable is the actual total population k at time t, but - after a 
short transient - growth is non-random. 

3.3 A "Fermi-like" model involving permanent diffusion 

To eliminate the principal drawback of the model in Fermi 1949, as 
applied to economics, exponential lifetimes can be combined with growth 
that allows random increments of logeU. When this argument was pre-
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sented to my IBM colleague M. S. Watanabe, he noted it could be applied 
to the cosmic-ray problem, but my model turned out to be simply a 
variant of Fermi's approach, as defined by the following assumptions. 

Let dt and a.jdt be the mean value and the standard deviation of the 
change of V per time increment dt. Let t be the time elapsed since the 
moment when a firm exceeds the size il, i.e., when V first exceeds the 
value O. The distribution of V after the time t will be Gaussian, i. e., the 
probability that v::5 V::5 v + dv will be 

1 (v - t)2 
exp[ - ~ ldv. 

a~2rrt 2t 

Now, the probability that v < V::5 v + dv, regardless of "age," will be 

k { ('" t- l !2 exp [ - bt - (v -;/ ldt}dV. 
a 2 IT Jo 2t 

A result in p. 146 of Bateman 1954, reduces this probability to 

which is exponential distribution with 

To check that a> 0, multiply the positive expression by 

The product is ad = 2b / ~ > 0, therefore a > 0, as it should. 

The value a = 1 corresponds to 

~2b + 1 / ~ = a(1 + ~ ) = a + ~ or ~ = 2(b - 1). 
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Again a = 1 corresponds to the martingale relation for U. Indeed, 

exp [dt + (1/2)a2dt] - 1 + [1 + a2 /2]dt, 

when Z is the expected value of a variable whose logarithm is Gaussian 
with mean dt and standard deviation u.Jdt. Hence, whichever b, 

E[U(t + 1) I u(t)] - u(t)(1- bd)[ + dt(1 + a2 /2)] 

- u(t)[1 + (u- 2/2 + 1- b)dt], 

and the martingale relation indeed requires a2 = 2(b - 1). 

3.4 Astrom's diffusion model 

While studying a problem of control engineering, Astrom 1962 introduced 
the continuous time variant of the difference equation 

Wt + 1) = (1- m' + G)Wt) + m". 

Here m', m" > 0 and u> 0 are constants, and G is a Gaussian variable of 
mean zero and unit standard deviation. For large u, this equation is 
another variant of random proportionate effect. However, it presents the 
originality that the reflecting barrier is replaced by the correction 
expressed by the positive "drift" m", which is independent of u and negli­
gible for large u. This gives interest to the equation. Since we expect the 
density to be asymptotically scaling, it is reasonable to try as a solution a 
density of the form 

flu) = <p(u)u - (a + 1), 

where <p(u) rapidly tends to a limit as u increases. 

To avoid advanced mathematics, let us first determine a by requiring 
u(t + 1) and (1 - m'Gu)u(t) to have the same distribution for large u. This 
can be written as 

-(a+1> _ 1 Loo -1 {_ [u - (1- m')wf} -(a+1>d • u -, r;;:::- w exp -2 2 W w, 
~2rr 0 2~w 

defining y as u/w, this requirement becomes 
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U -(a+l)=u-(a+l) 1 100 a { [V-(1-m')f}d . ~ y exp - -2 y. 
uV2TT 0 2u 

In the limit where the basic equation changes from difference to differen­
tial, m' and er are small. Letting !P(y) = log2v - [v - (1 - m')f(2er)- 1, we 
see that exp [!P(y)] is non-negligible only in the neighborhood of its 
maximum, which occurs approximately for y = y = 1 - m' + aer. Near y, 
!P(y) - !P(y) + (y - y)!P'(fJ) + (1/2)(v - fJ)!P'(fJ), hence the steady-state con­
dition: 

Easy algebra yields 

We again encounter the increasingly familiar relation between the sign of 
0.- 1 and that of the regression of u(t + 1) on u(t). In particular, 0.=1 corre­
sponds to the "martingale" case m' = O. 

In the present case, however, <p(u) is determined by the equation itself, 
therefore, the model does not need special boundary conditions at u = O. 
Suffices to say that the Fokker-Planck equation yields 

<p(u) = exp (- 2m" ler) = exp (- filu), 

so that, normalizing the density flu) to add to one, we obtain 

flu) = ~:) u-(a+l) exp (- filu). 

a) U A is the inverse of a Gamma-variable of exponent a. Hence, Ll! un 
is a "sufficient statistic" for the estimation of a from a set of sample values 
un. Unfortunately, this statistic is unusable, being overly dependent upon 
values that are small and fall in the range where data do not exactly 
follow the inverse of a gamma distribution. This exemplifies the difficul-
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ties which are encountered in the statistical theory of the estimation of the 
scaling exponent. 

b) For a = 1, UA reduces to the Frechet distribution that rules the 
largest of N identical scaling variables of exponent 1. 

c) For the special value a = 1/2, UA happens to be identical to the 
L-stable distribution of exponent a = 1/2 and of maximum skewness, in 
other words identical to the limit of the distribution of (l/N2)-th of the 
sum of N identical scaling variables of exponent 1/2. 

&&&&& PRE-PUBLICATION APPENDICES &&&&& 

APPENDIX I (M 19640): RANDOM WALKS, FIRE DAMAGE, & RISK 

Actuarial science accumulated a substantial store of knowledge. This 
paper discusses the risk due to fire. Very similar mechanisms apply in 
many other problems, hence a more general goal is to illustrate why it is 
said that the scaling distribution constitutes a "source of anxiety for the 
risk theory of insurance." 

1.1 Introduction 

In somewhat simplified form, the following statement summarizes an 
empirical law established by Benckert & Sternberg 1957. 

"The damage a fire causes to a house follows the scaling distribution." 

That is, suppose that the damage is greater than a minimum threshold 
m = $20 and smaller than M, defined as the maximum destroyable amount 
of the building. Then 

for m <x<M, 
but 

Pr {damage ~ x} = x - am a; 

Pr {damage = M} = M- ama. 

This law applies to all classes of Swedish houses outside of Stockholm. 
The reported values of a range between 0.45 and 0.56; we shall take 
a = 1/2 and investigate the consequences. 
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1.2 A model of fire damage amount 

The scaling distribution of exponent 0.5 plays a central role in probability 
theory: it is the distribution of the returns to equilibrium in the game of 
tossing a fair coin. This theory is developed in most textbooks of proba­
bility (such as Feller 1950), and can be translated into insurance terms. 

Our first assumption is that the intensity of a fire is characterized by a 
single number, designated by U, which can take only integer values: there 
is no fire when U = 0; a fire starts when U becomes equal to I, and it ends 
when either U becomes equal to 0 again, or when all that can possibly 
bum has already burned out. 

We also assume that, at any instant of time, there is a probability 
p = 1/2 that the fire encounters new material so that its intensity increases 
by I, and there is a probability q = 1/2 that the absence of new materials 
or the action of fire-fighters decreases the intensity by 1. In the preceding 
statement, 'time' is to be measured by the extent of damage. If there is no 
finite maximum extent of damage, and no lower bound to recorded 
damages, the duration of a fire will be an even number given by a clas­
sical result concerning the return to equilibrium in coin-tossing: 

Pr{duration of a fire = x} = 2( !~;)( -Itl2 -1. 

Except for the first few values of x, this expression is proportional to x- 312. 
Damages smaller than the minimum threshold m are not properly 
recorded. Hence, the duration of a fire (i.e., the extent of damage) will be 
given by the scaling distribution with exponent 1/2: 

Pr{duration of a fire > x> m} = (x/m)-112. 

Finally, take account of the fact that the fire must end if and when the 
whole house has burnt out. We see that the prediction of the above argu­
ment coincides precisely with the Benckert-Sternberg finding. 

1.3 Relations involving the size of the property and the expected amount 
of the damage due to fire 

It is easy to compute the expected value of the random variable consid­
ered in Section 1. One finds 
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M 
Expected fire damage = L x(1/2)X-(112 + 1)m1l2dx + M(M/m)-l12 

=2~Mm -m. 

This value tends to infinity as M --+ 00. 

On the other hand, according to von Savitsch & Benktander 1953, the 
expected number of fires per house in the course of a year is a linear func­
tion of M. If this is indeed so, it would imply that, for large values of M, 
the rate of insurance should be proportional to ,fM". 

When the distribution of property sizes M is known, a simple argu­
ment yields 

Pr{damage per fire> x} = Pr {M> m}(x/m)-l12. 

Moreover, if von Savitsch & Benktander 1953 is correct, one has 

d Pr{fire damage per year > x} = Cxd Pr {damage > x} 
= Cxd [Pr {M> m}(x/m)-l12]. 

Let the distribution of M be itself scaling with the exponent a*. This is the 
case in all kinds of liability amounts. The distribution of damage in a 
single fire will then be scaling with exponent a* + 1/2; if a* > 1/2, the dis­
tribution of damage per year will be scaling with exponent a* - 1/2. This 
demonstrates that the mathematical manipulations based on the scaling 
distribution are especially convenient. 

1.4 Generalization 

The random walk with p = q = 1/2 represents a kind of equilibrium state 
between the fire and the fire-fighters. If the quantity of combustible prop­
erty were unbounded, such a random walk will surely die out, although 
its expected duration would be infinite. 

To the contrary, if p > q, the fire-fighting efforts would be inadequate, 
and there would be a nonvanishing probability that the fire continue 
forever. 

If p < q, the probability of the fire running forever would again be 
zero, and the expected duration of the fire would be finite. The law 
giving the duration of the fire would then take the form: 
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d Pr{duration of a fire ~ x > m} - c" exp( - cx)x- 312dx, 

where c" and c are two constants depending upon m, p, and q. If x is actu­
ally bounded and q - p (and hence c) is small, the above formula will be 
indistinguishable in practice from a scaling distribution with an exponent 
slightly greater than 1/2; this is perhaps an explanation of the more 
precise experimental results of Benckert and Sternberg. 

Generalizations of the random walk provided by many classical 
models of diffusion may be rephrased in terms of fire risks. A random 
walk model in which the intensity of the fire goes up, down, or remains 
unchanged would only change the time scale. 

1.5 Another application 

The results of Benckert & Sternberg 1957 strongly recall those of 
Richardson 1960 and Weiss 1963, and the model that has been sketched 
above is easy to translate in terms of Richardson's problem. It would be 
fascinating to ponder how relevant that translation may be. 

Annotation to Appendix I: The importance of the scaling distribution in 
the theory of risk. The topic of Appendix I may seem narrowly special­
ized, but many risks against which one seeks insurance or reinsurance do 
follow scaling distributions. The sole reason for focussing on fire damage 
was the abundance and quality of the data on Swedish wooden houses. 

Until recently, however, no one faced such risks squarely, quite to the 
contrary. Once, an insurance representative visited to report that his 
industry was bound one day to face risks following the scaling distrib­
utions, but he never called again. More significantly, a (short-lived) 
manager I once had at IBM pointedly described the present paper as 
childish and insignificant in comparison with the bulk of my work. 
Events suggest, to the contrary, that this paper was a quiet long-term 
investment. Important occurrences of very long-tailed risk distribution 
that are being investigated include Zajdenweber 1995ab. 

APPENDIX II (M 1974d): THE NUMBER OF MUTANTS IN AN OLD 
CULTURE OF BACTERIA 

Luria & Delbriick 1943 observed that, in old cultures of bacteria that have 
mutated at random, the distribution of the number of mutants is 
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extremely long-tailed. Here, this distribution is derived (for the first time) 
exactly and explicitly. The rates of mutation will be allowed to be either 
positive or infinitesimal, and the rate of growth for mutants will be 
allowed to be either equal, greater or smaller than for nonmutants. Under 
the realistic limit condition of a very low mutation rate, the number of 
mutants is shown to be a L-stable random variable, of maximum 
skewness, p, whose exponent ex. is essentially the ratio of the growth rates 
of nonmutants and of mutants. Thus, the probability of the number of 
mutants exceeding the very large value m is proportional to m- a -1; it is 
"asymptotically scaling." The unequal growth rate cases ex.::I-1 are solved 
for the first time. In the ex. = 1 case, a result of Lea & Coulson is rederived, 
interpreted, and generalized. Various paradoxes involving divergent 
moments that were encountered in earlier approaches are either absent or 
fully explainable. The mathematical techniques used are standard and 
will not he described in detail; this paper is primarily a collection of 
results. 

11.1 Introduction 

Let the bacteria in a culture grow, and sometimes mutate, at random, for a 
long time. In an occasional culture, the number of mutants will be enor­
mous, which means that "typical values," such as the moments or the 
most probable value, give a very incomplete description of the overall dis­
tribution. Also, when the same mutation experiment is replicated many 
times, the number of mutants in the most active replica may exceed by 
orders of magnitude the sum of the numbers of mutants in all other rep­
licas taken together. Luria & Delbriick 1943 first observed the above fact, 
and also outlined an explanation that played a critical role in the birth of 
molecular biology: The advantage of primogeniture is so great that the 
clone to which it gives rise has time to grow to a very much larger size 
than other clones in the same replica, or than the largest clone grown in a 
more typical replica in which no early mutation happened to be included. 

Interest in expressing this explanation quantitatively, by describing the 
full distribution of the numbers of mutants, first peaked with Lea & 
Coulson 1949, Kendall 1952, Armitage 1952, 1953 and Bartlett 1966, but the 
solutions advanced were not definitive. Several investigators only calcu­
lated moments. Also, rates of growth were always assumed to be the 
same for mutants and non-mutants, and the rate of mutation to be very 
small. Kendall 1950 was very general; it may include in principle the 
results to be described, but not explicitly. 
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This short paper describes the whole distribution (for the first time) 
under assumptions that seem both sufficiently general to be realistic and 
sufficiently special for the solution to be exact and near explicit - in the 
sense that the Laplace transform of the distribution is given in closed ana­
lytic form. 

The extreme statistical variability characteristic of the Luria & 
Delbriick experiment is also found in other biological experiments in 
progress. One may therefore hope that the present careful study, which 
settles the earliest and simplest such problem, would provide guidance in 
the future. It may help deal with some new cases when very erratic 
behavior is unavoidable, and in other instances, it may help avoid very 
erratic random behavior and thus achieve better estimates of such quanti­
ties as rates of mutation. 

11.2 Background material: assumptions and some known distributions 

Assumptions. (A) At time t = 0 the culture includes no mutant, but 
includes a large number bo of nonmutants. 

(B) Between times t and t + dt, a bacterium has the probability mdt of 
mutating. 

(C) Back mutation is possible. 

(D) Neither the mutants nor the nonmutants die. 

(E) The rate of mutation m is so small that one can view each mutation 
as statistically independent of all others. 

(F) Mutants and nonmutants multiply at rates that may be different. 
The scale of time is so selected that, between the instants t and t + dt, the 
probability of division is gdt for a mutant and dt for a nonmutant. 

Non-mutants. A bacterium that mutates may be considered by its non­
mutant brethren as having died. Therefore, N(t, m), defined as the number 
of non-mutant bacteria at the instant t, follows the well-known "simple 
birth and death process" (see, e.g., Feller 1950, Vol. I, 3rd ed., p. 454). 
When bo~ 1, the variation of N(t, m) is to a good approximation 
deterministic 

N(t, m) - EN(t, m) _ boet(l- m). 

Non-random clones. A clone being all the progeny of one mutation, 
denote by K(t, m) the number of clones at the instant t. From Assumption 
(E), K(t, m) is so small relative to N(t, m) that different mutations can be 
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considered statistically independent. It follows that K(t, m) is a Poisson 
random variable of expectation 

Random clones. Denote by Y(t, m, g) the number of mutants in a clone 
selected at random (each possibility having the same probability) among 
the clones that have developed from mutations that occurred between the 
instants 0 and t. The distribution of Y(t, m, g) will be seen to depend on 
its parameters through the combinations ~ and a. = (1 - m) / g. Since even­
tually we shall let m -+ 0, a. nearly reduces to the ratio of growth rates, 
1/ g. One can prove that, after a finite t, 

In the case a. = 1, this yields explicitly 

The generating function (g.f.) of Y, denoted Y', equals 

- rexp<gtl 
Y(b, t, m,g) =o.[l-e- tO - ml]Jl fo-a-1{[v(i -1) + lr1dv}. 

As t -+ 00, while m and g are kept constant, Y tends to a limit random 
variable Y(o.) that depends only on a.. When a. = 1, 

1 

Pr {Y(o.) = y} = fo fo(1- v)y-1dv = y(y ~ 1) , 

a result known to Lea & Coulson 1949. For all a., 

no.)ny) 
Pr {Y(o.) ~ y} = a. nO. + y) . 
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For large y, 

The yea) thus constitutes a form of asymptotically "hyperbolic" or 
"Pareto" random variable of exponent a. The population moment Eyh(a) 

is finite if h < a but infinite if h ~ a. For example, the expectation of yea) 
is finite if, and only if, a > 1 and the variance is finite if, and only if, a > 2. 
Infinite moments are a vital part of the present problem. 

11.3 The total number of mutants 

M(t, m, g) will denote the number of mutant bacteria at the instant t. 
Thus, M(O, m, g) = 0, and 

K(t,m,g) 

M(t, m, g) = L Yk(t, m, g). 
k=l 

Denote its g.f. by M(b, t, m, g). Since K is a Poisson random variable of 
expectation EK, log M(b, t, m, g) = EK[Y(b, t, m, g) - 1]. 

The distributions of K and Y both depend on t (and are therefore 
interrelated). For this reason, the standard theorems concerning the limit 
behavior of sums (Gnedenko & Kolmogorov 1954, Feller 1950, Vol. II) are 
not applicable here. Fortunately, the special analysis that is required is 
straightforward. An approximate formal application of the standard theo­
rems - letting the Y converge to the yea) and then adding K of them -
would be unjustified, but some of its results nevertheless remain appli­
cable. (Some of the paradoxes encountered in the analyses circa 1950 are 
related to cases where inversion of limit procedures is unjustified.) 

One correct formal inference concerns the choices of a scale factor S(K) 

and location factor L(K), so as to ensure that the probability distribution of 
R = S(K)[M - L(K)] tends to a nondegenerate limit as K --> 00. Setting 

the scale factors are as follows: 
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a>2 L(IG = EY S(K) = (EK)-1/2 

l<a<2 L(K) =EY S(K) = (EK)-l/a 

a=1 L(K) = log EK S(K) = (EK)-l/a = 8e-gt 

a<1 L(K) =0 S(K) = (EK)-l/a 

With these scale factors, the limits depend on a, as follows. 

The case a> 2. Here, limt_o (EK)-1/2(M - EM) can be shown to be 
Gaussian. Nothing original! 

The case a < 1. Here, limt_O (EK)- lIar.f=l Yk can be shown to have a g.f. 
equal to 

The corresponding limit r.v., call it R(oo, a, A), appears for the first time (to 
the best of my knowledge) in the present context. The fact that it is 
nondegenerate (not reduced to either 0 or 00) confirms that the above 
standardization was well chosen. Moreover, near b = 0, R(b, 00, m, g) has a 
good expansion in Taylor series, so all moments of R(oo, a, 8) converge. 
However, this convergence has limited significance because, in actual prac­
tice, m is extremely small and A is extremely large, so the moments of 
R(oo, a, 8) are themselves enormous and tell us very little about the dis­
tribution of R(oo, a, 8). On the other hand, as was shown by Luria & 
Delbriick, the birth and mutation process is illuminated by a sort of 
"diagonal" procedure. In this procedure, while t increases, m and/or bo 
change in such a way that A - 00 while g > 1, while a remains between 0 
and 1. As a result, the function R tends towards 

This is an unfamiliar expression for a well-known function, namely the g.f. 
a positive Levy stable random variable of maximal skewness, f3 = 1 
(Gnedenko & Kolmogorov 1954, Feller 1950, Volume II). It is also the 
limit one would have obtained for K - 00 if we let Y - Y(a) and then con­
sider the similarly standardized sum of K independent random variables 
of the form Y(a). In the limit, all the moments of order h > a (including 



E8 ¢ ¢ ... AND OTHER EXPLANATIONS OF SCALING 249 

all integer moments) diverge. As a practical consequence, the statistical 
estimation of m and g from values of M is both complicated and unreli­
able. Traditionally, statistics has relied heavily on sample averages, but 
when the population averages are infinite, the behavior of the sample 
averages is extremely erratic, and any method that involves them must be 
avoided. 

The case 1<a<2. Here, limt_oo(EK)-l/uIf=l[Yk-EYk] can be shown to 
have the g.f. 

As A -+ 00, this function tends towards 

exp [ - baaIT I sin (aIT)], 

which is again the g.f. of a stable random variable of exponent a and 
maximal skewness, i.e., of the limit of a similarly standardized sum of K 
independent random variables of the form Y(a). The theory of these limits 
is well known, but their shape is not; see M 1960i{E10}, M & Zamfaller 
1959. 

The case a = 1. Here, limt_oo (EK)-lIf=l [Yk - log EK] can be shown to 
have the g.f. 

exp [b log b + b log (1 + 11M)]. 

As A -+ 00, this function tends towards exp [b log b], corresponding to the 
stable density of exponent a = 1 and maximal skewness, f3 = 1, sometimes 
called the "asymmetric Cauchy" density. It was derived (but not identi­
fied) in Lea & Coulson 1949, which concerns the case when the mutation 
rate m is small, and the growth rates for the mutants and the nonmutants 
are equal, so that a -1. 

11.4 The total number of bacteria and the degree of concentration 

Designate by B(t, m,g) = N(t, m) + M(t, m, g) the number of bacteria of either 
kind at the instant t. In the straightforward special case g = 1, the function 
B(t, m, g) follows a "simple birth process" or "Yule process"; see Feller 
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1968. When bo~ 1, the growth of B is for all practical purposes 
deterministic and exponential, meaning that B(t) - bi. 

In the cases g * 1, things are much more complex, but much of the 
story is told by the orders of magnitude for large t: M(t, m, g) - fft and 
N(t, m, g) - e(l- m)t. 

When a < 1, B(t, m, g) - M(t, m, g), meaning that the mutants - which 
we know are subject to very large fluctuations - become predominant. 

When a > 1, B(t, m, g) - eO - m)t with little relative fluctuation, since the 
random factor that multiplies t is nearly the same as it would be if there 
had been no mutation. Thus, the dependence of B upon g is 
asymptotically eliminated. 

Now examine the "degree of concentration" of the mutants, namely 
the ratio p of the number of mutants in the largest of the K clones in a 
replication, divided by the total number of mutants in the other clones of 
this replication. 

Luria & Delbriick discovered that an alternative ratio can be quite 
large. This ratio is the number of mutants in the largest among H repli­
cations, divided by the sum of the number of mutants in the other of the 
replications. It can be shown that the above two ratios follow the same 
distribution, so it will suffice to study the first, beginning with two 
extreme cases. 

Consider the case where a mutation brings enough competitive disad­
vantage and enough decrease in the growth rate to result in a~2. Then, 
the number of young and small clones increases much faster than the size 
of the single oldest clone in an experiment. Therefore, it is conceivable 
that a negligible proportion of mutants will be descended from either this 
oldest clone or any other single clone. This expectation is indeed con­
firmed. We know that if a > 2 the quantity M(t, m, g) tends towards a 
Gaussian limit, so the contribution of any individual addend Yk to their 
sum is indeed negligible. 

Now consider the opposite extreme case, where a mutation brings 
enough competitive advantage and enough increase in the growth rate to 
result in a~l. Then, the size of the oldest clone in an experiment (corre­
sponding to the earliest mutation) grows much faster than the number of 
fresh clones. It is conceivable, therefore, that the largest clone in an exper­
iment is comparable in size to the sum of all the other clones. An appreci­
able proportion of the mutants could descend from the single largest 
clone. This expectation is indeed confirmed in two different ways. First, it 
has been shown by Darling 1952 (see also Feller 1950, Volume II, p. 439, 
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problem 20), that if a < I, the ratio p does not tend to zero as K -- 00. 

Rather, its distribution tends to a nondegenerate limit, and E(1/ p) has the 
nondegenerate limit a/(1- a). As a varies from 0 to I, this limit varies 
from 0 to 00. That is, when mutation causes an enormous increase in 
growth rate so that the value of a is very small, 1/ p is nearly 0 on the 
average, and the limit value of p for large K is often very large. When, on 
the contrary, mutation brings very slight advantage, so that a is very 
nearly I, 1/ P is very large on the average and p tends to be small. But its 
values can be seen to be widely scattered, and large values are not 
unlikely. 

The limits described by the preceding theorem are approached rapidly 
when a is small, but very slowly when a is near 1. Thus, in the Lea & 
Coulson case corresponding to a = I, the value of K must be very large for 
p to become negligible. For ordinary values of K, the typical value of p is 
non-negligible, and the dispersion of p around this typical value is very 
wide, so that the original argument of Luria & Delbriick is justified. 

Note: The formulae on random clones described in Section 2 restate some 
results obtained in Yule 1924. Yule's paper is known to have introduced 
the birth process, but has otherwise been neglected. It treated a nominally 
different problem: our "growth" was his "increase in the number of 
species in one genus," our "mutation" was his "starting of a new genus." 
Simon 1954 attempted to modify Yule's argument to obtain diffusion from 
less strong first-order assumptions. This attempt unavoidably failed. 

Editorial comment. This reprint corrects a horrendous typographical 
error. In the original, both in the abstract and at the end of Section 2, the 
exponent - a was printed as - a-I. ' 
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A case against the lognormal distribution 

• Abstract. The lognormal distribution is, in some respects, of great sim­
plicity. This is one reason why, next to the Gaussian, it is widely viewed 
as the practical statistician's best friend. From the viewpoint described in 
Chapter E5, it is short-run concentrated and long-run even. This makes it 
the prototype of the state of slow randomness, the difficult middle ground 
between the wild and mild state of randomness. Metaphorically, every 
lognormal resembles a liquid, and a very skew lognormal resembles a 
glass, which physicists view as a very viscous liquid. 

A hard look at the lognormal reveals a new phenomenon of delocal­
ized moments. This feature implies several drawbacks, each of which suf­
fices to make the lognormal dangerous to use in scientific research. 
Population moments depend overly on exact lognormality. Small sample 
sequential moments oscillate to excess as the sample size increases. A 
non-negligible concentration rate can only represent a transient that van­
ishes for large samples. • 

AFTER LEVY, ZIPF AND PARETO were described as providing inspira­
tion to scaling and fractal geometry, Chapter E4 also listed a widely­
followed nemesis. Robert Gibrat, the author of Les inegalites economiques 
(Gibrat 1932), remains foremost among the many who claim that economic 
inequalities (presumably all of them) can be described and explained by 
the lognormal. As is well-known, A is called lognormal when G = 10gA is 
Gaussian. Section 1 recalls the basic facts about the lognormal, and 
describes in parallel several reasons why it is liked, and counterbalancing 
reasons why its assets are misleading. In a word: this distribution should 
be avoided. A major reason, elaborated in Section 2, is that a near­
lognormal's population moments are overly sensitive to departures from 
exact lognormalities. A second major reason, elaborated in Section 3, is 
that the sample moments are not to be trusted, because the sequential 
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sample moments oscillate with sample size in erratic and unmanagable 
manner. 

Once again, the preceding paragraph and the rest of this book avoid 
endless and tiresome repetition of the terms "density," "distribution," 
"random variable," and the like. It is better to deal with such words as 
"Gaussian," "lognormal," "Bernoulli," "Poisson," and "scaling" as 
common names. For example, if there is no loss of intelligibility and the 
context allows, "lognormal" will be a synonym either of "lognormal 
distribution," or of "lognormal random variable." Only a slip of the pen 
can make me use the word "normal" as synonym of "Gaussian." The 
reason is that in this book the norm is randomness that used to be called 
"anomalous" and that Chapter E5 describes as "wild." Since the word 
"lognormal" will not change, I try not to think about its undesirable root. 

Some statisticians tell practicing scientists that there is no need to deal 
with many different random variables, because every variable can be 
transformed into a Gaussian ... or even a uniform variable. This transfor­
mation is discussed and dismissed in Chapter E5. 

The lognormal claims to represent both the bell and the tails in distrib­
ution of personal income, though only roughly. The scaling is concerned 
with the tail only, but claims to represent that part in more precise, more 
enlightening and more useful fashion. The L-stable is claimed in Chapter 
E10 to represent the tails well and the bell, reasonably. More generally, 
the lognormal, the scaling and other narrower-purpose distributions con­
tinually compete in the many fields of science where skew long-tailed 
histograms are a fact of life and concentration ratios are not small. My 
research life began by facing the conflict between the lognormal and the 
scaling in the study of word frequencies. 

The endless conflict between the lognormal and the scaling is illus­
trated on Figure 1. It is annoying and boring, and its very existence is irri­
tating and implies that the two distributions differ less than their vastly 
different analytic forms would suggest. Section 3 will show that such is 
indeed the case: many lognormals can be approximated over wide spans 
of values of the variable by judiciously chosen scaling, and conversely. 

This assertion does not endorse the claim by statisticians who despise 
log-log plots, that "everyone knows that every log-log plot is straight; 
therefore, a straight log-log plot cannot mean anything." If this were true, 
the scaling distribution could not be conceivably proved wrong ("falsified" 
in Popper's terminology.) But it would not be a candidate for serious sci­
entific discourse. Be that as it may, all log-log plots are not straight. 



254 A CASE AGAINST THE LOGNORMAL DISTRIBUTION <> <> E9 

The lognormal's properties helped Chapter E5 draw a deep difference 
between mild, slow, and wild "states of randomness." The Gaussian is 
mildly random. The scaling thrives on its own wildness: it faces the 
many difficulties due to skewness and long-tailedness, and this is why it is 
usable and realistic. The lognormal lies between the mild and the wild, in 
the state of "slow randomness;" it even provides an excellent illustration 
of this intermediate state and its pitfalls. It is beloved because it passes as 
mild: moments are easy to calculate and it is easy to take for granted that 
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FIGURE E9-1. Illustration of how a sample of a very skew lognormal random var­
iable can "pass" as being from a scaling. The abscissa is log x, the ordinate is 
log Fr (X> x), with Fr the frequency in a sample. This is the plot of the dis­

tribution (cumulated from the tail) of a sample of 9 000 lognormal variables X, 
where log X has zero mean and a standard deviation equal to log elO. The 
graph "passes" as straight. The arrow near x = 12 marks the mean, and the 
arrow near x = 150, the mean plus one standard deviation. 
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they play the same role as for the Gaussian. But they do not. They hide 
the difficulties due to skewness and long-tailedness behind limits that are 
overly sensitive and overly slowly attained. 

In the metaphor of "states of randomness," the contrast between liquid 
and solid leaves room for glasses. These hard objects used to be viewed 
as solids, but their properties are not explained by the theory of solids (as 
a matter of fact, they remain poorly explained). In time, strong physical 
reasons arose for viewing glasses as being very viscous fluids. The glassy 
state is a convenient metaphor to characterize the lognormal, but also a 
challenge that will be taken up in this chapter. Therefore, the lognormal's 
wondrous properties are irrelevant and thoroughly misleading; it is not the 
statisticians' best friend, perhaps even their worst one. For those reasons, 
and because of the importance of the topic, this chapter was added to 
bring together some points also made in other chapters. 

Given the serious flaws of the lognormal, there are strong practical 
reasons to prefer the scaling. But scientists learn to live with practical dif­
ficulties, when there are solid theoretical reasons for doing so. The scaling 
has diverse strong theoretical points in its favor, while Chapter E8 shows 
that the usual theoretical argument in favor of lognormality is weak, 
incomplete and unconvincing. Unfortunately, the fields where the 
lognormal and the scaling compete lack convincing explanations. 

Helpful metaphors. There are many issues that the scaling distribution 
faces straight on, but the lognormal distribution disguises under a veneer. 
The lognormal distribution is a wolf in sheep's skin, while the scaling 
density is a wolf in its own skin; when living among wolves, one must 
face them on their own terms. 

References. The literature on the theory and occurrences of the 
lognormal is immense and I do not follow it systematically. Aitchison & 
Brown 1957 was up-to-date when I took up this topic, and I marvelled 
even then at the length of the mathematical developments built on founda­
tions I viewed as flimsy. See also Johnson, Kotz & Balakrishnan 1994. 

A warning against a confusion between "lognormal" and "logBrownian." 
To my continuing surprise, "lognormal" is also applied here and there to 
the "logBrownian" model according to which log (price) performs a 
Brownian motion, a la Bachelier 1900. The only feature common to those 
two models (not counting the evidence against both) is slight: the 
10gBrownian model asserts that where a price is known at time t = 0, its 
value at time t is a lognormal random variable. 
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1. INTRODUCTION 

1.1 The lognormal's density and its population moments 

Let V = logA be Gaussian, that is, of probability density 

1 {(V-Jd } 
.~ exp - .....2 • 

(J'y2rr 20-

Then the probability density of the lognormal A = exp V is 

1 1 {(lOg A - Jd } 
peA) = (J'~2rr T exp - 2cr . 

The simplest distinction between states of randomness (Chapter E5) 
involves the convexity of log peA) and the finiteness of the variance. 

The cup-convexity of the tail of log peA). For the lognormal, there is a 
"bell" where log peA) is cap-convex, and a tail where log peA) is cup­
convex. Most of the probability is in the bell when cr small, and in the 
tail when cr is large. If generalized to other distributions, this definition 
sensibly states that the Gaussian has no tail. Because of the cup-convexity 
of log peA) in the tail, Chapter E5 calls the lognormal "long-tailed." 

Finiteness of the moments. An easy classical calculation of EAq needed in 
the sequel yields 

EAq= 1 r'\q-1exp{- (logA-Jd }dA 
(J'~2rr Jo 2cr 

1 i oo { (logA - Jd } . ~ exp - .....2 + (q - l)logA dA 
(J'y2rr 0 20-

= hrr foo exp{ - (v _;)2 + qV}dV. 
(J' 2rr -00 2 

1 { crq2 }fOO { [v - (J,l + crq)f } 
= (J'~2(J' exp J,lq + -2- -00 exp - 2cr dv. 
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Hence the following result, valid for all q( - 00 < q < 00) 

Ways of normalizing A. One can set J1 = 0 by choosing the unit in 
which .\ is measured. To achieve EA = I, it suffices to set J1 = - cr /2. 
Using the notations J1 = - m and cr = 2m. 

EAq = exp[ - qm + q2m] = exp[mq(q -1)]. 

In particular, EA2 = exp(2m) = expcr, and the variance is v2 = exp(2m)-l. 
Skewness and long-tailedness. The lognormal's skewness and kurtosis 

confirm that, as m --+ 00, the distribution becomes increasingly skew and 
long-tailed. But skewness and kurtosis are less telling than the above­
mentioned notions of "bell" and "tail". 

The reader is encouraged to draw several lognormal densities, normal­
ized to EA = 1 and parametrized by the standard deviation v. On both 
sides of the point of coordinates 1 and p(1), include an interval of length 
2v. As soon as m> 00g2)/2 - 0.35, this interval extends to the left of the 
ordinate axis. This fact underlines the unrepresentative nature of the 
standard deviation, even in cases of moderate skewness. 

This fact also brings to mind one of the deep differences that exist 
between physics and economics. In physics, moments of low order have a 
clear theoretical interpretation. For example, the population variance is 
often an energy that must be finite. In economics, to the contrary, the 
population variance is nothing but a tool of statistical analysis. Therefore, 
the only real interest is restricted to the insights that population moments 
can yield, concerning phenomena ruled by sample moments. This chapter 
will show that the predictions drawn from the lognormal are too confused 
to be useful while those drawn from the scaling are clear-cut. 

1.2 Three main reasons why the lognormal is liked, and 
more-than-counterbalancing reasons why it should be avoided 

An asset: the lognormal density and the formulas for its moments are very 
simple analytically. So are products of lognormals. 

A more-than-counterbalancing drawback: the distributions of sums are 
unmanageably complicated. Dollars and firm sizes do not multiply; they add 
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and subtract. But sums of lognormals are not lognormal and their analytic 
expressions are unmanageable. That is, the lognormal has invariance 
properties, but not useful ones. 

This is a severe handicap from the viewpoint of the philosophy of 
invariances described in Chapter E1 and throughout this book. Once 
again, each scientific or engineering problem involves many fluctuating 
quantities, linked by a host of necessary relations. A pure curve-fitting 
doctrine proposes for each quantity the best-fitting theoretical expression, 
chosen in a long list of all-purpose candidates. But there is no guarantee 
at all that the separately best fitting expressions are linked by the relations 
the data must satiSfy. For example, take the best fit to one-day and 
two-day price changes. The distribution of the sum of one day fit need 
not be analytically manageable, and, even if it is, need not be identical to 
the distribution of a two-day fit. 

Major further drawback: Section 2 shows that the population moments of the 
lognormal are not at all robust with respect to small deviations from absolutely 
precise lognormality. Because of this lack of robustness, X being approxi­
mately Gaussian is not good enough from the viewpoint of the population 
moments of exp X. The known simple values of EA q are destroyed by 
seemingly insignificant deviations. The technical reason behind this 
feature will be described and called "localization of the moments." Hence, 
unless lognormality is verified with absolute precision, the moments' 
values are effectively arbitrary. 

The deep differences between the lognormal as an exact or an approxi­
mate distribution were unexpected and led to confusions even under the 
pen of eminent scientists. Few are the flaws in the Collected Works of 
Andrei N. Kolmogorov (1903-1987), but his influential papers on 
lognormality (especially in the context of turbulence) are deeply flawed. 
Hard work to correct those flaws led M 1972j{N14} and M 1974f{N15} to 
results on multifractals that overlap several fields of inquiry and greatly 
contributed to fractal geometry and the present discussion. 

Another major drawback: Section 3 shows that the sequential sample 
moments of the lognormal behave very erratically. This additional drawback 
tends to prevent the first one from actually manifesting itself. The popu­
lation moments of a lognormal or approximate lognormal will eventually 
be approached, but how rapidly? The answer is: "slowly." 

When the lognormal A is very skew, sample size increases, the answer 
is that the sequential sample average undergoes very rough fluctuations, 
and does not reach the expectation until an irrelevant long-run (corre­
sponding to asymptotically vanishing concentration). In the middle-run, 
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the sample and population averages are largely unrelated and the for­
mulas that give the scatter of the sequential sample moments of the 
lognormal are impossibly complicated and effectively useless. This 
behavior is best explained graphically, the Figure captions being an inte­
gral part of the text. Figure 2 uses simulated lognormal random variables. 
while Figure 3 uses data. 

Powers of the lognormal being themselves lognormal, all sample 
moments are averages of lognormals. Their small, and medium sample 
variability is exteeme and not represented by simple rules deduced from 
lognormality. By contrast, the scaling interpolations of the same data 
yields simple rules for the very erratic sample variability. Erratically 
behaving sample moments and diverse other difficulties that the scaling 
distribution faces straight on, are characteristic of wild randomness. 

A widely assumed asset: it is believed that the lognormal is "explained" by a 
random "proportional effect" argument. Aside from its formal simplicity, the 
greatest single asset of the Gaussian is that it is the limit in the most 
important central limit theorem. That theorem's limit is not affected by 
small changes in the assumptions, more precisely, limit Gaussianity 
defines a "domain of "universality," within which details do not count. 
Similarly, the lognormal is ordinarily viewed as being justified via so­
called "proportionate effect" models. They represent log X as the sum of 
independent proportionate effects, then invoke the central limit theorem to 
conclude that log Z must be approximately Gaussian. 

A more-than-counterbalancing drawback: the random proportional effect 
models yield the Gaussian character of log A as an approximation and the conclu­
sions concerning A cannot be trusted. In most scientific problems, the lack of 
exactitude of central limit approximations makes little difference. The 
number of conceivable multiplicative terms of proportionate effect is not 
only finite (as always in science) but small. Therefore, the Gaussian 
involved in the limit theorem is at best a distant asymptotic approximation 
to a preasymptotic reality. When John Maynard Keynes observed that in 
the long-run we shall be all dead, he implied that asymptotics is fine, but 
economists should be concerned with what will happen in some middle 
run. Unfortunately, we deal with one of those cases where, because of the 
already-mentioned sensitivity, approximations are not sufficient. 

Under the lognormal assumption, the basic phenomenon of industrial concen­
tration must be interpreted as a transient that can occur in a small sample, but 
vanishes asymptotically. In an industry including N firms of lognormally 
distributed size, how does the relative size of the largest depend on N? 
This topic is discussed in Chapter E7 and E8. 
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In the long-run regime N -+ 00, the relative size of the largest of N 
lognormal addends decreases and soon becomes negligible. Hence, a size­
able relative size of the largest, could only be a transient and could only 
be observed when there are few firms. Furthermore, the formulas that 
deduce the degree of concentration in this transient are complicated, evade 
intuition, and must be obtained without any assistance from probability 
limit theorems. 

/ 
"" 

FIGURE E9-2. My oldest illustration of the erratic behavior of the sample averages 
of very skew approximately lognormal random variables. Several samples 
were nenerated, each containing over 10,000 values. Then the sample average 
~ ILA = IX" was computed for each sample, and plotted as a line. 

Both coordinates are logarithmic. In an initial "transient" zone, the aver­
ages scatter over several orders of magnitude. The largest average is often so 
far removed from the others, that one is tempted to call it an outlier and to 
disregard it. The approximate limit behavior guaranteed by the law of large 
numbers is far from being approached. The expectation EX is far larger than 
the bulk of sample values Xn, which is why huge sample sizes are required for 
the law of large numbers to apply. 

In addition, the limit depends markedly on the Gaussian generator. In 
this instance, log Xn = Dn - 6, where the In are 12 independent pseudo­
random variables with uniform distribution. With a different approximation, 
the limit would be different, but the convergence, equally slow and erratic. 
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To the contrary, in an industry in which firm size is scaling, the rela­
tive size of the largest firm will depend little on the number of firms. Fur­
thermore, the asymptotic result relative to a large number of firms remains 
a workable first-order approximation where the number of firms is not 
very large. 

10 100 

FIGURE E9-3. illustration of the erratic behavior of the sample mean square of a 
set of very skew natural data, namely the populations of the 300 largest cities 
in the USA. This old graph was hand-drawn in 1986. The alphabetical order 
was picked as approximately random and lV lLX; was computed for every 
value of N. The curve to the left uses linear coordinates in units of 1011; the 
curve to the right uses log-log coordinates. 

There is not even a hint of convergence. 

In light of this Figure, examine two conflicting claims. Gibrat 1932 claims 
that the distribution of city populations is lognormal, and Auerbach 1913 that 
this distribution is scaling. It may well be that both expressions fit the 
histograms. But it is clear that the fitted lognormal only describes the 
asymptotic behavior of the sample mean square and gives no information 
until the sample size enters the asymptotic range. However, the sample of 
city sizes is exhaustive, and cannot be increased any further, hence the notion 
of asymptotic behavior is a figment of the imagination. To the contrary, the 
fitted scaling distribution does predict the general shape of this Figure. 



262 A CASE AGAINST THE LOGNORMAL DISTRIBUTION <> <> E9 

Conclusion. Even in the study of the transients, it is better to work 
with the scaling approximation to the lognormal than with the lognormal 
itself. This scaling approximation makes one expect a range of sizes in 
which the concentration depends little on N. 

The 3 and 4-parameter generalized lognormals. They will not be discussed 
here. To all the defects of the 2-parameter original, the generalizations 
add defects of their own. Simplicity is destroyed, the moments are 
equally meaningless and Gibrat's purported justifications, already shaky 
for the lognormal, lose all credibility when parameters are added. 

2. THE POPULATION MOMENTS OF A NEAR-LOGNORMAL ARE 
LOCALIZED, THEREFORE OVERLY SENSITIVE TO DEPARTURES 
FROM EXACT LOG NORMALITY 

2.1 Summary of a first argument against the lognormal 

The expressions obtained in the Section 1.1 prove to be of little conse­
quence unless the lognormal holds with exactitude beyond anything that 
any scientist or engineer can reasonably postulate for a statistical distrib­
ution. Otherwise, the classical and easily evaluated population moments 
are devoid of practical relevance. 

2.2 Even when G is an acceptable Gaussian approximation of Z, the 
moments of eG may drastically differ from the moments of eZ 

This sensitivity is a very serious failing. When a theoretical probability 
distribution is characterized by only a few parameters, a host of properties 
are intimately tuned to each other. It suffices to verify a few to predict the 
other. Moving on from a theoretical distribution to one obtained by 
fitting, one hopes that "small" errors of fitting yield small prediction 
errors. Such is, indeed, the case for the Gaussian G, but not for the 
lognormal A = eG• The trouble is that the practical use of the lognormal 
consists of predictions that are very sensitive to departure of G from exact 
Gaussianity. 

The sensitivity of the lognormal will not be proved theoretically, but 
will instead be illustrated by comparing a) the Gaussian, and the following 
near-Gaussian examples: b) a Bernoulli random variable B obtained as 
sum of K binomial variables bounded by max B, c) a Poisson random 
variable, P, and d) a gamma random variable r obtained as the sum of y 
exponentials. Textbooks prove that B, P and r can be made "nearly 
identical" to a normal G. The underlying concept of "near identity" is crit-
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ical; for sound reasons, it is called "weak" or "va~e." Let us show that it 
allows the moments of the "approximations" eP, e and ef to depend on q 
in ways that vary with the approximation, and do not match the patterns 
that is characteristic of eGo 

a) The lognormal. To match the Poisson's proger?; that EP = Ep2 = p, 
we set EG = Jl = P and if = p. It follows that [E(e )q]l q = exp [p(l + q/2)]. 
Thus, [E(eG)q]llq is finite for all q, and increases exponentially. 

b) The logBernoulli. Here, [E(eB)q]llq ~ exp (K max B). Thus, [E(l)q]llq 
is bounded; in the vocabulary of states of randomness expounded in 
Chapters E5, eB is mildly random, irrespective of K, but this property is 
especially devoid of contents from the viewpoint of the small- and the 
middle-run. 

c) The logPoisson. [E(eP)q]llq = exp [p(eq -l)/q]. Thus, [E(eP)q]llq is finite 
but increases more rapidly than any exponential. Like Ue' the lognormal 
eP belongs to the state of slow randomness 

d) The log-gamma. E(ef/a)q = 00 when q > G.. Thus, ef/a is of the third 
level of slow randomness when G. > 2, and is wildly random when G. < 2. 

Expectations. By design, the bells of G and P are very close when p is 
large, but E(eG) = exp(1.5p) and E(l) = exp(l.7p) are very different; this 
shows that the expectation is not only affected by the bell, which is 
roughly the same for G and P, but also by their tails, which prove to be 
very different. 

The coefficients of variation. They are 

E[(eG)2] 

[E(eG)f 

The dependence on the tails is even greater for eP than it is for EA. 

Higher order moments differ even more strikingly. In short, it does 
not matter that a large p insures that B and P are nearly normal from the 
usual vie~oint of the "weak-vague" topology. The "predictive error" 
E(eP)k - E(e l is not small. Less good approximations Z yield values of the 
moments E(ezl that differ even more from E(eGl. 

Illustration of the appropriateness of the term "weak topology." In a case 
beyond wild randomness that is (thankfully) without application but 
serves as warning, consider Z = exp V N where V N is a normalized sum of 
scaling addends with G. ~ 2. By choosing N large enough, the bells of V N 

and G are made to coincide as closely as desired. Moreover, EV2 < 00, 
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hence the central limit theorem tells us that V N converges to a Gaussian G, 
that is, comes "close" to G in the "weak", "vague" sense. The underlying 
topology is powerful enough for the central limit theorem, but for q > a 
moments cannot be matched, since E~ = 00 while EGq < 00, and all positive 
moments E exp(qVN) are infinite, due to the extraordinarily large values of 
some events that are so extraordinarily rare that they do not matter. 

2.3 The moments of the lognormal are sensitive because they are 
localized, while those of the Gaussian are delocalized 

The formula EAq = exp(f.lq + dlq2/2) reduces all the moments of the 
lognormal to two parameters that describe the middle bell. However, let 
us consider a general U and take a close look at the integral 

For many cases, including the lognormal and the Gaussian, the 
integrand uqp(u) has a maximum for u = ilq, and one can approximate 
q log u + log p(u) near its maximum by a parabola of the form 
- (u - i9 /2~, and the integral is little changed if integration is restricted 
to a "leading interval" of the form [- (J"q + 11, I1q + (J"q]' where (J"q is the 
width of the maximum of uqp(u). When q' is allowed to vary continuously 
instead of being integer-valued and close to q, the corresponding leading 
intervals always overlap. We shall now examine what happens as q' 
moves away from q. There is continuing overlap in the Gaussian, but not 
in the lognormal case. It follows that different moments of the lognormal 
are determined by different portions of the density p(u); therefore, it is 
natural to describe them as localized. By small changes in the tail of p(u), 
one can strongly modify the moments, not independently of each other, to 
be sure, but fairly independently. This fact will help explain the observa­
tions in Section 2.1. 

2.3.1 The Gaussian's moments are thoroughly delocalized. Here, 

u2 
log [uqp(u)] = a constant + q log u - 2dl . 

At its maximum, which is I1q = u.fq, the second derivative is 2/dl, hence 
(J"q = u/,f2. Successive leading intervals overlap increasingly as q 
increases. Numerically, the second percentile of I G I is given in the tables 
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as roughly equal to 2.33. Values around the second percentile greatly 
affect moments of order S or 6. The value I G I = 3 is encountered with 
probability 0.0026, and its greatest effect is on the moment of order q = 9. 
Therefore, samples of only a few thousand are expected to yield nice esti­
mates of moments up to a fairly high order. 

2.3.2 The lognonnal's moments are localized. For the lognormal, a good 
choice variable of integration, v = log u yields the formula in Section 1.1 

{ ifq2 }fOO {[V - (J.l + ifq)f } 
EAq = u/zrr exp J.lq + -2- -00 exp - 2if dv. 

When J.l = - m and if = 2m, so that EA = 1, 

Pq = J.l + ifq = m(2q - 1), while Crq = U = J2m is independent of q. 

Consequences of the dependence of f1q and u..i. on q, concerning the localized 
character of the moments of the lognormal. The midpoints of the leading 
intervals corresponding to q and q + tlq differ by if tlq. When U is small, 
the leading intervals overlap only with neighbors. When if > 2u, integer 
qs yield non-overlapping leading intervals. 

Consequences of the values of f1q and uq concerning the direct estimation of 
the moments EAq from the data on a lognormal A. One can evaluate EAq 
from the mean and variance as estimated from the distribution of log A, 
or from A itself. The latter method shows that the population moments of 
the lognormal are delocalized and overly dependent on separate intervals 
of rare values. 

The moment EA. As soon as m = 2.33, log Xl lies on the distribution's 
first percentile to the right. That is, the estimation of EA from the ,\ data 
is dominated by one percent of the data. As soon as m = 3.10, log Xl cor­
responds to the first per-mil to the right. That is, the estimation of EA 
from the'\ data is dominated by one-thousandth of the data. 

The moment EA2. Its estimation is dominated by log X2 - J.l + 2if = 3m. 
The percent and per-mil thresholds now occur, respectively, for m = 0.77 
and m = 1.03. Therefore, the empirical variance makes no sense, except for 
very small m and/or a very large sample size. 

The moment EA3. Its estimation, hence the value of the empirical 
skewness, is dominated by log X3 - J.l + 3if = Sm. 
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The rest of the argument is obvious and the practical meaninglessness 
of its estimate is increasingly accentuated as q increases. 

Implications of the sensitivity of the population moments to the confidence a 
scientist may place in them. For both the Gaussian and the lognormal, a 
standard formula extrapolates all the EAq and the tail's shape from two 
characteristics of the bell, namely, Jl and if. For the Gaussian, the extrap­
olation is safe. For the lognormal, the extrapolated high moments cannot 
be trusted, unless the underlying distribution is known in full mathemat­
ical precision, allowing no approximation. But absolute exactitude for all ,\ 
is not of this world. For example, Section 1.2 mentioned that the statisti­
cians' attachment to the lognormal is rationalized via the Central Limit 
Theorem, but this theorem says nothing of the tails. Moreover, due to the 
localization of the lognormal, high order moments largely depend on a tail 
that is effectively unrelated to the bell. 

Prediction in economics demands such as extrapolation from the fitted 
distribution to larger samples and corresponding larger values. From this 
viewpoint, data for which one may hesitate between the lognormal and 
the scaling distributions are genuinely difficult to handle. By fitting the 
scaling distribution the difficulties are made apparent and can be faced. 
By contrast, lognormal fitting hides them and prevents them from being 
recognized, because it fails to be sensitive in the regions in which sensi­
tivity matters. The decision between lognormal or the scaling cannot be 
helped by the development of better statistical techniques. When data are 
such that the scaling and lognormal representations are equally defensible, 
and the limited goal is compression of data for the purpose of filing them 
away, one may just as well flip a coin. But we must move beyond that 
limited goal. 

3. THE POPULA nON MOMENTS OF THE LOGNORMAL BEING 
LOCALIZED, THE FINITE SAMPLE MOMENTS OSCILLATE IN 
ERRATIC AND UNMANAGEABLE MANNER 

3.1 Summary of the second argument against the lognormal 

Population moments can be evaluated in two ways: by theory, starting 
from a known distribution function, or by statistics, starting from sample 
moments in a sufficiently large sample. For the lognormal, Section 2 took 
up the first method. We now propose to show that the sensitivity of the 
population moments to rare events has another unfortunate consequence: 
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the second method to estimate the population moments is no better than 
the first. 

3.2 From exhaustive to sequential sample moments 

Every form of science used to depend heavily on the possibility of 
reducing long lists of data to short lists of "index numbers," such as the 
moments. But Section 5.1 of Chapter E5 argues that computer graphics 
decreases this dependence. Moreover, the heavy reliance on moments 
seems, perhaps unconsciously, related to the notion of statistical suffi­
ciency. As is well-known, the sample average is sufficient for the expecta­
tion of a Gaussian, meaning that added knowledge about the individual 
values in the sample brings no additional information. This is true for 
estimating the expectations of the Gaussian but not in general. I always 
believed, in fact, that sample moments pushed concision to excess. This is 
why myoId papers, beginning with M 1963b{E14}, did not simply eval­
uate a q-th moment, but made sure to record a whole distribution. 

3.3 The lognormal's sequential sample moment 

Given a set of N = max n data and an integer q, the sequential qth sample 
moment is defined by 

n 

Sq(n) = ~ I u~. 
m=l 

The question is how Sq(n) varies as n increases from 1 to N = max n. 

For the lognormal A and near-Iognormals with E~ < 00, we know that 
Sq(n) does converge to a limit as n - 00. But Section 3.4 will show that the 
sample sizes needed for reliable estimation of the population moments 
may be colossal, hence impractical. For reasonable sample sizes, conver­
gence is erratic. With a significant or even high probability, the sample 
moments will seem to vary aimlessly, except that, overall, they appear to 
increase. 

The key fact is that, for large enough q, the event that U! < E~ has a 
very high probability, hence also the event that SIJ..{n) < E~. Colossal 
sample sizes are needed to allow Sq(n) to reach up to L~. 

The nature and intensity of those difficulties depends on skewness. In 
the limit u~l and EA = 1, one has 11 = a2 /2, hence I 111 ~1 and 
A = exp [u(G - 11)] - 1 + u(G - 11). That is, A is near Gaussian, and one 
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anticipates sample moments converging quickly. Low-order moments 
confirm this anticipation. However, Aq being also lognormal, the qth 
moment of one lognormal is the sample average of a less skewed one. 
Since a large enough q makes the parameters u q = qu and 11 = - q2a2!2 as 
large as desired, A q become arbitrarily far from being Gaussian. 

That is, every lognormal's sufficiently high moments eventually misbe­
have irrespective of the value of u. Since the moments' behavior does not 
depend on q and U separately, but through their product qu, we set q = I, 
and study averages for a lognormal having the single parameter u. 

3.4 The growing sequence of variable "effective scaling exponents" that 
controls the behavior of the sequential moments of the lognormal 

The scaling and lognormal distributions are best compared on log-log 
plots of the tail densities, but those plots are complicated. To the contrary, 
the log-log plot of the density are very simple and give roughly the same 
result. An effective a exponent a(A) is defined by writing 

d d { , r;;; (log A -11) } 
dA log peA) = dA -10g(uy2 ) -log A - 2a2 

log A-11 
= - 1 - a2 = - a(A) - 1. 

After reduction to EA = I, 

- " _ log A - 11 =.1. 10gA 
a(l\) - a2 2 + a2 . 

From Section 2.2.2, the values of A that contribute most to EAq satisfy 
log A - j1 = a2(q - 1/2), hence yield an effective a(q) - q. For example, the 

range coriesponding to q = 1 yields an effective a(q) - 1. Within a sample 
of finite size N = max n, one can say that the behavior of the sequential 
S (n) is not affected by the tail of the density, only by a finite portion, and 
f6r the lognormal that finite portion corresponds to an effective a that 
grows, but slowly. 

The existence of an effective a follows from the localization of 
moments. An effective a is not defined for the Gaussian, or can be said to 
increase so rapidly that small samples suffice to make it effectively infinite. 
By contrast, the scaling distribution has a constant a, which is the true a. 
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We know that a scaling X makes specific predictions concerning the 
distribution of sequential sample moments, and those predictions are 
simple and identical in the middle and the long-run. When the q-th popu­
lation moment diverges for q > a, the sequential moment Sq<n) has no limit 
for n -+ 00, but the renormaHzed form Wq/uIx:, tends in distribution to a 
L-stable variable of exponent a/ q and maximal skewness. In particular, 
median [WlIx:,J is finite and proportional to W 1 + q/ u, and the scatter of 
the sample q-th moment, as represented by the ratio of x:, to its median, 
also tends in distribution to a L-stable random variable. 

Why inject the wildness of infinite population moments into a dis­
cussion in which all moments are actually safe and finite? Because the 
very same behavior that some authors used to describe as "improper" is 
needed to predict about how the sequential moment of the lognormal 
varies with sample size. While this behavior is practically impossible to 
obtain from direct analytic derivations, it is readily described from a repre­
sentative "effective" sequence of scaling distributions. 

For small N, the sample Sq(n) will behave as if the lognormal 
"pretended" to be scaling with a very Iowa, that is, to be wild with an 
infinite EA, suggesting that it will never converge to a limit value. For 
larger samples, the lognormal mimics a scaling distribution with 1 < d < 2, 
which has a finite EA, but an infinite EA2. As the sample increases, so 
does the effective d(A) and the sample variability of the average decreases. 
It is only as A -+ 00, therefore d(A) -+ 00, that the lognormal distribution 
eventually acknowledges the truth: it has finite moments of all orders, 
and S (n) ultimately converges. Those successive ranges of values of A are 
narro.:v and overlap when uq is small, but are arbitrarily wide and non­
overlapping when uq is large. 

But where will the convergence lead? Suppose that A is not exactly, 
only nearly lognormal. The qualitative argument will be the same, but the 
function d(A) will be different and the ultimate convergence will end up 
with different asymptotics. 

Sequential sample moments that behave erratically throughout a 
sample are often observed in data analysis, and must be considered a fact 
of life. 



PART III: PERSONAL INCOMES AND FIRMS 

The idea of shortening those papers on income distribution came to mind, but a 
certain level of repetition may help the reader understand scaling and L-stability. 

&&&&&&&&&&&&&&&&&&&&&&&&&&& 

International Economic Review: 1, 1960, 79-106 & 4,1963, 111-115. EIO 

L-stable model for the distribution of income 

• Abstract. This paper introduces a new model for the distribution of 
income, and hopes to draw attention to the great potential of the 
ilL-stable" family of nonGaussian probability distributions. This new tool 
may be as important as the specific application to be discussed. In other 
words, the same approach translates immediately to analogous quantities 
for which it may be more reasonable, or give a better fit. One might even 
paraphrase Einstein's cagey comment about Brownian motion: it is pos­
sible that the properties studied in that paper are identical to those of 
income; however, the information available regarding incomes is so 
lacking in precision that one cannot really form a judgement on the 
m~~ • 

THE THEME OF THIS PAPER is the empirical expression proposed by 
Vilfredo Pareto for the distribution of high personal incomes. Pareto 1896 
asserts that the social-economic structure of a community and the precise 
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definition chosen for "income" at most influence the parameters of a uni­
versal expression. Otherwise, or so he claimed, the same distribution 
represents the incomes of a few hundred "burghers" of a Renaissance city­
state and of all USA taxpayers. 

Section 1 carefully distinguishes between the terms "Pareto law" and 
"scaling distribution," each of which can be either "uniform" or 
"asymptotic." Section 1.5 comments on several existing theories of income 
distribution. 

Section 2 introduces the "positive L-stable distribution," which is not 
restricted to high incomes but also partially explains the data relative to 
the middle-income range. This new alternative was suggested by two 
arguments. First, among all possible interpolations of the asymptotic 
version of the scaling distribution, only the L-stable distributions strictly 
satisfy a certain (strong) form of invariance relative to the definition of 
income. Second, under certain conditions, the L-stable distributions are 
possible limits for the distribution of renormalized sums of random vari­
ables. This implies, of course, that the Gaussian distribution is not the only 
possible limit, contrary to what is generally assumed. It is unnecessary (as 
well as insufficient) to try to save the limit argument by applying it to 
10gU instead of to U, as is done in some theories leading to the lognormal 
distribution for U. The L-stable distributions also have other very desirable 
properties, which will be discussed. 

1. INTRODUCTION 

Let P(u) be the percentage of individuals whose yearly income U exceeds 
u; income is assumed to be a continuous variable. The empirically 
observed values of P(u) are of course percentages relative to finite popu­
lations, but we follow Pareto in considering them as sample frequencies in 
a random sample drawn from an infinite population. That is, U will be 
treated as a random variable with values u, and the curve U(t) describing 
the variation of U in time t will be treated as a random function. 

1.1. The uniform scaling distribution and uniform Pareto law 

The uniform Pareto law asserts that personal income follows the uniform 
scaling distribution. This term means that there exist two "state variables" 
il and a such that 
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when u> u 
when u <u. 

Here, i1 is a minimum income; it is a scale factor that depends on the cur­
rency. The exponent a > 0 will be used to quantify the notion of the ine­
quality of distribution. Graphically, the uniform distribution implies that 
the doubly logarithmic graph of y = logP as a function of v = logu, is a 
straight line. The corresponding density p(u) = - dP(u) / du is 

{
a(u)au - (a + 1) 

p(u) = 0 when u >u 
when u <u. 

In this statement of the uniform scaling distribution, the value of a is only 
constrained to satisfy a > O. Pareto also made the even stronger statement 
that a = 3/2, which is clearly invalid. 

1.2 Asymptotically scaling distribution and asymptotic Pareto law 

The uniform scaling distribution is empirically unjustified, and it should 
be noted that many purported "disproofs" of "the" Pareto law apply to 
this variant only. On the contrary, there is little question of the validity of 
the scaling distribution if sufficiently large values of u are concerned. The 
asymptotic scaling distribution asserts that personal incomes are 
asymptotically scaling. This term means that 

This statement is useful only if the exact definition of the sign -, 
"behaves like," conforms to the empirical evidence and - taking advantage 
of the margin of error in such evidence - lends itself to easy mathematical 
manipulation. The following definition is usually adequate: 

P(u) -+ 1 as u -+ 00, 

(u/u)-a ' 

that is, 

P(u) = {1 + e(u)}(u/u)-a, where e(u) -+ 0, as u -+ 00. 
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The sign - expresses that the graph of logP versus logu is asymptotic for 
large u to the straight line characteristic of uniform scaling. 

1.3 Interpolation of asymptotic scaling to the bell of the distribution 

Only over a restricted range of values of u does P(u) behave according to 
scaling. Elsewhere, the "density" - dP(u) / du is represented by a curve 
that is quite irregular and whose shape depends in particular on the 
breadth of coverage of the data considered. This has been emphasized in 
Miller 1955: if one includes all individuals, even those with no income 
and part-time workers, and if one combines the incomes of men and 
women, then the income distribution is skew and presents several 
maxima. However, for most of the different occupational categories, as 
distinguished by the census, the separate income distributions are both 
regular and fairly symmetric. Thus, the main source of skewness in the 
overall distribution can be traced to the inclusion of self-employed persons 
and managers together with all other wage earners. One may also note 
that the method of reporting income differs by occupational categories; as 
a result, the corresponding data are not equally reliable. 

The above reasons make it unlikely that a single theory could ever 
explain all the features of the income distribution or that a single empirical 
formula could ever represent all the data. As a result, it has been fre­
quently suggested that several different models may be required to 
explain the empirical P(u). Unfortunately, we know of no empirical 
attempts to verify this conjecture. In any case, the present paper will be 
devoted almost exclusively to a theory of high income data and the 
asymptotic scaling distribution. It is unlikely that the interpolation of the 
results of our model will be able to explain all middle-income data and we 
shall not examine this point in great detail. 

1.4 Two distributions of income distribution which contradict the 
asymptotic scaling distribution 

1.4.1. Crossover to exponential asymptotic decay. Pareto himself sug­
gested 

p(u) = - dPjdu = ku-(a+l) exp( - bu), where b > O. 

However, the asymptotic scaling distribution must be at least approxi­
mately correct for large u. Hence, the parameter b must be very small, and 
there is little evidence against the hypothesis that b = O. Therefore, the 
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choice between the hypotheses b = 0 and b #- 0 may be influenced legit­
imately by the ease of mathematical manipulation and explanation. We 
shall see that the foundation for a theoretical argument resides in some 
crucial properties of the asymptotic Pareto distribution that correspond to 
b = O. We shall therefore disregard the possibility that b #- O. 

1.4.2. The lognormal distribution. That distribution (Gibrat 1932, 
Aitchison & Brown 1957) claims that the variable 10gU, or perhaps the var­
iable 10g(U - il) (where il > 0) is well represented by the Gaussian distrib­
ution. The empirical evidence for this claim is that the graph of (P, u) on 
log-normal paper seems to be straight. However, such a graph empha­
sizes one range of values of u, while the doubly logarithmic graph empha­
sizes a different range. Thus, the graphical evidence for the two 
distributions is not contradictory. Moreover, the motivation for the log­
normal distribution is largely not empirical but theoretical, as we shall 
now proceed to show. 

1.5. "Thermodynamic" models of income distribution 

There is a great temptation to consider the exchanges of money that occur 
in economic interaction as analogous to the exchanges of energy that occur 
in physical shocks between gas molecules. In the loosest possible terms, it 
is felt that both kinds of interactions "should" lead to "similar" states of 
equilibrium. Driven by this belief, many authors tried to explain the dis­
tribution of income distribution by a model similar to that used in statis­
tical thermodynamics. Other authors took the same path unknowingly. 

Unfortunately, the scaling P(u) decreases much more slowly than the 
usual distributions of physics. To apply the physical theory mechanically, 
one must give up the additivity properties of U and argue that U is a less 
intrinsic variable than some slowly increasing function V(U). The universal 
choice seems to be V = 10gU or perhaps V' = 10g(U - il), with il a positive 
muumum income. This choice is suggested by the fact that empirical 
records use income brackets with a width that increases with u. In addi­
tion, log V can be traced back to the "moral wealth" of Bernoulli, and it 
has been argued that log V can be justified by some distribution of 
proportionate effect, a counterpart in economics of the Weber-Fechner dis­
tribution of psychophysiology. 

Even if this choice of V is granted, one has to explain why it seems 
that the normal distribution applies in the middle zone of v's and the 
exponential distribution P(v) = exp{ - a(v - V)} applies for large v's. 
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Many existing models of the scaling distribution are reducible to the 
observation that exp( - a.v) is the barometric density distribution in the 
atmosphere. Alternatively, consider Brownian particles floating in a gas 
that has a uniform temperature and density and that is enclosed in a semi­
infinite tube with a closed bottom and an open top. Assume further that 
the gravitational field is uniform. Then, the equilibrium density distrib­
ution of the Brownian particles, and their limit distribution, is exponential. 
This limit results from a balance between two forces, which are both 
uniform along the tube; gravity alone pull all particles to the bottom, and 
heat motion alone would diffuse them to infinity. Clearly, the models of 
income distribution that we are now considering involve interpretations of 
the forces of diffusion and gravity. 

Unfortunately, the counterpart of the bottom of the tube is essential: 
removing the bottom changes everything. There is no longer any steady limit 
state because all the Brownian particles diffuse down to infinity. It is true 
that, if all the particles start from the same point, the conditional distrib­
ution for V is Gaussian, but this fact cannot be an acceptable basis for a 
model of the log-normal distribution. 

The boundary conditions already matter when diffusion is replaced by 
a random walk. In this approximation, time is an integer and V is an 
integer multiple of a unit fJ. This model was explicitly introduced into eco­
nomics in Champernowne 1953. It assumes (1) that the variation of V is 
Markovian, that is, Vet + 1) is a function only of vet) and of chance, and (2) 
that the probability that vet + 1) - vet) = kfJ, which a priori could be a func­
tion of k and of vet). But this is not all. To obtain either the scaling or the 
log-normal distribution, additional assumptions are required. But these 
additional assumptions have no intuitive meaning, which makes both con­
clusions unconvincing. However, the models that lead to the exponential 
are still slightly better. In fact, we can argue that the apparent normality of 
the "density" p(v) in the central zone of v's simply means that -logp(v) 
may be represented by a parabola in that zone, whereas for large v's it is 
represented by a straight line. Such a parabolic interpolation needs no 
limit theorems of probability for its justification; it applies to any regularly 
concave curve, at least in the first approximation. 

In models of the asymptotic Pareto law for incomes, further nonintui­
tive assumptions are necessary to rationalize a. > 1. 

Various other models of the normal or exponential distributions often 
occur in statistical thermodynamics. These models - and their translation 
in terms of economics - are essentially equivalent. In particular, they 
assume that there is no institutional income structure; all income recipients 
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are treated as entrepreneurs. However, a rewording of the classical theo­
ries can make them applicable to many possible institutional structures of 
wage and salary earners. This was done in Lydall 1959. I had independ­
ently rediscovered Lydall's model and had discussed it in the original text 
of this paper, as submitted on June 19, 1959. The predictions of the 
L-stable model and of the Lydall model coincide for 1 < a < 2. This shows 
that the distribution that corresponds to the least amount of organization 
could be "frozen" without modifying it, reinterpreted as a wage distrib­
ution, and allowed to evolve along conceptually quite different lines. This 
fact has great relevance to the problem of the value of a since in highly 
organized industrial societies, a has tended to increase beyond 2. 

This article attempts to show that one need not abandon the analogy of 
statistical physics to avoid the weaknesses which mar existing theories. There 
will be no need for the transformation V = 10gU, nor for economic counter­
parts of such conditions as the presence or the absence of a bottom to the 
tube in which Brownian motion is studied. That is, this will not be an 
implicit attempt to force income into the structure of statistical 
thermodynamics but an explicit attempt to generalize the statistical 
methods of thermodynamics to cover the economic concept of income. 

2. L-STABLE RANDOM VARIABLES 

2.1 Analysis of the definition of the notion of income; random variables 
that are invariant under addition, up to scale 

One of the principal claims of this paper is that it is impossible to 
"explain" why the distribution of income is scaling, and does not follow 
some other distribution, without first wondering why essentially the same 
distribution continues to be followed by "income," despite changes in the 
definition of this term. 

This invariance is, of course, very important to census analyzers, 
because it means that large changes in methods of estimating income have 
an unexpectedly small effect on the distribution. 

2.1.1. Analysis of the notion of income. We shall argue that there are 
several ways of distinguishing different sources of U. Therefore, U may be 
written in different ways as the sum of elements, such as (A) agricultural, 
commercial or industrial incomes; (B) incomes in cash or in kind; (C) ordi­
nary taxable income or capital gains; (D) incomes of different members of 
a single taxpaying unit, and so forth. Label the income categories in a 
certain decomposition of U as Up:::; i:::; N). We assume that every method 
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of reporting or estimating income corresponds to the observation of the 
sum of the Ui corresponding to some subset of indices i. This quite reason­
able consideration imposes the restriction that the scale of incomes them­
selves is more intrinsic than any transformed variables, such as 10gU. 

The same kind of division may also be performed in the direction of 
time and the year is unlikely to be an intrinsic unit of time. 

Consider the incomes in the categories Ui to be statistically inde­
pendent. This assumption idealizes the actual situation. A priori, this 
abstraction may seem a bad first approximation since when income is 
divided into two categories U' and UrI, such as agricultural and industrial 
incomes, the observed values u' and u" are usually very different. 
However, when the parts are independent and follow the asymptotic 
scaling distribution, we shall find that one would actually expect them to 
be very unequal. Hence, although such an inequality cannot be a confir­
mation of independence, at least it does not contradict it in this case. 

2.1.2. Paul Levy's "stability," meaning invariance under addition, up to 
scale. Under the assumptions described in Section 2.1.1, the only proba­
bility distribution for income that could possibly be observed must be 
such that, if U' and U" follow this distribution (up to a scale transforma­
tion and up to the choice of origin), then U' + UrI must also follow the 
same distribution. That is, given a' > 0, b', a" > 0, and b", there must exist 
two constants a > 0 and b such that 

(a'U + b') + (a"U + bIt) = aU + b. 

Such a probability distribution, its density and U itself are said to be 
L-stable under addition. 

The family of all distributions which satisfy this requirement was con­
structed in Levy 1925. In addition to the Gaussian distribution, it includes 
nonGaussian distributions that are asymptotically scaling with some 
0< a < 2. In other words, the additive property of U and the behavior of 
P(u) under the asymptotic Pareto distribution (both of which disappear if 
the scale of U is changed), tum out to be precisely sufficient and necessary 
for the application of Levy's theory of L-stable distributions. 

Furthermore, a L-stable U satisfies E(U) < 00 when 1 < a < 2. 

2.1.3. "Positive" L-stable distributions. In the study of income, we 
restrict ourselves to the extreme cases when p( - u) decreases very much 
faster than p(u) when u --+ 00. Those L-stable variables may be called posi­
tive, an abbreviation for "maximally skewed in the positive direction." For 
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convenience, this paper writes "L-stable distributions" without reminding 
each time that the variable is positive. 

It is, obviously, not strictly true that the distribution of income is 
invariant over the whole range of u, with respect to a change in definition 
of income. But we argue the following: if the variable U is not Gaussian, 
and if its distribution is very skew, the most reasonable "first order" 
assumption about income is that it is a L-stable variable. 

2.1.4. The L-stable probability density. Unfortunately, this density cannot 
be expressed in a closed analytic form, but is determined indirectly by its 
bilateral Laplace transform 

G(b) = L: exp( - bu) I dP(u) I = L: exp( - bu)p(u)du. 

In the L-stable case, G(b) is defined for b > 0, and takes the form 

G(b) = exp{(bu)O - Mb}, 

which depends on three parameters. The exponent a satisfies 1 < a < 2, a 
is a positive scale parameter, and M is a location parameter; When 
1 < a < 2, then M = E(U). 

Behavior of P(u) for u -+ 00. The behavior of G(b) for b -+ 0 shows that 

where r denotes the Euler gamma-function. 

For other values of u, the L-stable distribution is necessarily obtained 
numerically on the computer. Sample graphs of densities appear in Figure 
1. {P.S. 1996: An added comment is found, at the end of this chapter, in 
Annotation to Figure 1.} More detailed graphs are found in M & Zarnfeller 
1961. 

We see that as long as a is not close to 2, the L-stable density curve 
becomes v,ery rapidly indistinguishable from a uniformly scaling curve of 
the same a. For this reason, the origin of the unifoxm curve must be 

-1/0 
chosen properly, and one must set a = a[r(1 - a)] . The two curves 
converge near u = E(U) when a is in the neighborhood of 3/2 and at even 
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FIGURE E10-1. Plot in natural coordinates of the probability densities of the 
reduced L-stable random variables for M = EU = 0, /3 = I, and the following 
values of the exponent: a = 1.2 (to the left), 1.5 (center), and 1.8 (to the right). 
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smaller values of u when a is less than 3/2. That is, the asymptotic 
behavior of p(u), derived from G(b), is attained very rapidly. 

Behavior of p(u) for u - - 00. This density is > 0 for all u, as u - - 00, it 
decreases faster than in the Gaussian case. Therefore, large negative 
values of u may be safely disregarded. Indeed, Appendix I proves that 

loge -logp(u)] - a ~ 1 log I ul. 

The middle range of values of U. In the bell, the graph of the L-stable 
probability density is skew; this is the behavior one finds in the empirical 
data and hopes to derive in a theoretical curve. 

2.1.5. Non-positive L-stable distributions. The Gaussian distribution is of 
course stable, and it is the only L-stable distribution with a finite variance. 
Furthermore, all stable variables with a finite mean are either sums (obvi­
ously) or differences of L-stable variables scaled by arbitrary positive coef­
ficients. The bilateral generating function is no longer defined, and we 
must consider the usual characteristic function (ch.£.). For a L-stable vari­
able, the ch.f. is immediately obtained as 

Hence, denoting by (1 + {3)/(1 - {3) the ratio of the positive and negative 
components, the general L-stable variable with E(U) < 00 has a ch.f. of the 
following form, where fi ~ 0, I {31 ~ 1 and 1 < a < 2: 

The same formula extended to 0 < a < 1 gives L-stable variables with 
E(U) = 00. The limit value a = 2 yields the Gaussian variable, and the cross­
over value a = 1 yields the Cauchy variable and related skew variables. 

2.2 Role of the L-stable distributions in central limit theorems 

The L-stable distributions have another (equivalent) property: they are the 
only possible limit distributions of weighted sums of identical and inde­
pendent random variables. 
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To prove that every L-stable distribution is such a limit, assume that 
the variables Uj themselves are L-stable. This meaning of "behavior like" 
expresses that the sum I.r:lUj is a variable of the form a(N)U + beN). 
Hence, {a(N) r 1 {(~ 1 Uj) - b(N)} has the same distribution function as U. 
Conversely, assume that a certain normed sum of the variables Uj has a 
limit. The N-th normed sum, where N = n + m, can be written as 

N 

A(N) I Uj - B(N) 
j= 1 

A(N) {n } A(N) {m } 
= A(n) A(n) ~ Uj - B(n) + A(m) A(m) ~ Uj - B(m) + C(N). 

By letting both n and m tend to infinity a long proof found in Gnedenko & 
Kolmogorov 1954 shows that the definition of a L-stable variable must be 
satisfied by the limit of A(N)I.r: 1 Uj - B(N) + C(N). 

We also mention the following related theorem due to Gnedenko. For 
the convergence of }V l/uI.f= 1 Uj - B(N) to a L-stable limit, it is necessary 
and sufficient that 0 < a. < 2. For u > 0, F(u) = 1 - P(u) = 1 - {1 + e'(u)} 
(u/u1)-U, where e'(u) -+ 0 as u -+ 00. For u < 0, F(u) = {1 + e"(u)} (u/u2)-U, 
where e"(u) -+ 0 as u -+ - 00. That is, if U is decomposed into a sum of a 
large number of components Ui' we need not resort to the above argument 
of observational invariance. Assume that (1) the sum is not Gaussian 
(which is a conspicuous fact) for u~ 1, (2) the expected value of the sum is 
finite (which is also a fact) and (3) the probability of - u is much less than 
that of u. Under these assumptions, no further hypothesis about the dis­
tribution of the parts is necessary to conclude that the sum can only be a 
L-stable variable. We shall develop these points in more detail, and in 
Section 2.6 we shall show that the above restrictions may be reduced to 
broad 1/ qualitative" properties, such as the likelihood that two inde­
pendent variables U' and Uti contribute unequally to the sum U' + U". 

Note that the preceding explanation in terms of sums of many contrib­
utions does not involve the 10gU transformation, which leads to the log­
normal distribution and contradicts scaling. 

These results may be better than expected because the limit distrib­
ution might not hold for U, which is the sum of only a few random compo­
nents. That is, to increase the number of components of U, one must 
abandon at some point the hypothesis that the components are inde­
pendent. The larger the number of components, the less independent they 
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become. This difficulty is not unique to the problem of income but is 
acutely present in all social science applications of probability theory. 

The difficulty is already apparent in physics, for example, in argu­
ments meant to explain why a given noise is Gaussian. But in most phys­
ical problems there exists a sufficiently large zone between the systems 
which are so small that they are impossible to subdivide and those 
systems which are so large that they can no longer be considered homoge­
neous. No such zone exists in most problems of economics, so that a suc­
cessful application of a limit theorem may seem too good to be true. 

In summary, it cannot be strictly true that the additive components are 
independent and have the same distribution (up to scale). However, the 
acceptability of a given distribution is greatly increased when no other dis­
tribution is reducible to limit arguments. Hence, suppose that a sum of 
many components is not Gaussian, is skewed, and such that E(U) < 00; 
then the most reasonable first assumption concerning the sum is that it 
follows the L-stable distribution. 

More precisely, the L-stable distribution can be given two extreme 
interpretations. The "minimal" interpretation observes that it is correct 
asymptotically, is sufficiently easy to handle, and is useful in the first 
approximation. (After all, the Gaussian itself is frequently a good first 
approximation to distributions that, actually, are certainly not Gaussian.) 

At the other extreme, we may take the L-stable distribution entirely 
seriously and try to check its ability to predict some properties of income 
distribution that otherwise would seem independent of the asymptotic 
Pareto distribution. We believe that such predictions were, in fact, 
achieved. This provides some supporting evidence for a "maximal" inter­
pretation of the L-stable distribution, which regards its invariance and 
limit properties as being "explicative." 

2.3 L-stable distributions in abstract probability theory 

L-stable distributions are well-known in abstract probability theory. 
Therefore, we might have introduced them without special motivation, 
other than the fact that the known asymptotic behavior of P(u) and its 
recently computed behavior for intermediate u make it an attractive 
interpolation for income data (M 1959p). Unfortunately, the behavior of 
the L-stable distributions, in many other ways, is quite different from the 
behavior most statisticians learn from constant handling of the Gaussian 
distribution. To show their suitability to the present problem, we proceed 
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to study them heuristically from the viewpoint of addition and extremal 
values; this will be followed by statements of some rigorous results. 

The three main drawbacks we have attributed to the classical theories 
have no counterpart in our argument. Indeed, many variants of our argu­
ment lead to the same result; no change of scale of U is necessary, the 
behavior of P(u) being exactly what is needed, and 0. is "near" 3/2. 

2.4 Divergence of the variance of U 

A consequence of the limitation 1 < 0. < 2 is that the second moment of U 
is infinite while the first moment is finite. Indeed, 

E(U) = L: udF(u) = - L: udP(u) = P(u)du < 00, 

E(U2) = L: u2dF(u) = - L: u2dP(u) = 2uP(u)du = 00, 

(We assume that the behavior of P(u) for negative u does not lead to a 
convergence problem for E(U).) 

The last result holds for both uniform and asymptotic Pareto variables 
if 1 < 0. < 2, but it fails to hold for the density p(u) = ku- (a + 1) exp( - bu), 
which is described in Section 1.4. This provides a new and important test 
of our conjecture that b = O. 

The finiteness of E(ll) means that if the ui are samples from a Pareto 
distribution, the empirical mean EN = L~ 1 u/ N tends to E(U) with proba­
bility 1 (Kolmogorov's uniform distribution of large numbers). In addi­
tion, EN is a good estimate for E(U), if N is large. Now consider 
SN = (l/N)L~ 1 (ui - EN)2. If 0. > 2, SN tends to a finite limit SfJJ), the finite 
sum being a good estimate of the limit and L~ 1 (Ui - EN) / yN tends to a 
Gaussian variable. This result changes little if one adds an exponential 
factor with small b. If 0. < 2 and b = 0 the limit of SN is infinity, and SN 
grows without limit like N 1/a -1. To the contrary, S(U) is finite if b > O. 

Therefore, the usefulness of the exponential factor exp( - bu) may be 
tested by checking whether or not SN continues to increase with N in the 
case of the largest sample available. We could not make the direct test, 
but an indirect test results from the following observation: the ordering of 
the different populations by "increasing inequality" presumably should be 
identical with their ordering by decreasing 0.. On the other hand, more 
usual measures of inequality are given by Sw SN/ EN or rs;; / EN' These 
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two methods of ordering populations have been compared and found to 
be entirely contradictory. This result ceases to be absurd if one recalls that 
the values of N in the different samples we compared range from 102 to 
103. And it seems that even if S(U) was finite, it would not be approached, 
even with the largest samples. In that case, irrespective. of any theory, it is 
preferable to take b = 0 and S(U) = 00. Furthermore, no function of SN is 
adequate to compare degrees of inequality, except perhaps between 
samples of identical size. 

Another test of the usefulness of the approximation 5 = 00 is provided 
by the relative contribution to SN of the largest of the uj; As predicted from 
the theory of the L-stable distribution, this relative contribution is very 
large; it is close to 1/2 for the Wisconsin incomes, Hanna et al 1948. Trun­
cating U to avoid S = 00 distorts the whole problem. 

2.5 Heuristic study of the sums of two independent random variables in 
the exponential, Gaussian and asymptotically scaling cases 

Let U' and U" be two independent random variables with the same proba­
bility density p(u), and let P2(u) =.Eoop(x)p(u - x)dx be the density of the 
sum U = U' + U". We assume that u may vary from 0 to + 00 and compare 
the behavior for u - 00 of p(u) and P2(U). 

To understand the behavior of piu), it is useful to stress the following 
three forms of the graph of log[p(u)]. 

The Simplest form is the linear graph log[p(u)] = loge - bu. 

In the next simplest cases - illustrated in Figure 2 - the graph of 
log[p(u)] is convex or concave over the whole range of variation of u', 
hence -logp(x) -logp(u - x) has an extremum for x = u/2. 

Terminology. Having never learned the exact meaning of the terms 
convex and concave, I play it safe with cap convex for y = - x2 and cup convex 
for y=x2. 

2.5.1. The graph of logp(u) is rectilinear. In the exponential case, 

p(u') = {~ exp( - bu') 

Then, 

if u' ~ 0, 
if u' < o. 
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P2(U) = r C2 exp( - bx) exp[ - b(u - X) ]dx 

= r c2 exp( - bu)dx = C2u exp( - bu). 

Thus, all the values of u' contribute equally to P2(U). 

2.5.2. The graph of logp(u) is cap convex: d210g p(u)/du2 ~ 0, for all 
u. This convexity implies that p(u) decreases rapidly as u --+ 00, and the 
integrand p(x)p(u - x) has a maximum for x = u/2. If that maximum is suffi­
ciently strong, the integral .F-oop(x)p(u - x)dx largely consists of the contrib­
utions of a small interval of values of x, near u/2. Hence, a large value of u 
is likely to result when the two contributions u' and u" are almost equal. 

This conclusion may sound obvious, but in fact need not be true, in 
particular our main point will soon be that it ceases to be true if -logp is 
cup-convex. 

For the Gaussian density, 

1 {X2 } 1 {u2 } p(x) = a~2rr exp - 2~ and P2(U) = a,j2 ~2rr exp - 4~ . 

The Gaussian density is therefore preserved under addition, except 
that the scale factor a is multiplied by ,j2. The same result can be 
obtained heuristically by arguing that p(x)p(u - x) remains near its 
maximum value {p(U/2)}2 over some interval of width D/2 on each side of 
u/2 and is negligible elsewhere. This yields the approximate estimate 

P2(U) - p(u/2)p(u/2)D = ~ 2rr exp{ _ ~2 ~}. 

In other words, the a~oximate estimate is correct, if one takes for the 
width the value D = a~rr independent of u. 

2.5.3. The graph of log p(u) is cup convex: d210g p(u)/du2 ~ 0, for all 
u. Next, when p(u) decreases slowly, p(x)p(u - x) has a minimum for 
x = u/2. Note that, for every probability density, p(x) --+ 0 as x --+ 00 or 
x --+ - 00. The assumed cup convexity of - logp(x) requires x to be 
bounded from below. In the simplest example, u' can only be ~ il, and il 
is its most probable value. If so, p(x)p(u - x) will have two maxima, one 
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for x = fl and one for x = u - fl. If they are sufficiently uniform, piu) will 
mostly come from the contributions of the neighborhoods of these 
maxima. That is, the "error term" 

run run 
2 Jo p(x)p(u - x)dx - 2 Jo p(x)p(u)dx 

will reduce to contributions of value of x very different from x = O. These 
contributions being ~mall, 

u' 

ur-

o .. 
p (u') 

u 

o 

I 
U 

-

p (u') 

FIGURE ElO-2. Conditional probability density of the addend U' when the value u 
of U' + U" is large, for two distributions of U' and U": a bell with an 
asymptolically scaling tail (left) and the Gaussian (right). For the exponential, 
p(u') is a constant. 
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fu /2 
P2(U) - 2p(u) Jo p(x)dx. 

Finally, if u is large, fa/2 p(x)dx - 10 p(x)dx so that P2(U) - 2p(u). Hence, 

Note that a large value of u is now likely to be the sum of a relatively 
small value of either u' (or u") and of a value of u" or u') that is very close 
to u - ii. The two addends are likely to be very unequal. But the problem 
is entirely symmetric so that E(u' I u) = u/2. (See also Appendix II.) 

In addition, we have proved that, given two variables U' and U" of 
the slowly decreasing type, the distribution of the larger of these variables 
has the same asymptotic behavior as the distributions of their sum. 
Another derivation of this result starts from the derivation of the distrib­
utions of max(U', U"). Clearly, the probability that u is larger than 
max(U', U') is the probability that u is larger ~an both u' and u". Hence, 
1- P m(u) = 1- Pr{max(U', U") > u} = [1- P(u)]. For large u and small 
P(u), this becomes P m(u) - 2P(u). That is, for slowly decreasing densities, 
P m(u) - P2(u). 

A prototype of the slowly decreasing probability density is the 
uniform scaling variable. In that case, we can write 

That is, the sum of two independent and identical uniform scaling vari­
ables is asymptotic scaling with unchanged (l and ii multiplied by 21/u. 

Likewise, any asymptotic scaling distribution will be invariant under 
addition, up to the value of ii. The proof requires a simple refinement of 
the previous argument, to cover the case where -logp(x) is cup (or cap) 
concave for large values of x. One can show in this way that asymptotic 
scaling is preserved under the addition of two (or a few) independent 
random variables. There is no self-contradiction in the observed fact that 
this distribution holds for part of the range of incomes as well as for the 
whole range. That is, the exact definition of the term "income" may not 
be a matter of great concern. But, conversely, it is unlikely that the 
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observed data on P(u) for large u will be useful in discriminating among 
several different definitions of "income." 

The asymptotic scaling and the Gaussian distributions are the only 
distributions strictly having the above invariance ("L-stability") property. 
They will be distinguished by the criterion of "equality" versus 
"inequality" between u' and u", when u = u' + u" is known and large. (See 
Section 2.6.) In Section 2.8 we shall cite another known result concerning 
L-stable probability distributions. 

We may also need to know the behavior of P2(U) when the addends 
differ, so that the density p'(u') of U' decreases slowly and the density 
p"(u") of U" decreases rapidly. In that case, a large u is likely to be equal 
to u' plus some "small fluctuation." In particular, a Gaussian error of 
observation on an asymptotic scaling variable is negligible for large u. 

2.6 Addition and division into two for L-stable variables; criterion of 
(in)equality of the addends 

We have shown that the behavior of the sum of two variables is deter­
mined mainly by the convexity of -logp(u). We shall later show that this 
criterion is, in general, insufficient to study random variables. However, if 
we limit ourselves to L-stable random variables, the convexity of -logp(u') 
is sufficient to distinguish between the case of the Gaussian distribution 
and of all other L-stable distributions. That is, these two cases may be dis­
tinguished by the criterion that approximate equality of the parts of a 
Gaussian sum is in contrast with the great inequality between the parts in 
all other cases, in particular for L-stable distributions. 

Thus far this distribution has been used only to derive the distrib­
utions of U' + U". Suppose now that the value u of U is given and that we 
wish to study the distribution of u' or of u" = u - u'. 

The Gaussian case. If the a priori distribution of U' is Gaussian with 
mean M and variance cT, then the a priori distribution of U is Gaussian 
with mean 2M and variance 2cT. The conditional distribution of u', given 
u, is then given by 
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1 exp[ _ (u' - M)2] 1 exp[ _ (u - u' - M)2 ] 
U~2TT 2cr U~2TT 2cr 

p(u' I u) = --'---------------=----=---=-----=-
2-1/2 1 exp[ _ (u - 2M)2 ] 

U~2TT 4cr 

_ 21/2 1 [_ (u' - U/2)2 ] 
- .~ exp -2 . 

uV2TT (T 

Thus, the conditional probability is Gaussian with expectation u/2 and 
variance cr /2. 

A striking feature of the result is that the expectation of U' is u/2; oth­
erwise, the distribution of U' does not depend on u, as seen in the right-hand 
side of Figure 2. 

The L-stable case for 0. < 2. In income studies, the problem of division 
enters into questions such as the following. If we know the sum of the 
agricultural and industrial incomes of an individual, and if the a priori dis­
tributions of both these quantities are L-stable with the same 0., then what 
is the distribution of the agricultural income. This case is more involved 
than the Gaussian, because we do not know an explicit analytic form for 
the distribution of U' or U"; we can, however, do some numerical plotting, 
as seen in the left-hand side of Figure 2). 

If the sum U takes a very large value u, we find that the distribution 
of U' has two very sharp maxima, near u'max and u - u'max. As u decreases, 
the actual shape of this distribution of u' changes, instead of simply being 
translated, as in the Gaussian case. When u becomes small, more maxima 
appear. They then merge, and the distribution of u' has the same overall 
shape as in the Gaussian case. Finally, as u becomes negative and very 
large, the distribution of u' continues to have a single maximum. 

Hence, bisection provides a very sharp distinction in this respect 
between the Gaussian and all other L-stable distributions. 

Now, given a fairly small N, what is the distribution of (l/N)-th of a 
L-stable variable? In the Gaussian case, this (l/N)-th remains Gaussian 
for all N, with a mean value of u/N and a variance of (N -l)cr /N. In the 
non Gaussian case, each part of a large u may be small or may be close to 
u. Most of the N parts will be small, but, with a high probability, the 
largest part will be close to the whole. 

The situation is less intuitive when N becomes very large. However, 
Levy has proved that the necessary and sufficient condition for the limit of 
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the sum LUi to be Gaussian is that the value ui of the largest of the 
summands is negligible compared to the whole. On the contrary, if the 
limit is L-stable nonGaussian and such that E(U) = 0, both the sum and the 
largest of the summands will increase roughly as Nl/a. It is shown in 
Darling 1952 that their ratio tends toward a limit, which is a random 
number having a distribution dependent on a. 

Section 2.2 argued that U is the sum of N components without 
knowing N. A posteriori, this assumption is quite acceptable, because the 
largest (or the few largest) of the components contribute to the whole a 
proportion that is substantial and essentially independent of the number N 
of components. This eminently desirable feature of the L-stable theory is 
an important confirmation of its usefulness. 

However, if a L-stable income is small, its components are likely to be 
of the same order of magnitude, like in the Gaussian case. This has an 
important effect on the problem mentioned near the end of Section 2.1 
Assume that one has a Census category in which most income are rather 
small and that, when U is decomposed into parts, the sizes of the parts 
tend to be proportional to their a priori sizes. One may assimilate this 
behavior to that of t, a Gaussian distribution used to represent an 
unskilled worker's income (in which case the decomposition may refer to 
such things as the lengths of time during which parts of income were 
earned). But such behavior may also be that of a L-stable variable consid­
ered for small values of u. As a result, the apparently fundamental 
problem of splitting income into two parts so that only one follows the 
L-stable distribution is bound to have some solutions which are 
unassailable but impossible to justify positively. Hence, it is questionable 
whether this problem is really fundamental. 

2.7 Addition of many asymptotically scaling variables: reason for the 
asymptotic invariance of the asymptotic scaling density if 0 < a < 2 and 
its non-invariance in the case a > 2 

N The reasoning of Section 2.5, if applied to the sum W N = Li = 1 Ui of N 
asymptotic scaling variables, yields 

This relationship may be expressed alternatively as follows. Let a be 
any small probability, let u(a) be the value of U such that p[ u(a)] = a and 
let wN(a) be the value of WN such that PN[wn(a)] =a. The above approxi­
mation then becomes 



292 INTERNATIONAL ECONOMIC REVIEW: 1,1960, 79-106 <> <> EtO 

Either way, the distribution of WN~ 1/0. is independent of N for large 
values of w; in other terms, WN "diffuses" like N1/a. Actually, there are 
two obvious limitations to the validity of the approximation PN - NP. 

First limitation of the NlJo. rule for diffusion. This limitation applies when 
a> 1, and hence E(U) < 00. The above approximation for wn(a) is only valid 
if E(U) = O. This gives the only possible choice of origin of Uj such that, 
when N - 00, the distribution of WN~1/a tends to a limit over a range of 
wN where PiWN) does not decrease to zero. To show this, write 
V= U +c; then VN= UN+Nc and V~1/a = UN~I/a+cN1-1/a. When 
N - 00, the last term increases without limit so that V N~ 1/0. cannot have 
a nontrivial limit distribution if UN/~ 1/0. has one. Furthermore, if 
UN~ 1/0. has a limit distribution, UN/N has the degenerate limit 0 so that 
we must assume that E(U) = O. 

If, on the contrary, a < 1, the above argument fails because N1 - 1/0. 
tends to zero. Therefore WN~ 1/0. could have a limit distribution on a non­
decreasing range of values of U, whatever the origin of U. (In any event, 
E(U) = 00 for a < 1, so that the origin could not be E(U». 

Second limitation of the NlJa rule for diffusion. This limitation applies 
when a> 2. In that case, the relationship PN - NP can hold at best in a 
zone of values wN such that the total probability PN(WN) - 0 as N - 00. 

This limitation is due to the fact that U has a finite variance D(U) There­
fore, one can apply the classical central limit theorem to U. That is, now 
we can assert that 

{ WN-NE(U) } 1 IX 2 
limN _ooPr 1/2 < X = r.::=- exp( - y /2)dy. 

[ND(U)] v2TT -00 

This holds over a range of values of x where the probability P N - 1 as 
N - 00. That is, an increasingly large range of values of WN will eventu­
ally enter the Gaussian zone, in which WN - NE(U) diffuses like N1/2, 
which increases more rapidly than Nl/a. As the counterpart, the total proba­
bility of the value of x such that PN - NP, must tend to zero as N - 00. Note 
that the N 1/ 2 diffusion is not radically changed if U is truncated to be less 
than some fixed bound. That is, the N 1/ 2 diffusion represents the behavior 
of those values of WN that are sums of comparably small contributions 
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whereas the N I/a diffusion represents the behavior of sums of a single 
large term and many very small ones. 

Now we can draw conclusions concerning the relationship between 
the behavior of the largest of N terms Ui and the behavior of their sum. In 
the asymptotically scaling case with N = 2, the two problems are identical 
for all a, but as N increases, they become distinct. The problem of the 
maximum is the only one which remains simple and continues to lead to 
an asymptotically scaling variable. On the contrary, the concavity of 
- logp(u') is not a sufficiently stringent criterion to discriminate between 
those cases where PN - NP does or does not apply, over a range of values 
of u having a fixed probability. 

2.8 Infinite divisibility of the L-stable distributions 

If U is L-stable, we can write 

N 

U = A(N) I Ui - B(N) = I {A(N)Ui - B(N)/N} = I VNi, 
i= 1 

where the Ui are independent values of U and VN,i=A(N)Ui-B(N)/N. 
Hence, for every N, U can be considered as a sum of N independent and 
identically distributed variables V N, i' This property defines the notion of 
infinite divisibility for a random variable. Suppose that U is a L-stable vari­
able with 1 < a < 2 and E(U) = O. Then the infinite divisibility of U is made 
obvious by writing 

To divide a L-stable variable by N, we need only replace C by C/N. 
This preserves the form of the function log«p(l;), as it should, because 
(l/N)-th of a L-stable variable is itself stable. If 10 is sufficiently small. 

log<p(C;) - log<p(C;, E) = C (' (e'tr - 1 - iC;X) 1 d(x - a) I. 

The contribution of iC;ch xl d(x- U) 1 to log<p(c;, E) is to displace U by a 
nonrandom quantity. The essential term in log<p(c;, E), namely, 
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c.r:(ii;,x - 1) 1 d(x - a) I, is a limit of approximations of the form 
L<e1'1;x - 1) l.Mx- a) I. 

Thus, one can represent U as a limit of sums of Poisson variables. To 
each increment dx of the variable x, there is a corresponding contribution 
to U equal to x multiplied by a Poisson variable of expected value 
C 1 d(x- a) I. This means that a L-stable variable may be considered as a sum 
of variables, each of which is closely related to the uniform scaling distrib­
ution. The uniform scaling distribution may be truncated at any E > 0 
because the term it;,x of logcp(\,;) removes the divergence of the integral 
RM'1;x -1) Idx-al. 

Appendix III describes considerations that give an intuitive basis to 
infinite divisibility. 

3. CONCLUSION 

I hope that this first application of the L-stable distributions will stimulate 
interest in a more detailed study of their properties. Most of the usual 
procedures of statistics must be revised when variance is infinite, and new 
questions arise. It will be important to learn how to best choose the origin 
u" to insure that the L-stable density p(u) and the uniform scaling density 
a(u - u")- a - l(U)a coincide over as large a range of values of u as possible. 
To validate a good fit, one should compare the L-stable curve with the 
empirical data in the region of intermediate values of u. 

A final problem concerns the sign of a - 2. We have referred to it 
several times, but a further discussion can be pursued only within the 
framework of a theory of L-stable processes. (One indication may already 
be found in Section 2 of M 1959p.) To settle this problem, it will probably 
be necessary to introduce some dependence between the additive compo­
nents of U; this must be done carefully, however, to avoid obtaining a 
wholly indeterminate answer. 

APPENDIX I: THE L-ST ABLE DENSITY FOR 1 < a < 2, AS u ...... - 00 

This behavior is not reported in the literature but is yielded by the fol­
lowing heuristic argument. First, the bilateral generating function (a rarely 
used expression, but one that is useful in this context) takes the form 
G(b) = exp(ba ). This follows from the commonly used characteristic func­
tion by standard theorems on Fourier transforms in the complex plane. 
The existence of G(b) implies that, as u - - 00, p(u) must decrease faster 
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than any expression of the form exp( I bu I). Expressed in terms of v = - u 
and ftv) = -logp(v) the convergence of G(b) implies that, or v -+ 00, ftv) 
increases faster than any linear form of v. Furthermore, 

G(b) = L: exp(bv)p(v)dv = I: exp[bv - ftv) ]dv = L: exp[h(v) ]dv. 

If b is large, the integrand exp(h) is maximum for v = w, where w is the 
solution of b =f'(w). Near w, we can write 

h(v) = [bw - f'(w)] - (1/2)(v - w)1"(w) + (1/6)(v - w)3j,3l(w) + .... 

The terms of order 0 and 2 yield the approximation 

G(b) _ exp[bw - f'(w)] 

~21T I!"(w) 

Let us verify whether or not this approximation can reduce to exp(ba ), 

with a ftv) of the form Kvc• With the term exp[bw - f'(w)], this goal is 
achieved by taking c = a(a - 1)-1. Extending our attention to the term 
involving !"(w) weakens the result somewhat; instead of 
log[ -logp(v)] = logK + c logv, we can only assert that 
loge -logp)/logv -+ c as v -+ 00. Finally, consider the terms of orders other 
than 0 and 2. The contribution to G(b) of the term in (v - w)2 is nonnegli­
gible only as long as v - w is of the order of magnitude of 

1/2 -1 [f"(w)]- - WI - a[2(a -1)] . 

In this range, the term in (v - W)3 is of the order of magnitude of 
w- a /[2(a-1l], and is negligible. Similarly, the terms of higher order do not 
modify the behavior of p(v). {P.S. 1996: See, at the end of this reprint, the 
Annotation of Appendix [.} 

APPENDIX II: REPRESENTATIVE ASYMPTOTICALLY SCALING 
VARIABLES THAT ILLUSTRATE INVARIANCE UNDER ADDITION 

The case 0 < a < 1. Consider the discrete variable whose discrete (one-sided) 
generating function is 
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00 

Z(b) :::: I exp( - bn)p(n) :::: 1 - C(1 - e - b)a, where 0 < C < 1. 
n=O 

The corresponding p(u) satisfy 0 < p(n) < 1 and L~ = IP(n) :::: 1. For n'$> 1, 

Cn-(a+l) 
p(n) - n - a) 

The sum of two variables of this type has the following generating func­
tion 

It follows that 

2Cn- (a+ 1) C2n - (2a+ 1) 

P2(n) - n _ a) + n _ 2a) :::: 2p(n) + correction. 

For large n, the second part of the right-hand term becomes negligible 
compared to the first part. If a:::: 1/2, this second part vanishes so that the 
range of values of n in which it may be neglected increases as a -1/2. 

The case 1 < a < 2. To obtain an acceptable generating function, it is 
now necessary to add a factor in (1- e- b). Consider, for example, 

where 0 < aC'::5 C::5 C' + 1 so that C'::5 (a _1)-1. Here 

2Cn-(a+l) 2CC'(a+ l)n-(a+l) + C'2n-(2a+l) 

P2(n) - n - a) + n - a) n - 2a) 

For large n, the second and third terms become negligible for all a. The 
ratio of the coefficients of the first and second terms depends little on a; 
but the ratio of the coefficients of the third and first terms is ruled by 
n - a)/n - 2a), which is zero for a:::: 3/2 but may become large else­
where. As a result, the third term may be important over a large range of 
values of n. 
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The case a> 2. Each time a increases past an integer, the sign of 
C(1 - e- b) must be changed, and another polynomial term must be added 
if Z(b) is to remain a generating function. The number of corrective terms 
of P2(n) - 2p(n) increases, as well as the range of values of n in which the 
corrective terms are appreciable. 

Similarly, as more than two terms are added, PN(n) - Np(n) fails to be 
negligible over an increasing range of values of n. Let N -+ 00, and observe 
the weighted sums of the variables Uj" 

Conclusion. For 0 < a < 1, it is sufficient to consider the expression 
WN = JV l/a'LUi; its g.f. is ZN(JV l/ab), which tends to exp( - Cba) when 
N -+ 00, as it should. 

If 1 < a < 2, one must consider the expression WN = JV lIa'L(Ui - M), 
where M is the expectation ~Ui and is easily found to be C. The g.f. of WN 
is clearly exp(NCb)ZN(JV l/ab). As N -+ 00, it tends to exp(Cba), as 
expected. It is easily seen that when M"# C, the g.f. of WN does not have a 
nondegenerate limit. 

If a > 2, no linear renormalization of Ui can eliminate the square term 
Kb2 from log[Z(b)]. Hence, the best normalized sum of the Ui is the clas­
sical JV 1/2'f.(Ui - M), which tends to a Gaussian for all a> 2. 

APPENDIX III: HOLTS MARK'S PROBLEM OF ATTRACTION IN AN 
INFINITE AND UNIFORM CLOUD OF IDENTICAL STARS 

The relation between scaling and L-stable distributions and the need for 
the convergence factor i~x I d(x- a) I, both discussed in Section 2.7 look arti­
ficial. But they become very intuitive against the background of a physical 
problem posed and solved in Holtsmark 1919. The original context was in 
spectroscopy, but Chandrasekhar 1943 describes the problem in a more 
perspicuous restatement that involves Newtonian attraction. 

Postponing convergence problems, consider a very large sphere of 
radius R, within which N stars of unit mass are distributed at random, 
uniformly and independently. A final star being located at the center n of 
the sphere. We wish to compute the resultant of the Newtonian attractions 
exerted on the star at n by the N other stars. Units will be chosen such 
that two stars of unit mass attract each other with the force ,-2 = u. Let 
8 = N(4R3rr /3)-1 be the average density of stars, and let fl = R- 2• 

First consider a thin pencil (or infinitesimal cone) covering dS spherical 
radians, having its apex at n and extending in one direction from n. This 
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pencil is a sum of cells, each of which is contained between r and r + dr 
and includes the volume dV = dSd(r3) = dS 1 d(u- 3/2) I. Knowing that there is 
one star in the pencil dS, the conditional probability of its being in the cell 
of volume dV would be given by the uniform scaling distribution 

The characteristic function of this distribution is a fairly involved function 
<p(l;a). If there were N stars in the Rencil, the probability that the attraction 
on n is u would have the ch.f. <p (l;a)' which becomes increasingly more 
involved as N -. 00. 

The problem is simplified if the density 8 is left constant but R -+ 00 

and N -+ 00. Then one can assume that the number of stars in the cell of 
volume dV is not fixed but given by a Poisson random variable with 8 as 
the expected density: one can easily move from one problem to the other 
by slightly changing the distribution of stars that are far from n and con­
tribute little to u. 

In this Poisson approximation, the stars located in the volume dVexert 
a total force that is a multiple of u = r- 2, the multiplier being a Poisson 
variable with expected value 8dS 1 d(u- 3/2) I. That is, the total force exerted 
on n will be the sum of a number of independent discrete jumps. The 
expected relative number of jumps, with a value between a and b will be 
8dS(a- 3/2 - b- 3/2)/ 8dSa- 3/2• That is, it will follow the uniform scaling dis­
tribution. The ch.f. of the total contribution of the pencil dS will be 
approximated by the integral 

Extending the integral to u = 00 raises no convergence difficulty. But 
careless extension of the integration to u::: 0 (R = 00) would lead to diver­
gence: while each of the distant stars contributes little attraction, their 
number is such that their total expected attraction is infinite. However, 
the difference between the attraction and its mean is finite. Indeed, the 
fluctuation in the contribution of far away stars has the characteristic func­
tion 
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which converges and tends to zero as R - 00. For the sake of conven­
ience, the same correction itu may be used for all values of u since its 
effect for large u only adds a finite term to U. Hence, the difference 
between the attraction of the stars in the pencil dS and the mean value of 
this attraction is a positive L-stable variable with a. = 3/2. {P.S. 1996: this 
removal of infinities is a form of a more general procedure called 
renormalization.} 

In this context, the meaning of the L-stability is easy to understand. 
Consider two clouds of "red" and "blue" stars, having the same density 
and filling the same pencil dS. The difference between the forces exerted 
on 0 by red or blue stars alone, or by both together, reduces to a scale 
factor and does not affect the analytic form of their distributions. 

A large negative value u can occur only if there is an abnormally small 
number of stars in the pencil dS. Each individual "missing" star contrib­
utes little to U, so their total contribution is also small, unless their 
number is very large, which is very unlikely. 

To the contrary, a very large positive u may result from the presence 
of a single star near 0, irrespective of the density of stars elsewhere. This event 
is far more likely than the combination of events required for a negative u. 
It is easy to check that the asymptotic behavior for large u is the same for 
the total attraction U and the attraction of the nearest star. {P.S. 1996: See 
at the end of this reprint, the Annotation to Appendix III.} 
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&&&&&&&&&&&& ANNOTATIONS &&&&&&&&&&&& 

Editorial comment. The original denotes sums of random variables by + 
surrounded by a circle. Figure 1 was reorganized with three large-size 
superposed curves replacing small curves next to each other. The term 
law was preserved when it refers to an empirical regularity, but replaced 
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by distribution when it refers to a probability. Some long sections were 
broken up into subsections. Published Errata were implemented. 

Annotation to Figure 1. This figure is redrawn using the original data: 
instead of three small plots side to side, as in M 1960, we see three large 
plots printed over one another. Linear coordinates were used because a 
goal of this paper was to show that the L-stable has a bell somewhat like 
the lognormal's, hence, is not unreasonable from the viewpoint of interpo­
lating the "Paretian" tail of the actual income data. An unfortunate but 
inevitable consequence of using a linear plot is that the tails are far off­
scale. If the scales were chosen to allow a wide range of the abscissa, the 
tails of the L-stable densities would become indistinguishable from the 
horizontal axis, while the bells would draw very close to a vertical half­
axis. Such illegible graphs are effectively not worth plotting. In any 
event, theory yields the tail density - u - a -1 and the tail probability 
P(u) - u- a . 

A remarkable feature that is seen on this plot is that the most probable 
value of u has the same density for all the values that were considered. 

Much more extensive data were available, however, and a plot on 
log-log coordinates became interesting as soon as M 1963b{E14} tackled the 
symmetric L-stable and raised the issue of how the tails attach to the bell, 
especially when a is close to 2. The plot for the maximally asymetric case 
was then prepared, but was only distributed as a figure of M 1963j; it is 
reproduced in Appendix IV of this chapter. Needless to say, many such 
log-log graphs were published since 1963. 

Annotation to Appendix I: behavior of the density in the short tail of the 
maximally skew L-stable densities. The result this Appendix obtained 
heuristically has been confirmed; the reference is Zolotarev 1986. 

Annotation to Appendix III: removal of an infinite expectation reinter­
preted as a form of "renormalization." In physics, an original "brute 
force" approach often yields a divergent integral, but a closer look (often, 
a much more difficult one, technically) yields a finite difference between 
two infinite terms. The formula Appendix III derives for the L-stable 
density is an independent example of this very general procedure. It 
helps establish that the concept of renormalization had several parallel 
incarnations. 
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&&&& POST-PUBLICATION APPENDICES &&&& 

M 1963HEI0} corrected, and amplified upon, the comments in M 
1960HEI0} concerning a - 2. Those earlier comments were deleted, and 
the proposed replacements inserted, in edited form. 

APPENDIX IV (ADAPTED FROM M 1963i, j) ESTIMATION BIASES 
THAT SEEM TO YIELD a> 2 

The L-stable densities have a bell followed by one or two scaling tails. But 
where do those tails begin, and how smoothly do they merge with the 
bell? Those questions are immaterial in mathematics, but essential to con­
crete applications. They are answered by numerical tables, but for three 
sets of parameter values the L-stable density is known explicitly. 

Figure 1 plotted some numerically obtained L-stable densities in 
natural coordinates. In Figure 3, the corresponding tail probabilities are 
replotted on log-log coordinates for a larger number of as. This yields 
immediately the principal observation of this appendix: near a - 2 the 
L-stable density exhibits an inverted S-shape. As a result, statistical fitting 
of the theoretical distribution by a straight line would readily yield biased 
estimates of a, larger than the true value, and perhaps even larger than 2. 
This finding will serve in Appendix V to argue that L-stable distributions 
may in fact also represent actual data that appear to be scaling with a > 2, 
a value incompatible with L-stability. 

IV.l Continuity of the skew L-stable density as function of a 

This appendix excludes a = 1 with {3 *" 0 and sets y = 1 and 8 = o. If so, 
once again, the characteristic function of the L-stable distribution is 

<p(i;) = exp[i81; - 11; 1 ay{1_ (i{31;/ 11; 1 )tan (lharr)) 1 cos (Y2arr) I], 

This <p(O, the resulting tail probability Pr {U> u} = P(u) and the proba­
bility density - P'(u) are continuous functions of a and {3. A major compli­
cation is that the bell behavior is not known, with three already-mentioned 
exceptions. But the tail behavior of - P'(u) is known; with only two 
exceptions, there are two scaling tails with a as exponent. The first excep­
tion is the Gaussian limit case a = 2, for which {3 plays no role and both 
tails are shorter than any scaling. The second exception, a*"2 and {3 = ±1, 
when one tail is very short, is at the center of M 1960HEI0}. 
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IV.2 True and apparent scaling for 1131 = 1 and a close to a = 2 

For a = 2, the graph of log[ - P'(u)] versus log u drops exponentially. For 
a = 2 - €, its form must be an inverted letter S. Near the inflection, the 
local slope becomes much larger than a + 1 = 3 - €, then it falls down and 
eventually stabilizes at the theoretical a + 1. A straight line approximating 
more than the strict tail is necessarily of slope well above three. 

Similar results apply to the tail probability plotted in Figure 3. The 
largest data corresponds to the region in which the slope varies near its 
maximum; however, the dispersion of sample values makes it hard or 

-4 
10 

FIGURE E10-3. Densities of certain maximally skew L-stable distributions. These 
densities are defined as having the nonnalized Fourier transfonn 
q;(z) = exp{ - 1 z 1 "[1_ i I z I z-ltan(aTT 12)]}. Reading from the lower left to the 
upper right corner, a takes the values 2, 1.99, 1.95, 1.9, 1.8, 1.7, 1.6 and 1.5. 
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impossible to observe the curvature of the population function 
10g[Pr {U> u}]. Hence, it will be irresistibly tempting to interpolate the 
curve of empirical data by a straight line of slope greater than the 
asymptotic a, often greater than 2. Those results continue to hold as a 
decreases but becomes more and more attenuated. 

From the viewpoint of data analysis, moving the origin of u away 
from a = EU = 0 could broaden the scaling range, that is, insure that the 
graph of 10g[Pr{U> u}] versus log(u - il) becomes straight over a longer 
range of values of u. 

IV.3 Ranges of scaling near the Cauchy and the "Coumot" 

In two explicitly known cases, namely the Cauchy and the "Coumot" 
(maximally skew with a = 1/2), there is a simple explicit formula for 
L-stable density, hence also for the discrepancy between it and its scaling 
approximation. As the parameters are made to differ slightly from those 
special cases, this discrepancy varies smoothly. It is called a "regular" 
perturbation. 

The Cournot special case a = 1/2 and f3 = ±1. This, the only skew 
L-stable distribution for which the density has an explicit analytic 
expression, enters into the study of the returns of Brownian motion B(t) to 
its initial value B(O). In this case, 

- P'(u) = (constant)u- 312 exp (-1/u). 

In log-log coordinates, and setting log u = v, one obtains 

-log[ - P'(u)] = (constant) - (3/2)logu -1/u = (constant) - 3v/2 - e- v. 

This log-log graph is asymptotic for v - 00 to a straight line of slope 
- 3/2 = - a -1, and for all v it lies below this asymptote. The a estimated 
from a straight portion of the empirical curve underestimates the true 
value a+ l. 

To broaden the scaling range, one is tempted to choose i1 so as to 
increase the straightness of the graph of 10g[Pr{U> u)] versus log(u - il). 

Observe that the maximum of - P'(u) is attained for u = 2/3, but choosing 
i1 = 2/3 would make our graph even less straight. For a = 1/2, it is neces­
sary to choose a negative value of iI. 

Blind adherents of the lognormal distribution will see a bell recalling 
an inverted parabola, with shortening to the left and outliers to the right. 
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The Cauchy case a. = 1 and f3 = O. For the well-known density given by 
- P'(u) = 1/1T{1 + u2), the log-log graph is asymptotic to a straight line of 
absolute slope a. + 1, and for all v it lies below this asymptotic. 

The skew case with a. = 1. It is of interest to the distribution of firm sizes, 
but has no analytic expression. As a. decreases from 2 to 1 in formula (*) 

of Section 1, EU -+ 00 and so do the mode and the median. As a. increases 
from 0 to 1, EU = 00, but the mode and the median -+ 00. 

APPENDIX V (ADAPTED FROM M 1963j): OVERALL AND 
DISAGGREGATED DISTRIBUTIONS OF PERSONAL INCOME 

V.I Practical implications of Appendix IV 

When the exponent a. is near 1.5, the L-stable density rapidly reaches its 
asymptotically scaling behavior, and it can be markedly skew. This is 
why M 1960HEI0} could claim the L-stable with this range of values of a. 
as a promising candidate to represent the distribution of personal incomes 
in non-industrialized countries originally studied by Pareto. In industrial­
ized countries, however, it is reported that the empirical exponent 
increased to a. - 2, or even a. > 2. The largest values of a. were reported 
after World War II. If a. > 2 were to be confirmed, and/or to become the 
rule, the L-stable would cease to be a reasonable candidate to represent 
the distribution of income. 

Appendix IV showed that estimation bias causes the observed a. of an 
L-stable density to exceed the true (and asymptotic) a., and even to exceed 
2. But the extent of straightness of the log-log graphs with a. - 2 remains 
puzzling. Besides, the existence of an income tax has changed income­
before-taxes in industrialized countries, as well as income-after-taxes, and 
generally led to more complicated economic structures which examine the 
distributions of personal income within disaggregated age and profes­
sional groups: those distributions exhibit the same inverted S-shape and 
are less skew than the overall distribution. Therefore, the situation near 
a. - 2 is complicated, but the L-stable distribution remains in contention. 

V.2 The lack of skewness of the L-stable densities near 0.=2 

The L-stable distribution for a. - 2 is symmetric, while the data are skew. 
But skewness is greatest in the overall distribution of income, while most 
distributions of incomes coming from narrowly defined sources are practi­
cally symmetric. When most low or middle-income occupations are taken 
out, the distribution of the remainder is less skew than the overall distrib-
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ution. Hence, the study of high-income occupations should not be con­
cerned about skewness. Of course, the above argument does note explain 
why the apparent slope extrapolated from the tail of the curve also repres­
ents part of the middle-income data. This fact may be covered by the 
argument in M 1962g. 

V.3 The distribution of personal income viewed as "mixture" of 
disaggregated distributions 

Several portions of this book express my deep reluctance to account for 
nonGaussian distributions as being mixtures of simpler ones. This reluc­
tance vanishes, however, when the participating distribution can actually 
be separated. One such case is illustrated in Figure 4. 

M 1963e{E3} shows that the scaling distribution is invariant under 
mixing: If the Un are such that Pr{U> u} - Cnu- u, where a is independent 
of n, and if one mixes data from those various distributions in the pro­
portions Pn, one obtains a random variable Uw such that 
Pr{Uw > u} - C'ipnCu)u- u. This results from the fact that the doubly loga­
rithmic graphs of the scaling distribution are straight lines with no "kink" 
that any mixture could smooth off. 

But Appendix IV shows that the L-stable distribution does have two 
clear-cut kinks, especially if a is near 2. Therefore, even if the distribution 
of income is L-stable within sufficiently narrowly defined categories, the 
overall distribution would appear scaling with a high a. 

4. Verification of the preceding conjecture on empirical data 

When writing M 1963i{E10}, I knew nothing of the actual distribution of 
income within narrow high-income categories. Data that came to my 
attention in 1963 suggest that the decomposition described in the pre­
ceding section constituted a correct prediction and that I was too cautious 
in handling the consequences of my thoughts. Figure 4 is drawn from 
graphs communicated privately by H. S. Houthakker, and used by him 
(for entirely different purposes) in the preparation of Houthakker 1959. 
The main fact is that the curves whose absolute slope is "on the whole" 
the largest are also the least straight. 

Another inference is that a changes during a person's lifetime, thus 
throwing doubt on all "diffusion models" which obtain the scaling distrib­
ution as the limit state resulting from the action of various transforma­
tions, and throwing doubt also on the model in M 1961e{E3}. But M 
1962q{E12} probably remains valid. 
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The curves of Figure 4 are distinguished as follows. 

Reading from the lower left to the upper right comer, the bold lines 
refer to the following levels of education, as measured by the number of 
years in school: None, 1-4, 5-7, 8, high school 1-3, high school 4, college 
1-3, college 4 or plus. 

Reading from the lower left to the upper right comer, the bold lines 
refer to the following age groups: 14-15, 16-17, 18-19, 20-21, 22-24, 25-29, 
30-34, 45-54. The dashed line refers to all income-earners with 8 years of 
schooling and aged 25 or more. 

Reading from the lower left to the upper right comer, the bold lines 
refer to the following age groups: 20-21, 22-24, 25-29, 30-34, 45-54. The 
dashed line refers to all income-earners with 4 years of college or more 
and aged 25 or more. 

FIGURE E10-4. Distribution of 1949 incomes in the U.s.A. A) all persons from 35 
to 44 years of age. B) persons with 8 years of school. C) persons with 4 years 
of college or more. Horizontally: Income u in dollars. Vertically: Number of 
persons with an income exceeding u. 
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L-stability and multiplicative 
variation of income 

Ell 

.. Abstract. This paper describes a theory of the stationary stochastic var­
iation of income based on a new family of nonGaussian random functions, 
U(t). 'This approach is intimately connected with random walks of log U(t), 
but no use is made of the "principle of proportionate effect." Instead, the 
model is based upon the fact that there exist limits for sums of random 
functions, in which the effect of chance in time is multiplicative. This 
feature provides a new type of motivation for the widespread, convenient, 
and frequently fruitful use of the logarithm of income, considered as a 
"moral wealth." 

I believe that these new stochastic processes will play in linear eco­
nomics, for example in certain problems of aggregation. The reader will 
find that the results are easily rephrased in terms of diverse economic 
quantities other than income. As a result, the tools to be introduced may 
be as important as the immediate results to be achieved. In particular, the 
distribution and variation of city sizes raises very similar problems. .. 

T HIS CHAPTER is devoted to the variation of personal income, rather 
than its distribution at a point in time. Sections and paragraphs printed in 
a smaller font can be omitted without disrupting the continuity. 

1. INTRODUCTION AND GENERAL CONSIDERATIONS 

1.1. The asymptotic scaling distribution 

It is well known that the fundamental observation concerning the distrib­
ution of income is an asymptotic form of the scaling distribution (Pareto 
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1896). Let U(t) be the function that gives an individual's yearly income, U, 
as a function of the year during which it was earned, t. The asymptotic 
scaling distribution then states that there exist two constants, C and a, 
such that, when t is fixed, one has 

Pr {U(t) > u} ~ Cu- u . 

The notation A(u) ~ B(u) means that the ratio A(u)/B(u) -+ 1 as u -+ 00. 

M 1960HE10} further assumed that 1 < a < 2. The requirement that 
a < 2 eliminated certain cases whose discussion had to be reserved for 
another occasion. When a is between 1 and 2, one can study the 
asymptotic scaling distribution without having to refer to the variation of 
income in time. The key to the model is the decomposition of income 
itself into additive parts. 

The "synchronic" character of the models in M 1960i{E10} was, of 
course, a little unusual. Indeed, in most other theories, the distribution of 
income comes out as the steady-state that corresponds to some 
"diachronic" model of the variation of income in time. In fact, the most 
usual approach is of the following type: One starts by assuming (some­
times only implicitly or indirectly) that there exists an origin for U such 
that the next value of income, U(t + I), is equal to u(t) multiplied by some 
random factor (except, perhaps, when u(t) is small). Selecting E(U) as the 
origin of U (except when otherwise noted), the above "law of random 
proportionate effect" amounts to postulating that there exists a constant B, 
such that the variation of log[U(t) + BJ in time results from the addition 
of random increments. As a result, the expression log[U(t) + BJ is consid­
ered as being more intrinsic than U(t) itself. 

Additional assumptions are, however, necessary to insure that a 
steady-state distribution for log(U + B) exists, and that it is the exponential 
distribution, as required by the asymptotic scaling character of U itself. 
One must also eliminate solutions similar to the lognormal law of Gibrat 
1932, according to which log(U + B) is Gaussian. 

It is particularly convenient to derive the existence of a steady state of 
U from the following set of hypotheses, which are very similar to those 
used by Champernowne 1953. Suppose that log U(t) performs a random 
walk, or a diffusion, with a downward trend and with a reflecting layer. That is, 
make the following assumptions: 
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(a) U(t) is a Markovian sequence in discrete time, so that U(t + 1) 
depends mostly on chance and on the known value of u(t), but not on 
earlier values of income. 

(b) As long as u(t) is large, log U(t + 1) -log u(t) = T is a random vari­
able independent of u(t). If the values of log U(t) are multiples of some unit, 
the model is a "random walk," otherwise, a "diffusion" process. 

(c) As long as u(t) is large, the expected drift E[U(t + 1) - u(t) I u(t)] 
remains negative. 

(d) When u becomes small, the asymptotic transition probabilities of 
log U(t) are modified so as to prevent all u(t) from eventually vanishing, as 
they would if a process following (a), (b) and (c) were left to act for all 
u(t). This last hypothesis implies a diffuse form of the "reflecting barrier" 
of the usual theory of random walk or diffusion, as treated, for example, 
in Feller 1957. We call this a "reflecting layer." 

The above four statements will be referred to as the asymptotic 
Champemowne conditions. If they are verified, one can show that, whatever 
the initial distributions of income, V(t) eventually becomes scaling with 
a. < 1, If, on the contrary, (c) and (d) are not verified, one may obtain the 
normal law for 10g(U + B), instead of the exponential. 

The above assumptions are so simple in form and so little 
"unexpected," that it is perfectly reasonable to say that Champemowne 
has given an "explanation" of scaling. Moreover, some data are provided 
in Champemowne 1953 as an empirical basis for (b) and (c). But empirical 
data concerning the transition probabilities of U(t) are negligible in quanti­
ties and quality, next to the of data concerning the distribution of U(t) for 
fixed t. Therefore, the most convincing basis for the second edition of 
Champemowne is still provided by the general, indirect evidence of the 
validity of the law of random proportionate effect. 

This law is not so well established, however, that it would not be most 
worthwhile to find other, and preferably very different, theoretical 
grounds for the widespread, convenient, and frequently successful use of 
the logarithm of income. The third and fourth assumptions could also be 
strengthened by new and different evidence. These are the minimum 
aims we hope to achieve in the present paper. To achieve them, we shall 
be careful to remain within the natural scale of income itself. 

This paper will be limited to stationary - time-invariant - processes. This 
assumption is a natural a point of departure, but is objectionable. For example, the 
periods of unquestionable stationarity of income variation have been short in 
recent times, so that it may be that the unconditioned distribution of U(t) never 
reached the steady state resulting from the repeated application of any given set of 
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laws of change. I shall not examine this difficulty any further, however, but shall 
point out that small a are observed for less developed countries, which are those 
for which the periods of stationarity may be the longer. Hence, nonstationarity 
may arise in the same cases as the problem raised by the sign of a - 2. This does 
not imply that they are necessarily related, but both must be examined more care­
fully - sometime later. 

1.2. The study of the evolution of income in time. Inapplicability of the 
usual theory of second order stationary random processes 

Working in the scale of income itself immediately presents problems when 
one tries to describe the stochastic mechanism generating U(t). The applied 
mathematician is frequently presented with such tasks these days, and his 
automatic first response is to investigate what can be obtained from the 
application of the "classical" theory of the second order random processes, 
due to Wiener, Khinchin, Wold and many others (see Hannan 1960). The 
first step is to form the covariance function C(s) :::: E{U(t)U(t + s)}, which must 
be assumed to be finite for all. The Fourier transform of C(s) is the 
density of the various spectral components in the harmonic decomposition 
of U(t) into a sum of sine and cosine components. The properties of U(t) 
that follow from the second degree expression C(s) are called "second 
order properties." 

Unfortunately, if 1 < a. < 2, the theory of weak second order processes is not 
applicable to income. To see why, it suffices to note that C(O):::: E(U2) :::: 00 

when U(t) is asymptotically scaling with 1 < a. < 2, and C(s) remains infi­
nite for small s because of the strong dependence observed between 
incomes of the same individual over not too distant years. 

When the second order theory ceases to apply, there is nothing of 
comparable generality to replace it, and we are prevented in this paper 
from the customary resort to a spectral study of log U(t). Let us recall, 
however, that the second-order theory is only rarely used in full gener­
ality. In many cases, there are good reasons to replace a stationary 
process by a Gaussian process with the same covariance C(s). This paper 
generalizes Gaussian processes to the case where the covariance is infinite. 

The first reason given for the use of Gaussian processes is that they 
are simple analytically and fully determined by C(s). Hence, whenever one 
is interested only in second order properties (or whenever only C(s) is 
available), one may be content with a Gaussian approximation, even when 
the actual process is far from normal. The same is true when simplicity is 
a primary consideration. All these reasons have no counterpart when C(s) 
is infinite. 
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On the other hand, one can also argue that many empirically moti­
vated random processes cannot really be very far from actually being 
Gaussian, because of the role played by the normal distributions in the 
theory of limits of sums of random variables and because of related prop­
erties of "L-stability." It turns out that the Gaussian processes are not 
alone in having these properties, as we shall now proceed to show. 

1.3. Limits of linear aggregates of parts of income, Gaussian and 
Non Gaussian stable limits. Definition of the L-stable random variables 
and of certain L-stable scaling stochastic processes 

1.3.1. Definitions of L-stability. The random variable U is called an 
L-stable random variable. It is the limit as N -+ 00 of a sequence of 
expressions UN = A(N)I.;: 1 Vi - B(N), which are linearly weighted sums of 
independent and identically distributed random variables Vi. The 
expressions Vi and U may be scalar or vectorial. 

Similarly, L-stable random sequences in discrete time are the possible 
limits, as N -+ 00, of sequences of weighted sums of N components VP) 
having the following properties: For different and any fixed i, the scalars 
Vi(t) can be interdependent. However, for any fixed t, and different i, the 
scalars Vi(t) are independent and identically distributed. Similarly, for any 
fixed set of tk(1 ~ k ~ K) and different i, the vectors {Vi(tl)' ... , VPk)' ... , 
VPK)} are independent and identically distributed. 

1.3.2. The above definitions involve linear expressions and passages to the 
limit. Both procedures are familiar in economics. For example, one may 
argue that the L-stability of U(t) is an "asymptotic" assumption about the 
"details of the nature of income," and "ought to" be satisfied in a first 
approximation. But one also assumes usually that the covariance of the 
random process U(t) is finite. Under these conditions, it is well-known 
that only the stable processes are Gaussian, while the process of variation 
of U(t) is conspicuously nonGaussian. 

This apparent contradiction has been used to invalidate all arguments 
based on decomposing income itself into additive parts. But contradictions 
disappear if the second moment need not be finite. Then a wide jilmily of 
non Gaussian stable elements becomes available to the model builder. 

This family is too broad for our present purposes. One must first 
restrict it by assuming that E(U) is finite. In addition, large negative 
values of income cannot occur, except perhaps with a very small proba­
bility. (And even if they were completely impossible, one could accept a 
theoretical probability law that makes them sufficiently unlikely, in the 
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same way as one accepts the Gaussian law as representative of the distrib­
ution of many strictly positive quantities.) 

One is then left with the family of scalar L-stable distributions (M 
1960i = Chapter XX) and with the random functions studied in this paper. 
The very existence of these random elements shows that to save the usual 
limit argument, it may not be necessary to apply it to log U(t). Instead, the 
variation of income (as well as its distribution, see M 1960i) may perhaps 
be described with the help of processes obtained from a Gaussian U(t) by 
replacing every normal distribution by a nonGaussian stable distribution 
having the same number of dimensions. 

I shall show in the present paper that this recipe is indeed successful, 
in the sense that a wide family of scaling L-stable sequences U(t) satisfy 
Champemowne's conditions, in the first approximation. This can be 
shown without assuming a priori the law of random proportionate effect. 
In the second approximation, I shall show that the effect of chance upon a 
L-stable process of our type may be described for large u(t), by 

U(t + 1) = TU(t) + R, 

where T is a random variable (except in one degenerate case), and where 
R is either zero or a L-stable random variable independent of T. 

Other conditions of Champemowne remain valid. We think that the 
above equation in U(t) is a quite natural and acceptable improvement over 
the usual statement of the principle of random proportionate effect. 

1.3.3. The replacement of the normal by a non Gaussian stable distribution 
cannot be casual, because deep differences exist between the two kinds of 
limits tor weighted sums of identical random variables. The first differ­
ence refers to the meaning that can be given to the statement that "each of 
the addends A(N)Vi - B(N)IN provides only a small proportion of the sum 
UN'" Clearly, since A(N) tends to zero with liN, the same is always true 
of the probability that I A(N) Vi - B(N) IN I be greater than any positive E. 

Therefore, one can always say that, as N - 00, the "a priori" or "ex ante" 
values of the additive components of UN all become relatively very small. 
But, of course, this implies nothing concerning the "a posteriori" or "ex 
post" values of A(N)vi - B(N)IN, because the number of these expressions 
is equal to N and becomes very large. In fact it is well known that, in 
order that the "a posteriori" largest of the addends contribute negligibly to the 
sum, it is necessary and sufficient that the sum be Gaussian. Therefore, if the 
sum is not Gaussian, the largest term is not negligible a posteriori. In fact, it 
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is a substantial part of the whole, and is even predominant if the ex post 
value UN is sufficiently large. 

This raises a very important question: when economists speak of a variable as 
the sum of very many "small components," do they wish to imply that the compo­
nents are small only a priori or also a posteriori? We believe that in economics, as 
well as in other behavioral sciences, one typically finds that if an event is due to 
the additive combination of many causes, a few of these may contribute a very 
substantial part of the whole. Suppose then, that one has to choose between an 
economic probability distribution derived from the Gaussian, and a distribution 
associated with another stable law. It is quite possible that the Gaussian law be a 
priori eliminated from consideration because of its prediction concerning the rela­
tive a posteriori size of the few largest of many contributions to an additive whole. 
(See M 1963b{E14} and Section 9 of M 1962e{E12}.) 

Consider another aspect of the distinction between the Gaussian limit 
and all others. As is well known, the normal law is obtained whenever 
the variances of the addends are finite, a property that implies little about 
the analytic behavior of the probability density p(u), for large values of the 
argument u. 

In comparison, the following necessary and sufficient conditions of 
convergence to a nonGaussian stable limit will appear to be extremely 
stringent. In the one-dimensional case, the variables Vi must satisfy a 
barely weakened form of the asymptotic scaling distribution. Otherwise, 
one cannot choose a set of two functions A(N) and B(N), so that the 
weighted sum of the Vi converges to a limit. Similarly (see Rvaceva 1954, 
Sakovich 1956, Takano 1954, 1955), when U(t) is a nonGaussian stationary 
sequence, the transition probabilities of the contributing sequences behave 
according to the law embodied in the expression Vi(t + 1) = TVP) + R, with 
T and R as in the last formula of Section 1.3.2. (Actually, one must accept 
addends that are slightly more general than either of the above cases.) 

Consequently, one can express only mild surprise at the fact that 
L-stable random scalars are themselves asymptotically scaling. M 1960i, or 
at the fact that, asymptotically, L-stable random processes U(t) behave 
exactly like their additive components V/f). 

But the mildness of our surprise should not be exaggerated. After all, 
the term "scientific explanation" can be used for statements that are intui­
tive and simple, yet imply the more complicated statements one wishes to 
account for. In the present case, the assumption that income is not 
Gaussian but, rather, is a sum of very many independent and identically 
distributed components is indeed simple and intuitive, and it requires, and 
hence "explains," both the fact that income itself must be a L-stable vari-
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able and the fact that its components must have some special properties, 
analogous to those of the whole. 

It may be noted that stochastic models frequently violate the above 
idea of what is a scientific explanation. Because of the weakness of the 
condition of validity of many limit theorems of the calculus of probability, 
the properties of the limits imply very little about the parts. 

1.4. Linear aggregation of independent incomes; inversion of the 
argument of Section 1.3 

1.4.1. The exclusive use of addition on the natural scale of incomes is 
important from the viewpoint of the place which the present theory of 
income distribution takes within the broader context of 
economics. Suppose, in particular, that one is entirely satisfied with the usual 
foundation for the asymptotic Champemowne assumptions. In that case, the intro­
duction of the slight formal complications of the new theory will undoubtedly be 
postponed; but one is likely to encounter them later. 

To show this, let us examine the behavior of the aggregate income of a group 
of individuals, when each person's income follows the same asymptotic 
Champemowne process with an infinite covariance (for example, suppose that 
each person's income follows a L-stable process). If the group is sufficiently large, 
its aggregate income will then follow a L-stable process, which will depend upon 
the size of the aggregate only through the values of two functions A(N) and B(N), 
which occur in the unique scaling that makes A(N)~:Vi - B(N) converge to a nor­
malized L-stable limit. As a matter of fact, the aggregate will also be 
"asymptotically" Markovian (see Section 2.3.4). In such a case, it is fully mean­
ingful to speak of an "aggregate distribution of income." 

Suppose, on the contrary, that the processes of variation of individual income 
have an infinite covariance, but are neither Champemowne processes nor the 
slight generalizations mentioned in Section 1.3. Then no linear scaling will be able 
to make the aggregated income tend towards a nondegenerate limit (Le., a limit 
other than a constant, because constants can always be obtained by making A(N) 
grow very fast). As a result, the probability laws of aggregates will depend upon 
their sizes in a critical fashion. 

1.4.2. The preceding observation suggests an inversion of the argument 
proposed in Section 1.3. and M 1960i{E10j. To begin with, if one adds essen­
tially positive, independent, and identically distributed processes, the aggregate 
can only be a Gaussian or another L-stable variable (or a constant). Hence, 
L-stable processes are bound to occur in economics, sooner or later, for example, in 
the case of aggregates of different incomes. Now suppose that individual income 
itself can also be represented as an aggregate of independent and identical parts. 
In that case, even though the properties of the parts may permanently remain 
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somewhat conjectural, L-stable processes will also provide a model for the vari­
ation of individual income. 

Of course, the identity and independence of the parts of income is not an intu­
itively obvious assumption. It is best justified by the desire to deny (at least tenta­
tively) that economics can reach any genuinely "microscopic" level and to assert in 
particular that individual income is not a microeconomic quantity. One might say 
that identity and independence correspond to a first approximation of complete 
"disorder," in which no part is allowed a priori to contribute more than any other 
part. 

For another comment concerning the independence between the aggregated 
parts, see Section 1.9. 

If we also required that the different parts be roughly equal a posteriori, we 
would restrict ourselves to the Gaussian case. If we did not require that the dif­
ferent parts contribute equally a priori, we could generalize our theory to the so­
called self-decomposable laws of Paul Levy (which include some asymptotic Pareto 
variables with a > 2.) But the model would cease to be genuinely macroeconomic, 
and it would also have other drawbacks. I hope to address these issues at a later 
date. 

The above decomposition procedure has also been applied by the author to 
several other problems in social science, especially in linguistics and sociology. 

1.5. A consequence of L-stability: the invariance argument 

The original definition of L-stability given by Paul Levy differs from the preceding 
definition via a limit process. It received more emphasis in M 1960i, and we shall 
now present it as a theorem. The point of departure there was the surprising fact 
that asymptotic scaling seems to hold for "income" no matter which exact defi­
nition is chosen for that concept. That is, it applies to partial sums of isolable parts 
of income as well as to the total sum. It turns out that L-stable variables and proc­
esses satisfy a strong form of the invariance property: 

Suppose that U is a random scalar, vector, or process, and let a' and a" be positive 
quantities. We wish to be able to write (a'U' + b') + (a"U" + b") as (aUO + b), where U', 
U", and UO are realizations of U, and a is positive. It can be shown that the necessary 
and sufficient condition for this relation to hold is that U be a L-stable element. 

A priori the invariance argument may also appear to be "explanatory" only in 
a asymptotic meaning of the word. But actually, very similar procedures are 
found to be perfectly satisfactory in several branches of physics. The fact that both 
hypothesis and conclusions are better established in physics than in economics is 
irrelevant if one is concerned only with the acceptability of the present argument 
as an "explanation." 

The above invariance means the following: given the kind of extreme uncer­
tainty which exists in economics concerning the "things" which are represented by 
the available quantitative data, "the" properties of the distribution of income could 
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never have been observed if that distribution were not L-stable. From a certain 
viewpoint, the "Nature" that "chooses" the distribution of income is as cooperative 
with the statistician as it could ever be (since if Nature went a step further and 
made income nonrandom, the statistician would become unnecessary). 

1.6. Structure of one and two-dimensional L-stable random elements 

1.6.1. L-stable scalars. L-stable scalars (M 1960HEI0}) nonGaussian stable 
variables with a finite mean value, and with a very small probability of 
taking large negative values. Their probability densities p(u) are deduced 
from their bilateral generating functions, which take the form: 

G(u) = L: exp( - uu) p(u)du = exp[ - Mu + (u*u)a], 

where u> 0, u* > 0 and 1 < a. < 2. It then follows that the characteristic 
functions are of the form 

If M = E(U) = 0 and if u* = 1, one has what is called a "normalized" or 
"reduced" L-stable variable. It will hereafter be denoted by La' Its density 
was tabulated in M & Zamfaller 1961. 

When the positive a- in the above expression G(a-), is replaced by a complex 
variable /3, one obtains a function of a complex variable having a singularity at the 
origin. cf>(f;.) is the value of that function along the imaginary axis and it should be 
determined by following that sheet of the Riemann surface of G(/3), which makes 
G(a-) real when a- is real and positive. 

Three classical properties of the L-stable variables are worth recalling: 

(A) Each L-stable density follows the asymptotic scaling distribution: 

for u - 00 one has Pa(u) - r( ~ a.) u-(a+1). 

(B) Let aL ° = a'L' + a"L" where L' L" and L ° are independent a a a' a' a' a 
realizations of La' Then G(a'u)G(a"u) = G(au) and aa = (a,)a + (a,,)a. 

(C) Keeping the same notation, the mean value of a'L'a' when condi­
tioned by the known value u of aLoa, is E(a'L'a1u)=u(0.,)a/(a)a. To prove 
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this, suppose first that (a,)a /(a)a = min is rational. Introduce a n L-stable 
variable Lia, such that aUa = 'L7=1(a/n 1/a)Lia, while a'L'a='Lr=1(a/n1/a)Lia' 
Although the conditioned variables {(a/n1/a)Lia I u} are not independent, it 
is known that their expected values can be added. Hence, we can write: 
E{(a/nlla)Lia I u} = u/n, and E(a'L'a I u) = mu/n = u(a,)a /(a)a. The generaliza­
tion to an irrational ratio (a't / (a) a is immediate. 

1.6.2. Two-dimensional L-stable vectors. Levy 1937-1954 (Section 63) 
shows that, if E(X, Y) is infinite and is chosen as the origin, the most general 
stable nonGaussian two-vector is a sum of independent L-stable contributions 
from every direction of the plane. Further, the L-stable scalar representing the 
length of the contribution from the angle (e, e + de) must have zero mean. 
As to its scal~aparameter, u*, it may depend upon e, and will be denoted 
by [dD(e)] ,where the function Dee) is bounded and nondecreasing 
(the reasons for introducing the exponent 1/ a in this notation will soon be 
made apparent). 

Let V((}) be the unit vector of direction e. Then the most general 
stable nonGaussian vector (X, Y) with a finite mean is of the form: 

r2rr l/a 
(X, Y) = Jo La(e)V(e)[dDee)] . 

This expression is a stochastic integral. If D((}) is reduced to a finite 
number of jumps, such an integral is simply a sum of random variables. 
Otherwise, it is constructed with the help of auxiliary random sums, in the 
same way as the ordinary integral is constructed with the help of ordinary 
sums. Of course, the definition of a stochastic integral has raised some 
problems, but we shall not dwell on them in this paper, because we shall 
concentrate on Dee) reduced to jumps. 

The counterpart of the relation (a)a = (a,)a + (a,,)a of Section 1.6.1 is the 
fact that, if one adds two L-stable vectors with D-functions D'ee) and 
D"(e), the sum is a L-stable vector with D-function D(e) = D'(e) + D"((}). 
This is the first motivation for the exponent 1/ a. 

By definition, "positive" L-stable vectors will be expressions of the 
above form, (X, y), constructed with D-functions that satisfy 0.::; e.::; IT /2, 
meaning that e lies in the first quadrant of the plane including the positive 
parts of the coordinate axes. 
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1.7. Projection properties of L-stable vectors 

1.7.1. Factor analysis. The proofs of many properties of L-stable vectors 
are simplified if the function D{O} is reduced to a finite number F of 
jumps. But most properties proved in this case are valid quite generally 
and we shall henceforth emphasize this particular case. 

Let us begin by defining our notation. The positions of the disconti­
nuities of D{O} w~ be d~oted by Op ~f~F), and the unit of directions 
Of will be labeled V(8; = Vf Write 

dD{Of} = If' La{Of} = Lap x,= 4,f.. cos 0f}{/i la, Yf = 4,f.. sin 0f)(li la. 

Moreover, if 0 ~ 0f~ TT /2, write 

Finally, if Of* TT /2 or 3TT /2, write tan Of= Tf' 

Under these conditions, one has the following relations: 

F 

(X, Y) = L LatVPf}l/a, 

f=l 
F F 

X = L 41 cos 0f}{/i la = LX" and 
f=l f=l 

F F 

Y= L4,f.. sin 0f}{/i la = LYf' 
f=l f=l 

This last variant of the construction emphasizes that the relation 
between X and Y is a direct generalization of the classical statistical tech­
nique of "factor analysis." The principal change is that, while the classical 
approach is usually developed for the case where the Lof are Gaussian var­
iables, we shall assume that the Lof are nonGaussian and are L-stable 
random scalars. As we shall see, a surprisingly large number of changes 
will be brought about by this replacement {see also M 1962e{E12}. It 
should therefore be stressed that the construction of X and Y was not pos­
tulated arbitrarily, but was shown to be essentially the only one compat­
ible with L-stability. 
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Let us also borrow the terminology of factor analysis. Vfaf will be 
called the fth diachronic factor of the set (X, Y) (The term "diachronic" 
emphasizes that X and Y will be successive values of a random function.) 
La[ will be the length of the f-th factor. (fila cos 8f and (fila sin 8f will 
be the diachronic loadings of the fth factor. 

1.7.2. Stability of the unconditioned projections X and Y. In the finite 
case, the L-stability of X and Y follows immediately from factor analysis, 
because sums or differences of L-stable scalars are L-stable. In fact, they 
are the only nonGaussian stable scalars with a finite expectation. If (X, Y) 

is a "positive" L-stable vector, that is, if D(8) varies only in the first quad­
rant, both projections are themselves L-stable scalars: 

X has a scale parameter (u*)a equal to 

Y has a scale parameter equal to 

Suppose now that X = U(t) and Y = U(t + 1), where U(t) is a stationary 
time series. Further, for the sake of simplicity, assume that the uncondi­
tioned U(t) is a reduced L-stable scalar. Then we must have 

F F F F 

L ( cos 8f)aft= L ( sin 8f)aff = LPf= L qf= 1 
f=l f=l f=l f=l 

which will make it possible to interpret the Pf or qf as being probabilities. 
Note that the above relation makes it unnecessary to postulate separately 
that D(8) is bounded. 

All the above arguments still hold when D(8) is not reduced to F 
jumps, that is, if the "number of factors" is infinite. To see this, one must 
grant that the relation (a)a = (a,)a + (a,,)a also applies to the addition of 
infinitesimal parts. The scale parameter of X is the ordinary integral 
f< cos madD(8); this shows why the notation dD(8) was chosen in the first 
place. Stationarity then requires 
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r1T12 r1T12 Jo ( cos 8)adD(8) = Jo ( sin 8)adD(8) = 1. 

1.7.3. Degenerate Markovian non Gaussian stable sequences. Once again, 
let X = U(t) and Y = U(t + 1). Explicit formulas for the passage from U(t) to 
U(t + 1) are available only in three degenerate cases. 

One factor. Invariant U(t). If there is only one diachronic factor, it must 
be located along the main diagonal of the coordinate axes. Then U(t) will 
always remain identical to its initial L-stable value U(to)' 

Two degenerate factors. Independent U(t). If there are two diachronic 
factors, situated along the coordinate axes, the successive values of U(t) 
are independent L-stable scalars. 

It should be noted here that, in the Gaussian case, independence of U(t) and 
U(t + 1) is synonymous with the "isotropy" of the vector (U(t), U(t + 1». That is, 
the angle of this vector with the X-axis - or any other axis - is uniformly distrib­
uted over (0,2rr). Here, on the contrary, isotropy would require a continuous D(e) 

of the form ke, where k is a constant and e can vary from 0 to 2rr. This is entirely 
different from a vector with independent L-stable components. 

Two degenerate factors. Autoregressive U(t). Suppose again that there are 
two diachronic factors, having the directions 8' and 8", where 8" = IT /2, 
while 8' is equal neither to 0 nor IT /2. Let J(8') = /" J8" = 1". Stationarity 
and normalization require that 

Hence, tan 8' = T' ~ 1. Furthermore, it is clear that X' = X. Hence, 

U(t + 1) = T'U(t) + { a Levy stable scalar increment that is ind1'endent }. 
of u(t) and has a scale parameter (u*) = 1" 

This case is autoregressive: the effect of chance is additive, since the multi­
plication by T' is independent of chance. 

In the Gaussian case, the above degenerate cases exhaust all the possi­
bilities: due to the geometric properties of quadratic forms in Euclidean 
space, every two-dimensional Gaussian vector may be used to construct an 
autoregressive U(t). 

Things are completely different in the nonGaussian cases. Unless 
D'(8) and D"(8) coincide almost everywhere, they lead to different vectors 
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(X, Y), and the effective number of factors is not by any means bounded 
by 2, the dimension of (X, Y). Therefore, the system of factors is uniquely 
determined for (X, Y). But as one would expect, two functions D'(e) and 
D"(8) that "differ little," lead to vectors that also "differ little" (for exam­
ples, see Section 2.4). 

As a result, particular interest attaches to forms of Dee) that have no 
Gaussian analog. We shall see in Section 2 that the nondegenerate case 
also has direct economic significance. 

However, those nondegenerate Dee) are, strictly speaking, incompat­
ible with the Markovian hypothesis, as we shall see in Section 1.9. 

1.7.4. Projections of a L-stable vector on other axes. These projections 
are also L-stable. For example, the two-year average of values of a posi­
tive L-stable process, (l/2)(U(t) + U(t + I», is a L-stable variable. The 
increment U(t + 1) - U(t) is also L-stable, but is not a L-stable variable. 

Similarly, the set of projections of a vector (X, Y) on any two axes 
yields a L-stable two-dimensional vector. For example, if the vector (X, Y) 
is L-stable, so is the vector having X and Y - X as orthogonal coordinates. 

1.7.5. Interpretation of X and Y as successive values of some stationary 
stochastic process, preferably Markovian. So far, we have considered 
only the case where X = Wt) and Y = U(t + I), when Wt) is income. But it 
might be desirable to take into account the fact that the U(t + 1) may 
depend upon a past more remote than u(t). Such dependence falls within 
the present general framework if it is supposed that Wt) is deducible from 
the knowledge of the past values, Z(f), Z(f -I), Z(t - 2), etc., of some func­
tion Z(t), generated by one of our L-stable stationary processes. 

To cover these, and other, possibilities, we shall from now on denote 
by Z(t) the stochastic process to which the present study is devoted. 

1.8. Linear regression properties of positive L-stable random vectors and 
processes 

1.B.l. The construction of Y, where X is known in the finite 
case. Suppose that there is a finite number of factors, as in 1.7.1. Then, 
in order to construct Y, one must perform the following three operations: 

(A) Divide x at random into F components Xf The distribution of each 
Xi is the conditional distribution of a L-stable scalar of index a and scale 
Pf when the value of the sum of Xf is known. (If e = IT /2 is the direction 
of a factor, the corresponding Pf must be zero.) 
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(B) Form the expressions Yf= T/r (The indeterminate product 00 • 0, 
which corresponds to TT /2, is always taken to be zero.) 

(C) Add the Yr (If there is a diachronic factor along TT /2, one must 
also add a variable independent of x, contributed by the random variable 
Ln(dD(TT /2»l/n. 

Consider now a random sequence Z(t). The vector (X, Y) is interpreted 
successively as (Z(t - 1), Z(t» and as (Z(t), Z(t + 1)). The first interpretation 
introduces a set of numbers zt,t), which are the "Y!' involved in the trans­
formation from z(t -1) to i(t). The second interpretation introduces a 
second set of numbers zp), which are the "X/' involved in the transforma­
tion from z(t) to Z(t + 1). 

A particularly illustrative case of the double interpretation of zP) is 
encountered in moving average processes of the form 

00 

~ lin Z(t) = L L(t - s)[K(s)] , 
5=0 

where the L(t) are independent, reduced, L-stable random variables, and 
where K(s) satisfies L~=oK(s) < 00. Obviously, one can write: 

lin lin 
Z(t -1) = [K(O)] L(t -1) + [K(I)] L(t - 2) + ... 

lin lin lin 
Z(t) = [K(O)] L(t) + [K(1)] L(t - 1) + [K(2)] L(t - 2) + .... 

One sees immediately that the joint distribution of Z(t) and Z(t - 1) is 
a L-stable two-dimensional distribution. Note that the successive decompos­
itions of Z(t) are not independent, but deduced from each other by a kind of 
translation. 

The function D(8), varies by jumps, which may be infinite in number. 
In every case, it has a discontinuity at eo = TT /2, of amplitude 
dD(TT /2) = K(O). The number and position of the other jumps depend upon 
the function K(s). If K(s) > 0 for all s, there are jumps for every ef of the 
form 

-1 Kif> j{ ll/n} 
ef = tan Kif-I) , 
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with 

The exponential kernel K(t) = exp( - yt) corresponds to the case where 
all 8f are identical (except for 80), and leads to the autoregressive 
Markovian process. 

One might try to generalize factor analysis by assuming that the Xf are not 
independent, even before the condition L~ = x is imposed upon them. If one 
assumes that the Xf have a nontrivial L-stable distribution, however, the gener­
alization can rather easily be shown to be void. 

1.8.2. Linearity of the regression of Y on X. Let us recall the notation of 
Section 1.7.1 and write L' for the summation that excludes 8 = TT/2, even 
if this is the direction of a diachronic factor. We then obtain (independent 
of the sign of x, i.e., of x - E(X), 

E(Ylx) = I (tan 8 i)E(Xtlx) =x I (tan 8 i)Pi = xI TiPi = xE(1). 

(The notation E(1) for L'T;Pi will be justified shortly.) Moreover, 
E(t) = L 'T;Pi can be written as L'T ;p/L.qi = L 'T;P/ [L 'T~Pi + q(TT /2)]. 
Writing T as H(TQ

), we see that the function H is increasing and its 
convexity is turned up, so that 

by convexity. The last term is equal to H(l) = 1. In short, we have shown 
that E(Y I x) is the product of x by a positive scalar at most equal to 1. 

The same result also applies if D(8) is not finite. But, aside from special cases, 
it fails (except in special cases) if D(8) could vary in the second to fourth quad­
rants of the plane. 
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1.9. On approximately Markovian L-stable scaling sequences 

At this stage, we must make more specific assumptions concerning our 
process Z(t). It would have been convenient if Z(t) could be Markovian as 
well as L-stable. Unfortunately, this is impossible, except in the cases 
where the vector [Z(t), Z(t + 1)J takes one of the forms of Section 1.7.3. 
That is, if [Z(t), Z(t + 1)J is a nondegenerate L-stable vector and ZU) is 
Markovian, vectors such as [Z(t), Z(t + 1), Z(t + 2)J are not L-stable. 

More generally, if Z(t) is Markovian with a memory equal to M, it 
cannot in general be the aggregate of independent processes: each of the 
aggregated processes may influence the values which the other processes 
will take M + 1 steps later. 

Hence, two desirable, but somewhat far-fetched approximations to the 
facts are not, strictly speaking, mutually compatible. From our present 
viewpoint, however, this is not a problem. One can show that there exist 
L-stable scaling processes such that, if the value of Z(t - 1) is large, Z(t) 
depends only upon chance and upon z(t - 1), and not explicitly upon pre­
vious values of Z. For these processes, the first Champernowne conditions 
is satisfied only in the range of values of Z(t - 1) that interest us here. In 
this range, it also happens that the behavior of Z(t) is the same as that of a 
strictly Markovian sequence for which the joint distribution of successive 
Z(t) is given by some two-dimensional L-stable vector (X, Y). The latter 
process is simpler to describe, and we shall now proceed to study its 
asymptotic properties. 

The reader should be warned that, in Section 2, the term "stable 
Markovian sequence" will be used in the somewhat loose sense which we have 
just motivated. 

2. APPROXIMATIONS TO CERTAIN STABLE MARKOVIAN 
RANDOM SEQUENCES 

2.1. The effect of the form of D(e) upon the behavior of Z(t) 

Most of the properties of the scalars and vectors studied in Section 1 are 
also true of the Gaussian prototypes of all stable distributions (except, in 
some expressions, for the replacement of 2 by a). Those properties did 
not involve any approximation, and they depended little upon the shape 
of the function Dee) (except when we assumed that D(e) varied in the 
first quadrant only). But, as we have noted, important differences appear 
as soon as one goes beyond this section, because the law of Z(t), given z(t), 
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cannot always be reduced to the universal form that corresponds to an 
autoregressive behavior. Z(t) may behave in many ways, depending on 
the shape of D(B). Things simplify drastically, however, if D(B) is "near" 
in form to either the function corresponding to time-invariant Z(t) or to 
that of the autoregressive Z(t). 

In the first case, we shall show that, as long as z(t) is large, a sta­
tionary Markovian Z(t) will behave in such a fashion that log Z(t) per­
forms a random walk or a diffusion. The last two of the asymptotic 
Champemowne conditions are also satisfied, as a side-product of the 
linear regression proved in Section 1.B.2. Thus, we shall derive 
Champernowne's conditions and thereby achieve one of the principal aims of 
this paper. 

If, on the contrary, D(8) is "near" the function that corresponds to the 
autoregressive Z(t), the behavior of Z(t) will be "near" the autoregressive 
behavior. 

In sum, the effect of chance upon the evolution of Z(t) may be either 
multiplicative or additive. It can also be a mixture of the two. Everything 
depends upon how much D(8) varies near B = IT /2. For the purposes of 
this article, it is unnecessary to describe formally the respective domains of 
validity of the two extreme approximations. 

2.2. Approximations to the behavior of a L-stable variable U', when the 
value of the sum of U' and of U" is known and is large 

The construction of Section 1.B.1 requires the probability distribution of 1Y 
to be conditioned by the known value x. This reduces to the problem, 
already raised at the end of Section 1.6.1, of describing the distribution of 
the variable U' = a.'L' a' when one knows the value u of the sum 
aLa =a'L'a +a"L"a. The density of the distribution of U' obviously takes the 
form 

, (1/ a')Pa(u' / a')(1/ a")Pa[ (u - u') I a"] 
p(u I u) = (1/a)Pa(u/a) 

Unfortunately, this expression is, in general, quite complicated. 

Suppose, however, that u is positive and large. Then we find that 
p(u' I u) consists of two "bells," with some small additional probability 
between the bells. This probability distribution plays an important role in 
M 1962e{E12}. 
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The first "bell" is located near u' = 0 and its shape is deduced from a 
reduced L-stable density by the following transformations: (a) Very large 
values of u' (values greater than u/2) are truncated. (b) The scale of 
abscissas, which is dominated by the term (1/a')Pa(u' fa') of p(u'l u), is 
multiplied by a'. (c) The scale of ordinates is dominated by the term 

(1/a")Pa[(u - u')/a"] 
(1/ a)Pa(u / a) 

of p(u'l u); this term remains close to 

(1/ a")Pa(u / a") 
(1/ a)Pa(u/ a) , 

which in tum can be approximated by (a,,)a / (a)a (since, when u is large, 
Pa(u) is asymptotically scaling). Hence, defining the event A' by the fact 
that a'Va falls within the bell located near u' = 0, we see that the proba­
bility of A' is itself close to p" = (a,,)a /(a)a. Furthermore, if U' is condi­
tioned by both u and A', its mean value is close to zero (and tends to zero 
as u - 00) and its most probable value is close to - m(a)a', where m(a) is 
the distance between the mean and the mode of a reduced L-stable vari­
able La' 

The properties of the second bell, located near u' = u, and of the corre­
sponding event A", are obtained by permuting a' with a" and u' with 
u" = u - u'. 

As a result, a conditioned L-stable variable can be reduced to a combination 
of two truncated L-stable variables, corresponding to the realization of either one 
of two mutually exclusive events, A' and A": 

When A' has the probability P' then u" is equal to a truncated unconditioned 
L-stable variable a"L"a and u' = u - u". 

When A" has the probability p" then u' is equal to a truncated unconditioned 
L-stable variable a'Va and u" = u - u'. 

Clearly, when u decreases, the two bells eventually merge. But even 
before this happens, the truncation of the smaller of the two contributions 
to u first affects the mean of the bell, then its median, and finally its mode. 

It is interesting to study the lower bound of the range of u where the 
above approximation is applicable. If a is close to 2, u must be very large 
indeed for the approximation to hold. But if a is close to 1, the mode 
remains unaffected even when u becomes negative and gets fairly close 
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(on the positive side) to the mode of the unconditioned a'L'a' Consider the 
interesting case when 0. is close to 3/2. If p' and p" are both close to 1/2, 
it seems that u may be as small as 4 or 5 times m(a), without displacing 
the modes very much from the untruncated case. If p' is much smaller 
than p", u may become even smaller. 

Large negative values of u. In this case, the conditioned p(u' I u) is very close to a 
Gaussian distribution of variance equal to 

-(2-a)/(a-l) 
c( a)p'p" I u I , 

where c(o.) is independent of u. Except in the limit case of 0.=2, this variance 
depends upon u and tends to zero with l/u. 

2.3. Markovian stationary stable sequences associated with random 
walks of the logarithm of Z(t) 

2.3.1. A nondegenerate two-factor sequence. Let the joint distribution of 
Z(t) and of Z(t + 1) involve two factors, having the directions e' and e", 
SU~:l that 0 < e' < e" < IT /2. Let dD(e') = /" dD(e") = 1", J'{ cos e,)a = p', and 
1"( cos e")a = p". Let L'a and Lila be two independent reduced L-stable 
scalars. Let X' = L'a( cos e') (J')l/a, and similarly for X", Y', Y". Finally, let 
T' = tan e', and Til = tan e". Then we can write: 

X = X' + X" = L'a(/,)l/a cos e' + L"a(J")l/a cos e', 

Y = Y' + Y" = L'a(J')l/a sin e' + L"a(J")l/a sin e' 

= X'T' + X"T" = XT" - X'(T" - T') = XT' + X"(T" - T'). 

Assuming that x (or y) is large, the results of Section 2.2 can be used 
to greatly simplify the decomposition of X into X' and X" (or of Y into Y' 
and ylI). 

However, even if x is large and overwhelmingly due to x', it does not 
necessarily follow that y is also large and is due to the part y' that corre­
sponds to x'. For this to be the case, we suppose that both T' and T" are close 
to I, which requires the directions of the two diachronic factors to be close to the 
main diagonal. In that case, if x is large, it is overwhelmingly likely that 
the contribution of one of the factors is much larger than that of the other, 
so that one of the following mutually exclusive events will be realized: 

Event A', of probability p'. Here x is predominantly due to X', and X" is 
approximately equal to a truncated L-stable variable (p") 1 laLta· Further­
more, 
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Y = XT' + (T" - T')(p,,)1/u4u. 

In particular, as x -+ 00, one has: 

E(YI x, A') -+ XT'; Mode (Y I x, A') -+ XT' + m(a.)(p,,)lIu(T" - T'), 

the second convergence being far faster than the first. 

Event A", of probability p". Here, x is predominantly due to X", and X' 
is approximately equal to a truncated L-stable variable (p,) lIULtu• Further­
more, 

Y = XT" - (T" - T')(p,)1/u4u. 

In particular, as x -+ 00, one has: 

E(Y I x, A") -+ XT"; Mode (Y I x, A") -+ XT" + m(a.)(p,)l/u(T" - T'), 

the second convergence being far faster than the first. 

Consider also the variable log Y, as conditioned by log x and by either 
A' or A". For large y, the curvature of the function log y is small (and 
tends to 0 with 1Iy). Hence, 

E( log Y I log x) -+ log x + log T, 

where the scalar T equals either T' (with probability p') or T" (with proba­
bility p"). 

2.3.2. Concerning Bernoulli's concept of "moral wealth." Consider a 
process whose successive values are ruled by the joint law of the vector 
(X, Y) of the last section. We have just proved the following result: 

Let Z(t) be a stationary Markovian stable sequence with two diachronic 
factors close to the main diagonal. Then, as long as z(t) remains large, Z(t + 1) 
will, lion the average," be equal to either Z(t)T' or to Z(t)T", with respective prob­
abilities p' and p". Log Z(t + 1) will, lion the average," be equal to either 
log z(t) + log T' or to log z(t) + log T". Hence, log Z(t) will, "on the average," 
perform a random walk. 

Combined with the linear regression of Z(t + 1), given z(t), the above 
result yields the asymptotic conditions of Champemowne and leads to a 
proof of our fundamental result, as stated in the simplest possible case. 
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But our statement concerning random walks is not completely satisfac­
tory. Mathematically, while the effects of truncation by z(t) decrease with 
l/z(t), the "average" is the slowest, among three typical values of a trun­
cated variable, to converge to its "true" value, which is zero. Empirically, 
the concept of a "moral wealth" is not very well represented by 
10g[Z(t)E(Z)]. It would be better to express the moral wealth as 
10g[Z(t) + B], where B is a positive constant (for Bernoulli), and lies 
between E(Z) and the "nominal" origin of z. 

It happens that expressions of precisely this form are encountered in 
the study of the "most likely" behavior of Z(t). Indeed, writing 
B' = m(a)[(pl)l/a + (p,,)l/aJ and B" = m(a)[(q,)l/a + (q,,)l/a], we can make 
the following statement: 

The sequence Z(t) will "most likely" be such that z(t) + B' is followed by 
Z(t + 1) + B" = T[z(t) + B'], where the random variable T takes the values T' and 
T" with the respective probabilities pi and p". 

Suppose, moreover, that B' = B" (as in Figure 1, in which the vectors of 
(X, Y) are symmetric with respect to the main diagonal). Then one can say 
that 10g[Z(t) + BJ "most likely" performs a random walk. Unfortunately, 
it is clear that, in general, we have B'"# B". But the expression 
x1/ a + (1- x)l/a, which is involved in both B' and B", stays close to its 
maximum, 21 -l/a, except perhaps when x is very close to 0 or 1. Hence, 
B' and B" are likely to be almost equal if the loadings pi and p" (respec­
tively, q' and q") are not too different from each other. In that case, the 
diachronic factors are not only close to the main diagonal but close to 
being symmetrical with respect to that line. Therefore: 

Let Z(t) be one of our stationary Markovian stable sequences with two 
diachronic factors close to the main diagonal and close to being symmetric with 
respect to that line. Then, as long as z(t) remains large, the behavior of 
10g[Z(t) + BJ is approximated by a random walk. 

Of course, we cannot prove that the above expression Z(t) + B can 
"really" be considered as representing income as counted from some 
"subsistence income," - B, and that [Z(t) + BJ can be considered as a 
"moral wealth." It would be very pleasing, indeed, if this were so. But 
perhaps our more general equation, of the form Z(t + 1) = Tz(t) + TB' - B", 
is an improvement over "simple" multiplicative behavior. 

In the above argument, it is noteworthy that asymptotic scaling still 
holds for values of z(t) for which the "bells" of the conditioned distrib­
ution of X', knowing x, are not well separated. These values of z can 
become far smaller than those for which the random walk approximation 
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z (t+1) I 
I 

/ 

FIGURE El1-l. An example of the form taken by the lines of constant probability 
density of the vector [Z(t), Z(t + 1)1 in the case where two factors are sym­
metric with respect to the main diagonal. 
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is valid. There is nothing inexplicable in this situation, however, because 
asymptotic scaling is far better established than the random walk behavior 
of log Z(t). 

2.3.3. An F-factor sequence. Suppose that there are F diachronic factors 
for (X, Y). The notation of Section 1.7.1, with 0 < Of< TT/2 yields 

F 

X = L 4,f..li1a( cos Of); 
f=l 

F 

Y = L 41li1a( sin Op. 
f=l 

Once again, we wish to be certain that when x and yare large, it is 
because both are predominantly due to the projections of a single loaded 
factor (IYlaLafVf This will be the case if x is very large and if there is no 
diachronic factor close to either axis. If this is the case, it will be over­
whelmingly likely that the large size of x will be due mostly to the realiza­
tion of one of the following F mutually exclusive events. (The indexed f 
satisfies 1 5:f 5: F.) 

Event Af (of probability p;' The contribution xf equals x - L i*fX'i' where 
the X'i are (approximately) independent of x and equal to truncated 
L-stable variables, Ltai(Pi)l/a. Hence, ordering the Tf to form an increasing 
sequence, we have 

(Y I x, At> = XTf + L Ltai(Pi)l/a(Ti - Tf) 

i*f 

= XTk + L Ltai(p/lu(Ti - Tf) - L 4ai(Pi)1/U (Tf - Ti)' 

i>f kf 

The truncations are neglected, then (the approximation becomes increas­
ingly good as x increases), each of the sums L i>f L i<f becomes a L-stable 
variable, so that 

In particular, we have 

E(Y I x, At) = XTf Mode (Y I x, At) = XTf+ "'fa). 
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The expressions mfa) refer to differences of L-stable variables, so that we 
do not know of any explicit formula for them. We may, however, state 
the following: 

Let Z(t) be a stationary Markovian stable sequence with F diachronic factors, 
all close to the main diagonal. Then as long as z(t) remains large, Z(t + 1) will, 
"on the average," be equal to one of the quantities Z(t)T k' with respective probabil­
ities Pk' Thus, log Z(t + 1) will, "on the average," be equal to one of the quantities 
log z(t) + log T k. Hence, log Z(t) will, "on the average," perform a random walk. 

Now consider the "most likely" behavior. It is unfortunately impos­
sible to tell whether the straight lines, y = xTfa) + mfa), have a common 
point and, a fortiori, whether they intersect near the main diagonal. But 
this may be achieved by imposing sufficiently stringent conditions upon 
the vector (X, Y). Otherwise, the quantity B that enters in Bernoulli's 
"moral wealth," 10g[Z(t) + B], would not be defined precisely, only as a 
rough order of magnitude. 

As x becomes smaller, the random walk steps are increasingly 
"smeared;" the breakdown of the random walk happens increasingly 
faster as a gets close to 2 and as F increases. 

Addition of two L-stable processes. Let the functions D'(6) and D"(9) be dif­
ferent, but let them both lead to random walks of log Ze~. In this case, the function 
DW) = D' (6) + D" (6) also reduces to jumps near 6 = IT / 4, hence also leads to a 
random walk. This closure property is not valid for autoregressive processes: if 
the 6' of the addends are different, the sum is not autoregressive. 

2.3.4. Sums of Champernowne sequences: a heuristic approach. (See Section 
2.5 of M 1960i{E10}.) Let Wj(t) be independent and identically distributed 
Champemowne sequences, with a restricted only to being greater than 1. 

Consider then the unconditioned sum ZN(t) = A(N)L;: 1 W;<t) - B(N). If Z2(t) is 
large, this fact is overwhelmingly likely to be due to only one of the asymptotic 
Pareto addends, Wt(t) and W2(t). Hence, Z2(t) will behave in time like either of the 
two terms of which it is made. This means that Champemowne's properties are 
preserved in the addition of two addends. The same continues to hold for the 
addition of three or a few more parts, irrespective of the sign of a - 2. 

But now let N become very large. Then, if a > 2, the sum ZN(t) remains valid 
in a region of high values of ZN(t), the total probability of which tends towards 
zero. If, on the contrary, a < 2, the sum tends towards a L-stable process and 
Champemowne's properties remain valid within a region of values of Zw the prob­
ability of which tends towards a finite limit. 

Consider then the directions such that loge tan 6; is equal to one of the steps 
which log WP) may perform when it is large. These will also be the directions of 
the factors of the limit of the vector (ZN(t), ZN(t + 1). Moreover, it is easily ascer-
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tained that the factors of the vector (ZN(t), ZN(t + 1), ZN(t + 2» have such a structure that 
ZN(t) is a "Markovian" stable sequence. 

2.4. Stable sequences which are not associated with random walks of the 
logarithm of Z(t) 

2.4.1. The effect of a diachronic factor close to the Y-axis. Let there be 
two diachronic factors. If elf = IT /2, one has the autoregressive case of 
Section 1.7.3. 

Suppose now that elf = IT /2 - E, while e' is close to IT / 4. Then, the 
division of x into x' and x" can still be approximated by the device intro­
duced in Section 2.2. But if x" is small and x' large, it may very well 
happen that y" = x"( tan elf) is of the same order of magnitude as 
y' = x'( tan e'). Therefore, the random walk breaks down, even if one starts 
from an instant of time for which z(t) happens to be large. The variation 
of Z(t) must instead be represented by the following mixed approximation: 

With a small probability pIt, x will be predominantly due to x". The 
reason why pIt is small, is because r is less than 1 and (cos e,,)a - Ea. 
Therefore, the event A" happens very rarely. But when it does happen, x 
is multiplied by the enormous coefficient tan elf -l/E. 

With a probability p', close to 1, x will be mostly contributed by x'. In 
that case, x" will be approximately a L-stable variable with scale factor 
rEa, truncated at a value of, say, x/2. Then, y" will be a L-stable variable 
with scale factor rEa, truncated at x/2. Hence, y" will be a L-stable vari­
able with scale factor rEa ( tan e,,)a - r, truncated at the meaninglessly 
large number X/E. As a result, the behavior of Z(t) will be quite indistin­
guishable from an autoregressive sequence obtained by making E = 0, 
without changing r. 

As E --+ 0, the probability pIt of the rare event also tends to 0, as does 
the expected value of the multiplier, tan elf (this expected value is 
tan elf - rEa -1 /p"). It is, of course, satisfactory to find that the behavior of 
Z(t) varies continuously with D(e). 

2.4.2. The effect of a diachronic factor close to the X-axis. The limit 
case, where e' = ° and elf is close to IT / 4, is the inverse of an 
autoregressive sequence. Here, the random walk predicts that z(t) will be 
followed by ° with probability p'. But, of course, the effect of the other 
component, x", will prevent this from happening; instead, Z(t + 1) will be a 
reduced L-stable variable, independent of z(t). That is, if z(t) starts from 
some large value, it will increase further, exponentially, through successive 
multiplications by tan elf > 1, until the first occurrence of the event A'. 
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When A' happens, the process starts again from scratch, and it is very 
unlikely to start with a large value of z(t). 

Suppose now that e' is very small. Then, if A' occurs, Z(t + 1) will be 
equal to a new L-stable variable, independent of the past and having a 
scale factor slightly less than 1, plus a contribution from the past in the 
form of Z(t)E. Things again change continuously as E tends to zero. 

We think that the above indications suffice to show what kind of 
behavior can be expected of L-stable processes not associated with random 
walks. 

3. CONCLUSION 

This paper emphasizes the case in which the behavior of Z(t) performs a 
random walk or a diffusion. In such a process, Z(t) cannot be multiplied 
by any very large or very small factor. But we also showed that a more 
general expression for Z(t) is such that Z(t + 1) = TZ(t) + R, with T and R 
independent of each other and of the past. The random term R allows for 
occasional large discontinuities of Z(t) and seems to provide a useful 
improvement over the principle of random proportionate effect. 

One must not be too dogmatic about the exact degree of relevance of 
our theory to the study of income. Since it starts with extreme 
idealizations, the theory may be interpreted in many ways. The strongest 
interpretation would assert that one or more of the motivating properties 
of our processes has explanatory value (there may be disagreement about 
which is the best explanation) and that the theory as a whole has predic­
tive value. The weakest interpretation would stress only two facts: (a) 
success in dispelling the apparent contradiction between the aggregation 
of parts and the nonGaussian character of the whole; and (b) starting from 
hypotheses that are reasonably close to facts, derivation of results that are 
close (or very close) to the facts. 

In any event, it is clear that I strongly believe that the theory of stable 
nonGaussian random elements is essential to the urgent task of extending 
the stock-in-trade of stochastic models. 
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&&&&&&&&&&&& ANNOTATIONS &&&&&&&&&&&& 

The scientific and mathematical value of Champernowne 1953. This paper 
gives extensive play to a reference I soon came to view as overblown. Its 
basic result was familiar: the exponential distribution of log U can be gen­
erated by a random walk with a downward drift and a reflecting 
boundary. Building on this base, one can design an infinity of mech­
anisms that seem more general, because they demand a cumbersome nota­
tion, but in fact bring nothing significant. 

Champernowne 1953 is an example of such idle make-work and math­
ematical overkill with no practical or mathematical interest. 
Champernowne taught economics at Oxford, then Cambridge, but found a 
permanent niche in the literature for the number C whose decimal devel­
opment starts with 0 and continues with all the integers in sequence 
without leaving any gap. Thus, C begins as follows: 

C = 0.123456789101112131415161718192021 ... 

This number is non-random, but passes all tests for randomness. Norbert 
Wiener gave an earlier example, but the memorable form is C. 
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Scaling distributions and income maximization 

• Chapter Foreword. Judged by the illustrations, this chapter is an exer­
cise in something close to linear programming. The formulas show that 
this exercise is carried out in a random context ruled by scaling distrib­
utions, including the Pareto law for the distribution of personal income. 
To help both concepts become "broken in" and better understood, I inves­
tigated this and other standard topics afresh with the Gaussian replaced 
by the scaling distribution. For many issues, major "qualitative" changes 
follow. As is often the case, the root reason lies in sharp contrast in the 
convexity of probability isolines, between the circles of the form "x? + l = 

constant," which characterize independent Gaussian coordinates, and the 
hyperbolas of the form "xy = constant," which characterize independent 
scaling coordinates. The resulting changes concern an issue central to this 
book and especially in Chapter E5: evenness of distribution associated 
with the Gaussian, versus concentration associated with the scaling. 

This paper examines many special cases in turn, which tends to be 
tedious, but the style is not devoid of dry whimsy and revealing near­
autobiographical considerations. As the reader must know, a key feature 
of my scientific life is that rarely, if ever, does it involve an established 
field, one that requires well-defined skills provided by a recognized and 
trained combination of nature and nurture. To the contrary, most of my 
work relies on an idiosyncratic combination of seeing and reckoning. Not 
a few brave souls attempt to work in this way, but very few succeed. The 
reader will find that this chapter tackles that statistical observation: it 
does not really attempt to "explain" it, only shows that it does not fit in a 
Gaussian universe, but fits comfortably in a universe in which randomness 
is scaling. • 
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I. THE EMPIRICAL DISTRIBUTION OF PERSONAL INCOME; 
SCOPE OF THE ASYMPTOTIC LAW OF PARETO 

The distribution of income follows the asymptotic law of Pareto. That is, 
there exist two constants a and il, such that, for sufficiently large values of 
u, the relative number of income earners with income > u, takes the 
scaling form P(u) == 1-F(u) == Pr {U> u} - (u/il)-u. The exponent a is the 
asymptotic slope of the curve giving log P(u) as function of log u. Pareto 
1896 reports that a lies between 1 and 2; perhaps its value may exceed 2 
in some recent cases (other than the salaries of which we speak below.) In 
any event, little significance attaches to the value a == 1.5, which Pareto 
emphasized. 

In the nonasymptotic part, the shape of F(u) is irregular and some­
times even multimodal, but can be represented by a mixture of simpler 
distributions. As a matter of fact, the distributions relative to sufficiently 
narrowly defined "occupations" are unimodal curves, for which skewness 
and average income tend to increase simultaneously. It is reported that 
this result was known to Moore 1911, but I did not find this reference. 
Similar results can be found in Westergaard & Nyboelle 1928. The most 
accessible reference is Miller 1955. Within narrow occupations the distrib­
utions of income typically behave as follows. 

At the lower end of the scale, certain types of pay, such as wages for 
unskilled laborers, tend to have symmetric distributions, which (for all 
that we know) may even be Gaussian. Here, the inequality of incomes can 
be attributed primarily to the variability of the number of days worked for 
a fixed daily wage. 

Farther up the scale, several different categories of income have a 
markedly skewed distribution, but a very small probability of attaining 
high values. Such income categories have been successfully fitted by the 
lognormal distribution, which is rationalized by considering the logarithm 
of income as the sum of very many components. 

Finally, there are several income categories that follow the asymptotic 
law of Pareto, but with different values of a. For example, the alpha of sala­
ries may by found between 4 and 5. But the set of those incomes that 
remain after all simple profeSSional categories have been excluded has an 
a that is traditionally contained between 1 and 2. This exponent domi­
nates the distribution of very high incomes, considered irrespectively of 
occupation. 



338 QUARTERLY J. ECONOMICS: 76, FEBRUARY 1962, 57-85 ~ ~ El2 

II. SCOPE OF THE PRESENT PAPER 

One could explain the data of Section 1 in two stages. At first, one would 
treat different income categories as being conditioned by independent and 
possibly different economic mechanisms. Later, the obviously strong 
interaction between the various distributions would be taken into account 
by a separate model meant to explain the observed distribution of the 
GNP between various categories. 

The aim of the present paper is bolder; to suggest one possible reason 
why several values of the a exponent, and several non-scaling categories, 
may well coexist in a single, strongly interacting, economic community. 

It will be assumed that each individual must choose one of N possible 
"occupations," Pn, with 1.s n.s N (Roy 1951). Two occupations that make 
the same offers to every income-earner may be considered identical. 
Further, we assume that each individual knows the incomes, Un' which he 
could derive from various occupations Pn• Finally, we suppose that each 
individual chooses the occupation that offers him the most. If several Pn 
make the same maximal offer, he chooses one at random. Some income­
earners hold several part-time jobs, and a "professional" income is often 
supplemented from investments. We could have stated some simple facts 
concerning this pOSSibility, but we shall abstain. 

We assume that, within the total population, the distributions of the 
various Un are random. We also assume a certain interdependence 
between the various offers. The conclusion is that if the overall income dis­
tribution is scaling with exponent a, the offers accepted from each "occupation" 
taken separately will also be scaling, but with an exponent of the form w(n)a. 
The quantity wen) is an integer called the "weight" of Pn; it is found to be 
equal the number of factors that must be large simultaneously, in order that the 
offer Un be accepted and turn out to be large. This concept of weight is central 
to this paper. If the weight is large, the law of Pareto becomes practically 
useless and should be replaced by the lognormal distribution. 

The word "offer" used to denote the Un is a terminological device, not 
meant to imply that all occupations are organized in bureaucratic hierar­
chies and that all incomes are salaries. The same approach holds if an 
income-earner wanders around until nobody offers more to move again. 
Some persons' best choice may be too obvious to be performed con­
sciously. In any event, there is no doubt that other mechanisms can gen­
erate the same mixtures of scaling distributions. 
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The hypothesis of income maximization presupposes more order in 
the economic organization than is strictly necessary to derive the desired 
results. For example, different people could maximize their income 
among different numbers, N, of possibilities, and the observed distribution 
of income would be a mixture of those which correspond to different 
values of N. For example, N may be random. 

III. LINEAR FACTOR ANALYSIS OF THE RENTAL PRICE OF AN 
INDISSOLUBLE BUNDLE OF ABILITIES 

Let us now analyze the interdependence between the offers Un and the 
economic significance of the existence of several different offers for the use 
of the services of the same man. 

It is natural to assume that all offers are conditioned by the same 
broad set of "attributes," but that different professions "weigh" the attri­
butes quite differently. "Positive" attributes include "intelligence," 
"character," "mathematical ability," "inherited fortune," and there are 
"negative attributes." However, inherited fortune is the only item for 
which there is an objective measure. The others raise so many questions 
(sociological and economic, and also, perhaps, psychological) that it seems 
better to leave them unspecified, even though it is inevitable and useful 
for the reader to identify these attributes mentally with some widely used 
psychological concepts. 

There is a widely held belief that the distributions of psychological 
factors are Gaussian. However, the distributions of uncorrected psycho­
logical scores are usually very skew and have long tails in one direction. 
(See Thurstone 1947.) There is also much evidence, due to Lotka, H.T. 
Davis and others, that the distribution of certain psychological character­
istics may be scaling; but we do not want to enter into this discussion. 

This paper's results could be derived under several different types of 
dependence between the offers and the abilities. Linear dependence is 
time-honored in economics. Un (1 ::::; n ::::; N) being the rental price which 
the occupation Pn is ready to pay, suppose Un can be written as a nonho­
mogeneous linear form of F independent factors VII ::::;f::::; F). Each factor is 
randomly distributed in the population, and "measures" one or several 
"abilities." The letter F should not be confused with the function F(u). 

Then one can write: 
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F 

Un :::: I tlrztVf + tlno + tlnEn­
f= 1 

The En are "error terms," which we mention for the sake of complete­
ness, but shall neglect. A different very reasonable correction was intro­
duced by Machlup 1960, who notes that the occupation of inventor is, for 
some, the best paying current option, while others would never consider 
doing anything else, hence would invent even for a very small reward. 
Similar considerations obviously apply more generally. The factors Vf 
may be common to several offers; their units will be chosen later. The 
nonrandom anf are called "factor loadings;" if the factors are considered as 
different commodities, the loadings play the role of prices. (The fact that 
the same commodity may have different prices with respect to different 
buyers, Pn, is a result of the impossibility of renting the different factors to 
different employers; we intend to discuss this question elsewhere.) The 
nonhomogeneous term ano' which can well be negative, expresses the value 
of any "body" to the occupation Pn• 

The above technique is like the factor analysis used in psychometry. 
However, the replacement of the Gaussian factors by scaling quantities 
(see Section V) changes the theory beyond resemblance. In particular, the 
usual difficulties of factor analysis disappear (to be replaced, presumably, 
by fresh ones); we hope to take up this topic elsewhere. 

Note that "family incomes" provide an intermediate example between 
cases where the factors are indissolubly linked or separable. 

IV. REGIONS OF ACCEPTANCE OF DIFFERENT OFFERS 

The prospective employee has to maximizes the nonlinear function Un. 
Let the random variable Wn designate the incomes accepted for the occupa­
tion Pn, and let W designate all accepted incomes. 

Clearly, the region of acceptance Rn of the offer Un will be the inter­
section of the N -1 half-hyperspaces defined by the equations 

(i *- n). 

The domain of values of vf in which the accepted income is W < u is 
familiar from linear programming: it is the convex hull of the N planes 
Un:::: u and of the F planes Vf:::: O. If, for every u, the plane Un:::: u is exterior 
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to that convex hull, the occupation Pn may "economically unessential," 
and must rely on noneconomic inducements to recruit unless the error 
terms En provide it with the personnel which it needs. 

It may be noted that the above regions of acceptance are independent 
of the probability distribution of the factors. This is unrealistic, insofar as 
the factor loadings, considered as prices, must eventually be determined 
by supply and demand, which in tum will sharply depend upon the avail­
able combinations of factors. But before synthesizing the whole theory, 
we must analyze its various parts. (See Section 9 for some semblance syn­
thesis.) 

Now consider a few examples. 

The offers are homogeneous forms of the Vf . The accepted Pn will only 
depend on the relative values of the factors, that is, on what we may call 
the "factor profile" of the individual. 

A consequence is that the regions of acceptance are polygonal cones, 
all having their apex at the origin of the factor space. Unboundedly large 
incomes will be encountered in every profession. 

For the case F = 2, the typical shape of the regions ~ and of the sur­
faces W = u, is presented in Figure 1. Figure 2 shows what can happen 
when F = 3. The weights wen) marked on these figures were described in 
Section 2 and will be derived in Section 7. The dashed lines of Figure 1 
will be explained in Section 5. 

In Figures 2a to 2e, if one factor is present in very large quantity, it 
fully determines the chosen occupation, so that the values of other factors 
are irrelevant. But in Figure 2f the occupation is not determined by the 
value of the high factor VI alone; it is also greatly influenced by V2 and V3, 

which are present in small quantities. Small changes in these other factors 
can change the optimal value of n. 

As to the surfaces W = u, they continue to be obtained from the surface 
of unit income by multiplying all coordinates by u. 

Linear and nonhomogeneous offers. The regions of acceptance Rn need no 
longer be open cones. Some may be closed, leading to bounded incomes. 
The corresponding occupations will clearly not be very sensitive to the 
values of the factors. Fanning-out regions ~, to the contrary, correspond 
to occupations that are quite sensitive to the factors. An example is given 
in Figure 3. 

If the offers Un' as functions of the Vf' were nonlinear but homoge­
neous of the first order, the regions of acceptance would be cones with 
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their apex at the origin. But they would not by polygonal and, if the origin 
is excluded, R" need not be simply connected. 

v. THE ASSUMPTION THAT THE FACTORS ARE SCALING 

The fundamental and least obvious "input" of the theory will be the 
assumption that each factor is asymptotically scaling. Hence, there exist 
some constants fIt and (l > 1 such that, when u increases to infinity, 

Assume that offers can be factor-analyzed linearly, that an occupation 
is chosen by income maximization and that the expressions 1 - Fj (u~) 
have the same asymptotic behavior for all f. Then the following can be 
proven (but not here): in order that the overall income distribution be 
scaling, the same must be true of every factor taken separately. 

The scaling characters of every factor will be one of the "axioms." 
Strict scaling will considerably simplify the mathematical arguments, 

WI=I 1 !i~ 
I . W?=~ 
1

:- 2 •• -

o 

. .. . . 
~: ••••• W3=u 

':1 •••• . . .. . - ... . ... . I.· .. W4 = u . . . ..:..- ;r.- "....._. - - - - -.. ... . . .-
o .0 t •• . .. .. s···· 

FIGURE E12-1. Regions of acceptance in the case of two homogenous factors. 
Dots: boundaries between different ~s. Thin lines: Un = u. Thick line: W = u. 
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although it is unquestionably not a very good representation of the facts. 
This distribution states that 

1- F(u) = (u/ii)-a for u > ii and F(u) = 0 for u < ii. 

(201 (2bl 

w(21=1 

FIGURE E12-2. Six miscellaneous examples of the shape of the iso-surface W = u, 
in the case of three homogenous factors. 
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Another special example is the L-stable distribution. Its density Pa(u) 
is not expressed in closed analytic form, only through the bilateral gener­
ating function 

G(s) = L: exp( - sU)Pa(u)du = exp[ - Ms + (ss)a] , 

where M = EU, and 1 < a < 2. This is a nuisance, but the L-stable distrib­
ution has two major advantages: 

(a) Its scaling tail continues, for medium and small values of the vari­
able, by a "bell" that is skew but not excessively so. 

(b) The Appendix to this section shows that this distribution reduces 
the "axiom" that the Vf are scaling, to considerations on sums of random 
variables. This reduction is intimately connected with the models of 
income distribution and variation in M 1960HElO} and M 1961e{Ell}, and 
with other applications I hope to publish in due time. 

Surfaces of constant probability. Examine strict scaling first. Since it is 
considered only for the sake of mathematical simplicity, and since the 
parameters ant take care of the scale of factors, we can suppose that the i1 
of all the factors are equal to one. The joint density function of the F 
factors then takes the form 

o 

I 
I 

R4 ,w(4)=2 I 
I 
I 
I .: .. ~ ........................ . 

R2 ,w(21=' I .... 
I ~ . 
I ••••• 
I ..... 

..l .......... . 

. ' .. ' 

..... I ...-

--+-1------------
R, I ./ 

FIGURE E12-3. Regions of acceptance in the case of two inhomogeneous factors. 
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The probability iso-surfaces are the hyperboloids defined by the 
equations 

nVf = constant, 

truncated to the region in which all the vi~ 1. 

Consider the surface L}= IVfnf= un. If the restrictions vf~ 1 are neg­
lected, the point having the coordinates un/Fan[ is the "least probable" one 
on that surface. It happens to be precisely at this point that the amounts 
paid for the different factors are equal to each other and to un/F. Similarly, 
every surface with a convexity inverse to that of the above hyperboloids 
also includes a unique least probable point. For example, there is a 
unique least probable point on the surface along which the best offer is 
equal to u. 

If one or more of these coordinates turn out to be smaller than 1, some 
"corner" difficulties are encountered; we will not enter into them here. 

In any event, the points for which vf < 1 for at least one f are never 
encountered; they are even less probable than (un/ Fanf. But we need not 
worry about this either. 

Examine now the case of factors for which the scaling "tail" is pre­
ceded by some kind of "bell." The probability iso-surfaces then takes the 
form that Fi~re 4 exemplifies for the case F = 2. If un is sufficiently large, 
the surface 4= Ivfan[= Un includes a "least probable" point. 

Finally, consider the region in which at least one of the factors is large. 
The probability density will mostly concentrate in "finger-shaped" regions 
"parallel" to the Faxes; there, one factor is large while others are close to 
their most probable values. The remaining probability will mostly concen­
trate in "web-like" regions "parallel" to one of the planes joining two coor­
dinate axes; there, two of the factors are large, while the others are close to 
their most probable values. There is extremely little probability in the 
region away from every coordinate axis. 

The concentration of the probability near the coordinate axes and 
planes means that relatively few bundles of abilities contain large quanti­
ties of several factors, simultaneously. That is, the problem of pricing such 
bundles, mentioned in Section 4, will not be so frequently encountered as 
one might have feared. As a corollary, these prices may be less well 
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determined than they would be in a more active market; this may be a 
rather important point. 

VI. CONCLUSION: OFFERS ACCEPTED FROM DIFFERENT 
OCCUPATIONS WILL BE SCALING, WITH EXPONENTS GIVEN BY 
INTEGRAL MULTIPLE OF THAT OF THE FACTORS 

For all factor loadings, as we know, the variables Wn (namely the offers 
accepted from the professions Pn) will either be bounded, or satisfy 

Let us show that w(n) equals the smallest number of different factors 
that must be large simultaneously, if Wn is to be large. To prove this 
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FIGURE E12-4. Example of probability iso-lines in the case of two factors, when 
the probability density curve of each factor has scaling tails and a ''bell.'' 

In the L-stable case, this graph continues without bound for negative 
values of vt and v2 because for a > 1 the L-stable density is not restricted to 
positive values of v. However, large negative values of v are so unlikely (less 
probable than corresponding large negative exceedances of the Gaussian law), 
that they are not worth worrying about. 

(P.S. 1996. In the 1962 original, this figure was drawn incorrectly.) 
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result, recall that the regions of acceptance Rn are cones (Section IV), and 
that the joint probability density of the factors is concentrated in some 
"fingers," some "webs," etc. (Section V). It follows that the acceptance of 
the offer from occupation Pn may be due to either of the following circum­
stances. 

The region ~ may contain a probability "finger." In that case, the 
large size of Un will usually be due to one of their factors being very large. 
Other factors are either close to the most probable value, or are so lightly 
loaded (i.e., so little valued), that they do not influence Un markedly. In 
this case, the weight is w(n) = 1. 

The region ~ may contain no finger, but a half-line in a web in which 
two factors are large. In that case, those who choose such a profession 
will mostly find that most of their income comes from two factors, i.e., 
w(n) =2. 

More generally, consider the linear manifolds of the factor space 
spanned by the positive parts of one or more of the coordinate axes. 
Some of these subspaces touch the portion of the hyperspace Un = U which 
is contained within the domain of acceptance ~ of profession Pn. Then 
w(n) is equal to the dimension of the subspace of lowest dimensionality 
that is touched by this portion of Un = u. 

At least one occupation will require only one factor and have a weight 
w(n) = 1; but every Pn may have a weight equal to 1. In general, which­
ever the sign of N - F, all the weights may equal 1 (see Figures 2d and 2£). 

Now examine more closely the case F = 2. If there are one or two 
essential occupations, both have the weight 1. If there are N> 2 essential 
occupations with unbounded incomes, two of them have the weight 1. 
For them, the region of acceptance Rn (which is asymptotically bounded 
by two straight lines) contains the infinite part of the line VI = 1 or the infi­
nite part of the line v2 = 1. The other N - 2 occupations have weight 2. 
This distinction is visible at a glance on Figures 1 and 3. 

Every occupation on Figure 1 makes offers based upon the values of 
both factors. But consider the occupations of weight 1; the expression 
anIv/uu' which is the relative rent of the first factor, varies either from 0 to 
some maximum 'n' or from some minimum sn to 1. For the occupations of 
weight 2, this ratio varies from some non-zero minimum sn to some 
maximum 'n less than 1. In this sense, one may say that w(n) represents 
the number of factors that influence the distributions of Wn in an essential 
fashion; i.e, the number of factors that can never be negligible with respect 
to the value of Wn• 
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The above result means that the larger the number of foctors that must all 
rate highly in order for the offer Un to be preferred to all others, the higher 
the value of wen) and the fewer the number of people deriving a very high 
income from the occupation Pn. 

In other words, if all the offers are linear forms in terms of scaling 
factors (or homogeneous forms of the first order), the occupations that 
require a mixture of two or more different "abilities" will attract very 
much fewer exceptionally talented people than the occupations that 
require only one ability. Most of the highly paid people will be com­
pletely specialized in a way that is socially advantageous at the time. 

If encouraged to train certain abilities further, in order to increase their 
income, those highly paid people are likely to train their best ability and 
become even more specialized. This tendency would be a reasonable 
point of departure for an alternative explanation of the distribution of the 
factors, using a "learning" process. For example, the process recalled in 
the Appendix to Section 6, could be interpreted in learning terms. In this 
context, the choice of a one-factor profession, or of one requiring w factors, 
could well be conditioned by factors other than maximization of current -
or expected future - income. 

Consider from this viewpoint an originally "interdisciplinary" enter­
prise, that is, one requiring a certain combination of various talents, to 
which a sufficient social advantage is initially attributed to insure that it 
starts. Such an enterprise will attract people of high ability in large 
numbers only if it turns out to continue to require some single factor, 
which until then was either unrewarded, unsuspected, or mixed with 
other factors. 

VII. EVALUATION OF THE ASYMPTOTIC WEIGHT OF AN 
OCCUPATION 

The derivation of the value of wen) is immediate when F = 2 and wen) = 2. 
Suppose, to begin with, that the boundaries of Rn are two halflines, issuing 
from the origin and strictly contained between the halfline v1 = 0, v2 = 1 
and the half-line v2 = 0, v1 = 1. Suppose also that both factors are strictly 
scaling with the same u. Then 

Pr {U = Wn > u} = Pr {Un> U and Ui < Un for i"l= n} 

= ff u2x-<U+l)dXdy. 
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This double integral is taken over a domain delimited by two straight lines 
passing through 0 and a cross line. The boundary may also include two 
portions of the lines v1 = 1 or v2 = 1 but this need will not arise when u is 
large enough, as will be assumed. Then one can choose some reference 
income ilJ and write x = f(u/ilJ) and y = y(u/ilJ), so that 

The integral now extends over the domain in which U = Wn > ilJ, hence is 
equal to Pr {U = Wn > lV}. As a result, 

-2a 
{ } U { -} -2a Pr Wn> u := --2a Pr Wn > W = Cu . 

w 

This shows that w(n) = 2. The asymptotic scaling behavior is achieved as 
soon as the restrictions v1 > 1 and v2 > 1 cease to influence the shape of the 
domain of integration of Pr {Wn > u}. 

Similarly, if F > 2, an occupation has a weight equal to F if R" is a cone 
of apex 0, defined by the following condition: if V is a unit vector of a 
direction contained in R", all F projections of V on the coordinate axes are 
nonvanishing (Le., if Rn contains no half-line spanned by less than F coor­
dinate vectors). This is so because 

Here, the integral extends over a domain such that one can again change 
the integration variables to show that 

Pr {Wn > u} = a constant u- Fa• 

Therefore, the weight is equal to F, as announced. 

Now, returning to the case F = 2, suppose that R" is bounded by two 
parallel lines having a direction different from that of either coordinate 
axis. It is easily shown that 
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Actually, parallel boundaries have an infinitesimal "likelihood" of occur­
rence. But it is useful to consider them as an auxiliary step for the case 
where the "lateral" boundaries of ~ no longer converge to the origin. It is 
then possible to decompose Rn into a centered cone, plus or minus one or 
two parallel strips. Hence, 

The second term becomes negligible if u is sufficiently large. Again, 
w(n) =2. 

Now, consider in more detail the ratio an1v/un, among individuals 
known to receive the income un = u from Pn. Suppose that the cone Rn is 
centered at 0, and compare the two points for which y' I x' = tan e' and 
y" Ix" = tan e". One has x' = uC' cos e', y' = uC' sin e', x" = uC" cos e", 
y" = uC" sin e", where C' and C" depend upon the factor loadings. That 
is, the ratio of the densities at the two points is 

a 2x'- (a + 1)y'- (a + 1) (C')-2(a+ 1)( COS e')- (a+ 1)( sin e')- (a + 1) 

a2x,,-(a+1)y,,-(a+1) (C,,)-2(a+1)( COS e,,)-(a+1)( sin e,,)-(a+1) 

It is independent of u. The same result will hold asymptotically if the cone 
~ is not centered at 0: the distribution of the ratio of factors, among indi­
viduals with a high u obtained from P n' is independent of u if the occupa­
tion has the weight 2. 

Note also that Ln, defined as the least probable point on the line 
Un = u, has the following property. If Ln is not within Rn, those who 
choose Pn are mostly located near the edge of Rn, that is, farthest from Ln. 

Being mostly from this specific area, those persons show a certain 
homogeneity. But if Ln is within ~, the most probable combinations of 
factors are located near either edge of ~, so that two particularly likely 
kinds of factor profiles are present. 

Now, consider one of the two occupations of weight 1. For a profes­
sion that makes offers that depend upon one factor 
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extended over a strip bounded by x = su, x = S(U + du), y = 1 and y = ru, 
where sand r are constants depending upon the factor loadings. Hence, 

For large u, the term (ru)- a becomes negligible, so that w(n) = 1. 

If an occupation of weight 1 makes offers that depend upon both 
factors, the calculation is very slightly more involved, but it is easy to 
show that Pr {Wn > u} is bounded by two expressions of the form c'u- a 

and c"u- a, which again shows that the weight is equal to 1. 

Consider now the ratio anI vI/un for individuals choosing an occupation 
of weight 1, such as P4 of Figure 1. The quotient of the proportions of 
individuals for whom the ratios of the factors are y' / x' = tan e' or 
y" / x" = tan e", is still independent of u. However, as u increases, y / x can 
take increasingly smaller values, corresponding to increasingly specialized 
individuals. As a result, the distribution of anIv/un concentrates increas­
ingly near the point of complete specialization. That is, even if the F - 1 
factors other than the most important one ceased to be rewarded, most of 
the highly paid people in an occupation of weight 1 would hardly notice 
the difference. 

If F > 2 and w(n) < F, the proofs are even more cumbersome, but quite 
straightforward; we shall not describe them in detail. 

VIII. BEHAVIOR OF THE DENSITIES BEFORE THE ASYMPTOTIC 
SCALING RANGE; LOGNORMAL APPROXIMATION 

When there are two strongly scaling factors, each occupation has a 
minimum income which is attained by some people for whom one or both 
factors take their minimum value 1. For simplicity's sake, let us concen­
trate on Figure Sa, in which PI and P2 have the weight 1 and P3 has the 
weight 2, and the minimal incomes are related by u'\ > U"2 > u"3. In this 
case, no income less than u" 3 is ever accepted. 

Now let u"3 < u < U"2. By inspection of the figure, all such incomes 
come from P3, and they are in no way influenced even by the existence of 
the other two occupations. Since U3 is a weighted sum of two strongly 
scaling variables, it is asymptotically scaling. Its asymptotic behavior may 
begin to apply before the influence of PI and P2 begins to be felt. 
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Suppose now that u" 2 < u < u" l' Then, the accepted income will come 
from either P3 or P2• There are two occupations and two factors and both 
accepted income distributions W3 and W2 will have weight 1. 

Finally, if u > u" l' one may accept any of the three offers. This con­
signs the occupation P3 to a zone that does not contain either coordinate 
axis, so that its weight reaches its asymptotic value 2. 

In a more realistic case, the scaling "tail" is preceded by some kind of 
a "bell." If so, the sharp corners characteristic of strict scaling disappear 
and the above transitions occur slowly and gradually, as shown in Figure 
5b and 5c. 

The argument extends without difficulty to the nonasymptotic 
behavior of the probability density of offers accepted from an occupation 
Pn of weight greater than 2. Before it settles down to the behavior corre­
sponding to its asymptotic weight, the density traverses stages in which 
certain pure-factor professions have not yet become tempting to anyone, 
so that Pn behaves "as if" its weight were 1, then 2, etc. The higher the 
final wen), the higher the number of possible intermediate regions (the 
weight can skip some integers, but it cannot decrease). The transitions 
between successive regions are not actually abrupt, except in the unreal-

o 

FIGURE E12-5. Example of successive appearance of new occupations, as u 
increases. 
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istic case of strongly scaling factors. That is, all that we can assert in 
general is that 

- d log [dF(u)/du] 
S(u) = d( log u) 

increases with u, and asymptotically tends to some limit of the form 
w(n)a. 

Such a behavior affects the very meaning of asymptotics. Suppose, for 
example, that the a of the factors is about 1.5. Then, an occupation with 
weight 3 will have an a close to 5, which is about the highest value of a 
that one has a realistic chance of ever observing. For higher weights, the 
probability of encountering high values of u will be too small to allow a 
reliable estimation of wen). In a way, weights values greater than 3 may as 
well be considered infinite. 

As a result, within a category of weight greater than 3, the asymptotic 
value of S(u) (as defined in the latest displayed formula) ceases to describe 
the distribution of income. It is important to know how fast S(u) increases 
in the usual range of log u. For example, useful approximations will be 
given by polynomial expansions of log [dF(u)/dul The approximation 
- log [dF(u) / du] = c' + c"( log u - C,,,)2 would make such income catego­
ries appear to be lognormally distributed. Or, if S(u) increases even faster, 

LOG P 

PI and P2 combined 

slope -C a + I) 

\ LOG u 

\s)Ope-C2a +1) 

FIGURE E12-6. Example of probability density curves for different occupations in 
bilogarithmic coordinates. 
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F(u) may appear to be Gaussian. In both cases, the normal character of 
the distribution would simply be linked to a polynomial representation of 
- log (density), and not to any probability limit theorem. 

This terminates the detailed justification of the results which we set 
out to prove. 

A critical question remains. The preceding justification of approximate 
lognormality involves no limit theorem of probability. How does it relate 
to the usual explanation, according to which the logarithm of income is 
Gaussian, because it is the sum of very many components? Our answer 
shall be addressed to the reader acquainted with L-stable random proc­
esses, and shall be very brief. 

First, when studying the convergence weighted sums of random vari­
ables of the form A(N)I.Xj - B(N), it is customary to only consider cases 
where /Jeach contribution to the sum is negligibly small in relative value." 
But this statement is ambiguous. An ex-ante condition is 
Pr{IA(N)X;-B(N)INI >Et where E is fixed, decreases to zero with liN. 
But it is quite possible that, ex-post, the largest addend remain nonnegli­
gible. As a matter of fact, from the condition that each addend be negli­
gible both ex-post and ex-ante, it would follow that the limit is Gaussian. 
When the limit is a L-stable random variable, the largest addend is 

p 

u 

FIGURE E12-7. Example of probability density curves, as plotted in ordinary coor­
dinates. 
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ex-post; not negligible, in fact, if the value of the limit is large, then the 
largest addend usually contributes an overwhelming percentage of the 
sum. 

Now consider an occupation Pn for which the weight of accepted 
incomes is quite large, which requires F to be large. The incomes offered 
by Pn were sums of the scaling contributions of many factors, so that they 
were themselves L-stable variables (assuming that 1 < a < 2). Hence, for 
most prospective employees, an appreciable portion of Un will be contrib­
uted by the very few most influential factors. However, the set of people 
for whom this holds is precisely the same as the set of people who will not 
choose Pn as their occupation. As a result, the offers accepted from Pn will 
be such that no small group of factors contribute to an appreciable propor­
tion of Wn, just as in the case for the contributions to a Gaussian sum. 

This leads to an important point. We believe that scaling behavior 
with 1 < a < 2 is quite usual for linearly aggregated economic quantities, 
and for linear functions of such aggregates. Hence, the actual contrib­
utions to these quantities will often be of very unequal sizes. However, 
this rule is broken when nonlinear operations are applied. The model of 
aggregation combined with maximization is an example of such nonlinear 
relationship between the inputs Wf ) and the outputs (Wn). 

IX. ELASTICITIES OF THE DISTRIBUTION OF PEOPLE AMONG 
VARIOUS OCCUPATIONS 

Let us investigate the effect of changes in the "loadings" of the various 
factors upon the numbers of people choosing various occupations. 

First consider an occupation having a weight equal to 1, and a region 
of acceptance that does not present the special feature of Figure 2f. The 
effect of widening its fan of acceptance decomposes into two parts. 

On one hand, it will add some people who rank highly in the factor \j 
that predominates for that profession. However, since the majority of 
high-ranking people are extremely specialized, the increase of their 
numbers will be less than proportional to the increase of the width of the 
fan of acceptance: the elasticity relative to high rank will be smaller than 
one. The additional outlay necessary to increase the number of people in 
such an occupation will mostly go towards increasing the incomes of 
people who choose that occupation anyway. (A different and independent 
treatment of the same topic may be found in Machlup 1960.) 
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On the other hand, widening the fan of acceptance also adds people 
having a value of Vf lower than the smallest value encountered before the 
raise of salary levels. When the Un are all homogeneous linear forms, and 
the factors are strongly scaling, the elasticity relative to low-ranking 
people is infinite. In any case, it is very high. Needless to say, an addi­
tion of "inferior candidates" is commonly observed when one wishes to 
increase the number of people in a very specialized activity, by increasing 
its rewards throughout the range of u. 

(A simple device for avoiding such effects altogether consists of 
dividing a profession into several parts, each having a different reward 
system, even though their members are not professionally segregated. 
Note also that if the region Rn of a profession of weight 1 presents the 
special features of Figure 2f, the problem of elasticity is more involved. 
However, this section does not propose to list all possibilities, only to indi­
cate some likely behaviors.) 

Consider now an occupation of weight 2. We saw that those who 
rank highest in that profession are very likely to be those near one or both 
edges of the region of acceptance Rn. Hence, if Rn is widened at such an 
edge, the elasticity of the number of high ranking people choosing Pn will 
be greater than 1. If the fan of acceptance is widened at an edge of lowest 
density, the elasticity will be less than 1; But the average of the elasticities 
relative to both edges will always be greater than 1. The behavior of low­
ranking people will again be different from that of high-ranking people, 
but will not change the general nature of the result. Similar considerations 
apply a fortiori to occupations with weights greater than 2. 

But this is not the whole story. If one occupation changes its rewards 
so as to increase or decrease the number of its employees, what happens 
to other Pn's? For example, if a single-factor occupation disappears entirely 
as a result of a small change in its Un there will be a tremendous over­
supply of its former employees in the high ranges. Such a change in the 
rewards of a single-factor occupation will inevitably influence the rewards 
of the nearest two- or three-factor Pn's. That is, if the value of a factor 
decreases if taken alone, it will also decrease when taken in association 
with other factors. The elasticity limited to direct effects of change of 
price will be rather meaningless. (See Figure 6.) 
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X. REGIONAL DIFFERENCES IN THE VALUE OF a. 

The specialization associated with low a. may well be impossible except in 
certain geographical regions of a country. Suppose then that geographical 
mobility is as complete as the professional mobility which we assume. In 
that case, low weights may be absent in some regions, and the overall 
exponent, equal to the a. of the occupation of lowest weight, would vary 
from region to region. If this effect were confirmed, this paper may be 
worth translating to terms of regional economics. 

APPENDICES 

This paper's predictions seem in surprisingly good agreement with the 
data described in Section 1. Besides, the original assumptions are simpler 
than the conclusions which we reach. Hence, while the body of the paper 
asks the reader to accept those assumptions without much discussion, we 
feel that we achieve an "explanation" of the observed gross data. 

All the same, it is good to investigate the sensitivity of this explana­
tion with respect to changes of axioms and to see whether this explanation 
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could not be reduced to still more "elementary" terms. This is the 
purpose of two appendices. 

APPENDIX TO SECTION V. ON THE SCALING CHARACTER OF 
THE FACTORS AND THE USE OF LINEAR FACTOR ANALYSIS 

The "L-stable" approach. As discussed in M 1960HE10}, the L-stable distrib­
utions can be obtained, like the Gaussian, as limits of weighted sums of 
independent and identically distributed random variables. Conversely, the 
L-stable distributions are the only nonGaussian limits with a finite expec­
tation and rare large negative values. 

This means that additive decomposition of incomes into parts does not 
contradict their being obviously nonGaussian. It is, therefore, extremely 
tempting to argue that the factors must be L-stable because they can be 
written as the additive aggregates of many different influences. Granting 
that the factors are surely not Gaussian, they could only be L-stable, with 
a that need not be the same for different values of f 

However, we would very much hesitate to take this viewpoint. After 
all, L-stable variables avoid the addition of parts of income in a nonlinear 
scale such as that of the logarithm of income. It would be paradoxical to 
end up by adding contributions in the conjectural scales of the "factors." 

Fortunately, the addition of conjectural parts can be avoided with the 
help of an N-dimensional Euclidean space having the offers Un as coordi­
nates. It is useful to define 10 = (an)a, If = C5:,n(an{2)a!2 and c = anlIf)-l/a, so 
that Ln(cni = 1 for all f, and the cn[ can be considered as directing cosines 
of some direction Df in N-space. Then, 

Un = I Cn/If )l/avf + (Io)l/aEn + ~o, 
f 

The vector of coordinates Un is the sum of vectors placed along the 
directions Df such that their lengths are scaling scalars having the scales If 
As shown in Levy 1937 (see also M 1961e{Ell}), if the lengths of the above 
vectors are L-stable scalars, one obtains the finite version of the most 
general L-stable vector with infinite variance and finite mean. That is, 
suppose that the vector having the N offers for coordinates, is the sum (in 
the scale of dollars and cents) of very many contributions. Then, the 
relationship between the offers must be given by our linear L-stable factor 
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analysis, or at most, by a variant of this analysis in which the number of 
factors is infinite. 

In conclusion, not only can we justify the L-stable character of the 
factors, but also the linear character of our factor analysis. 

The Champernowne approach. Let the logarithm of each factor perform a 
random walk, with downward trend and a reflecting boundary layer. The 
distributions of the factors eventually become - and stay - scaling. 

This is a straightforward adaptation of an argument which has long 
been used to justify the Pareto law of income, and which was put into a 
good form in Champemowne 1953. In the simplest case, log (Vf) can 
only increase by some quantity v", decrease by v", or remain constant. If 
log Vf > V, the probabilities of the above three events are assumed to be 
independent of "f and to be equal, respectively, to p, q > p, and 1-p - q. 
For smaller log Vf this simple random walk is so modified, that Vf is pre­
vented from becoming infinitely small. Under these conditions, one finds 
that Vf is asymptotically scaling with a = (llv") log (qlp). 

This argument can be used to further explain the nature of the weight 
w(n). 

Suppose first that Pn has weight 1, that is, the ratio anIv/un can vary 
from zero to some maximum rn' If the factor VI is multiplied by exp( ± v"), 
the total income is multiplied by a term contained between 1 and 
1 + rJ exp( ± v") - 1]; that is, it can change only a little. On the contrary, 
if the factor V2 changes, the total un changes in approximately the same 
ratio as V2• The behavior of the whole is, of course, not a random walk. 
But, in a not-so-rough approximation, one may still argue as if it were one. 
One could even assume that the logarithm of income varies following the 
same values of v", p and q as the logarithms of the factors. Hence, income 
from Pn will have the same a as the factors. 

Examine now an occupation of weight 2, and suppose that p and q are 
sufficiently small to allow us to neglect the probability of seeing both 
factors increase or decrease simultaneously in the same time interval. 
Suppose also that anIv/un is contained between 1/3 and 2/3. Then, there 
is a total probability p + P = 2p that un be multiplied by a term contained 
between 

~ + l exp(v") - exp( ~) and l + ~ exp(v") _ ( 2v" ). 
33 3 33 3' 
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Also, there is a probability 2q that un be multiplied by a term con­
tained between 

( v" ) (2V" ) -exp -3 and - --3- . 

Again, Wn no longer follows the simple random walk, but the orders 
of magnitude of the up and down steps are v" /2 and - v" /2, with respec­
tive probabilities 2p and 2q. This gives "alpha" = (2/v") log (2p/2q) = 2a, 
and the weight is 2, as expected. 

Because of the approximation of the behavior of un by a simple 
random walk, the above heuristic argument is not a complete proof. 
Besides, it was rather obvious that, if the components of income are of 
comparable sizes and behave independently of each other) their sum is 
less sensitive to random changes of the parts than if the whole is mostly 
due to one contribution. But it was not obvious that the choice of a pro­
fession, if it involves the maximization of a linearly factored-out income, 
can be used to separate the bundles of factors in which one factor predom­
inates, from those in which both factors contribute comparably. 

APPENDIX TO SECTION VII. UNEQUAL FACTOR EXPONENTS 
AND NONSCALING FACTORS 

If the factors are strongly scaling with different values of at the surfaces of 
equal probability have the equation 

II(Vt )(a,+ 1) = constant. 

Their convexity is the same as when the a's are equal. However, the 
concept of weight disappears in this case. Instead, the incomes accepted 
from each Pn will be asymptotically scaling, and their "exponent" will be 
the sum a = ~ + ~ + at, + ... relative to those factors Vt, that must be large 
simultaneously, if Un is to be large. For example, if ali the at are between 
1.33 and 2, the occupations requiring two factors will have exponents in 
the range 4 to 6; the higher numbers of factors become meaningless. 
Hence, it is still possible to say that, the larger the number of factors that 
must be large Simultaneously, the larger the scaling exponent, and con­
versely. 
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Although the weight is no longer defined, the overall properties of the 
largest income remain as in the body of this paper. 

Very different results follow when one changes the convexity of the 
surfaces of constant probability. In the Gaussian case, the densities of the 
factors are of the form 

and the surfaces of constant probability are the ellipsoids 

F 

I constant. 
[=1 

In the region of high positive exceedances, the convexity of these sur­
faces is the same as that of a sphere of center O. On each surface 
I,vfanf= un' there is a point of highest probability. There are no fingers or 
webs along which the probability is concentrated. {P.S. 1996. A digressive 
paragraph of the original is omitted here, because it was found to be in 
error.} 

Granting this convexity, examine the proportion of various factors 
most likely to be encountered in the high income range. In the scaling 
case, such proportions were most often determined by going as far as pos­
sible from the least likely point on a surface, that is, as far as possible from 
the unique point of contract between the surface U = U and a surface of 
constant probability. These two surfaces have the same convexity and 
nothing whatsoever can be said concerning the number and the position of 
points of contact; that is, concerning the degree of specialization usually 
encountered among highly paid people. In conclusion - even if the 
normal and lognormal laws were not in contradiction with the overall dis­
tribution of income - maximization of linearly factored-out incomes would 
get us nowhere. 

Exponentially distributed factors. Factors with densities of the form 
exp( - vf ) are far more interesting. Again, scale parameters are, in effect, 
inserted through the ant The surfaces of constant probability are the 
hyperplanes I,vf = constant. On a surface I,vfnf= un' the points of largest or 
smallest probability are in general concentrated along the edges, that is, at 



362 QUARTERLY J. ECONOMICS: 76, FEBRUARY 1962, 57-85 <> <> E12 

least one coordinate is f. However, there is definitely a point of smallest 
probability on every surface having the same convexity as spheres of 
center 0, for example, on every surface along which the best offer is equal 
to any u. 

Moreover, suppose that, for every fixed n, the F factor loadings an[ are 
all different, the largest being max artf It follows that the probability dis­
tribution of the offer Un behaves for large u like Cn exp( - u/ max tan?, 
irrespective of the values of the factor loading other than the largest, on 
the condition that they remain strictly smaller. If there are G factor 
loadings equal to the largest, the behavior of the probability is 
CnuG -1 exp( - u/ max tan? For small G and large u, this decrease does not 
differ very much from the exponential. 

Similarly, the accepted offer's density will be oc C'n exp( - f3nu). The 
important thing is the form of f3n• For the occupations which are influ­
enced mostly by a single factor, f3n = 1/( max tan?, and the asymptotic 
behaviors of Un and Wn are identical; one can say that the weight of the 
accepted Wn, relative to the offer Un' is equal to unity. 

But for occupations influenced by more than one factor, f3 n is much 
more complicated; the "relative" weight can become arbitrarily close, but 
never equal, to 1. The reason for this difference with the scaling case can 
be explained by considering a representative space having for coordinates 
the expressions exp(Vt ). These expressions are now scaling, so that the 
lines of constant probability have the characteristic form with fingers and 
webs. But the regions of acceptance of the different occupations are not 
bounded by straight lines, rather by fractional parabolas having equations 
of the form exp VI = ( exp v2)Y, with some constant y that can become very 
close to 0 or to 1. As a result, the "fan" constituted by the region of 
acceptance Rn can increase slower or faster than the straight edge fans 
encountered in linear factor analysis of income. 

The above argument matters because, instead of factor-analyzing the 
incomes Un themselves. we could factor-analyze the expressions log (Un) 
as linear forms with respect to exponentially distributed factors. In this 
case, the offers made and accepted would still be weakly scaling, but their 
a exponents would have no simple relation with each other - such as that 
implied in the concept of weight - and could vary in continuous fashion. 

This variation of a provides a distinction between the factor analysis 
of incomes and of their logarithms. Unfortunately, it is difficult to con­
ceive of an experimental test between the two methods. However, the 
exponential approach has two undesirable features: the linear decompos­
ition of log (income) - instead of income - and the fact that a may depend 
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upon the exact values of the loading an[ instead of more fundamentally 
structural quantities, such as the number of factors contributing to u in an 
essential way. 

This example shows particularly clearly that linear factor analysis of 
income yields different results if performed in its own scale U, in the scale 
of log U, or in the scale of some other monotone increasing function of U. 
It also indicates that a finger - and web-like behavior for the surfaces of 
constant probability, demand that the densities of the factors decrease far 
slower than it is for any of the usual probability density functions. Their 
behavior need not be scaling, but log (probability density) must be cup­
convex. 
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Industrial concentration and scaling 

+ Abstract. Since the theme of concentration is mentioned in the title of 
this book, and this book boasts several alternative entrances, it is appro­
priate that yet another introductory chapter, even a very brief one, should 
take up the phenomenon of industrial concentration, and the meaning - or 
absence of meaning - of the notion of average firm size in an industry. + 

INDUSTRIAL CONCENTRATION CAN BE SIGNIFICANT, nearly con­
stant through time, and not overwhelmingly dependent of the number of 
firms included in the industry. Unfortunately, this very important phe­
nomenon is elusive and difficult to study. 

For example, suppose that the number of firms and the degree of con­
centration are large, and consider the fraction that implements the notion 
of average size of a firm. The numerator greatly depends on the sizes of 
the largest firms. The denominator mostly depends on the number of the 
very small ones and depends on what is called a "firm," therefore is ill­
determined in many ways. A qualitative study of the ratio demands an 
analytical formula that accounts for firms of every size, but no such 
formula is generally accepted. In its absence, the question, "What is the 
average firm size?," cannot be given a sensible answer. By contrast, 
Chapter E7 argues that the questions that can be handled sensibly include 
the evaluation of the degree of concentration. Altogether, the identifica­
tion of sensible questions is a wide-open prime topic for fractal analysis. 

Unfortunately, my knowledge of this topic is thirty years old and even 
then consisted in a fresh analysis of data collected to fit the needs of 
others, not mine. Therefore, this chapter and the descriptions of my 
newest models of price variation did mostly hope to encourage others to a 
more careful experimental study. 
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An alert reader will find that most of the fractal program of research 
on industrial concentration is also implicitly presented between the lines of 
other chapters. But the topic is so important that it is good to restate basic 
points in a manner that is focussed, informal, and not dependent on a 
detailed acquaintance with the rest of this book. This chapter does not 
attempt to explain either the phenomenon of concentration, or the under­
lying size distribution. Its only goal is to demonstrate the indissoluble 
link between parallel "qualitative" features of physics, economics and ran­
domness. 

Scaling and L-stable versus lognormal distribution (Chapter E9). For the 
sake of completeness, it is good to sketch this old controversy once again. 

Statisticians who favor the lognormal insist that the bulk of firms is 
distributed along a skew "bell," that the firms in the tail are too few to 
matter, and that in the bell log U is fitted adequately by a Gaussian proba­
bility density. 

The uniform scaling distribution, which is not in contention, satisfies 

Pr {U > u} = (u/ u)- a for u > U and Pr{U > u} = 1 for u < u. 

The presence of a most probable minimum value minU = i1 is unreal­
istic. So is the absence of a bell. 

As to the asymptotic scaling distribution, it only asserts that 

Pr {U > u}ocu - a for large u; 

it says nothing about a minimum value and/or a bell. Those who favor 
this alternative are restricted in the questions they can ask. Those who 
favor this alternative are restricted in the question they can ask. 

Thus, the lognormal fit is unquestionably superior for a high propor­
tion of the total number of firms. By contrast, the scaling fit claims to be 
superior to a high proportion of the total size of an industry. Note that, 
from their viewpoint of concentration, the numerous firms in the distrib­
ution's bell count only through their average; the only firms that count 
individually are those few in the distribution's tail. From their viewpoint, 
the nice fit of the lognormal's bell is immaterial. 

In addition, the general shape of the bell is, qualitatively, about the 
same for the lognormal density and the asymptotically scaling density 
called L-stable, which is discussed throughout this book. Given the inade­
quacy of the data relative to small firms, there is little point in invoking 
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detailed statistical tests to distinguish between different equations for the 
bell. The assumption that the L-stable applies to firm sizes must mostly 
be tested in the range of large firms, where the L-stable and the scaling 
coincide. What counts in that range is that the lognormal's tail is thor­
oughly unacceptable. 

To appreciate the next point, one needs to be aware of the distinction 
fully described in Chapter E5 between mild, slow and wild "states" of ran­
domness. Among random variables, a first criticism distinguishes 
preGaussian randomness, as opposed to wild randomness by the applica­
bility of the law of large numbers and the central limit theorem with a 
Gaussian limit and the Fickian .jN weighting factor. The scaling distrib­
ution with a small a is the prototype of wild randomness; the central limit 
theorem it satisfies is neither Gaussian nor Fickian. A second criterion 
defines mild randomness, whose prototype is the Gaussian as opposed to 
long-tailed randomness. Finally, the lognormal distribution is the proto­
type of slow randomness, which is the intermediate state between mild 
and wild. 

This chapter argues that concentration cannot be accommodated in 
any straightforward way by any preGaussian size distribution, that is, by 
any distribution having finite variance, as is, for example, the case for the 
lognormal. In the case of preGaussian distributions, concentration can 
only be a "transient" phenomenon that is compatible only with small, not 
large values of N. By contrast, concentration that persists for large N is an 
intrinsic characteristic of size distributions with infinite expectation; in 
practice, this means size distributions that are at least roughly scaling. An 
exponent a < 1 allows for concentration ratios independent of N. That is, 
as shown in Chapter E7, such distributions describe an industry in which 
the size of the largest firm is non-negligible compared to the sum of the 
sizes of all firms, the second largest is non-negligible compared to all firms 
except the first, etc.. In general, the relative share of the r largest firms is 
a function mainly of the a exponent of the scaling distribution, and there 
is no difficulty in fitting that parameter so that the sum of the sizes of the 
four largest firms together constitute any reasonable percentage of total 
industry size. When the scaling exponent satisfies 1 < a < 2, the same is 
true if the variables UN are replaced by UN - EUN. This is a delicate 
change, because EU, while finite, is not well-determined in practice, as we 
saw. In practice, the market share of the largest firms is significant if the 
number of firms is small; as the number of firms increases, concentration 
does tend to zero, but very slowly. 
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To repeat, this chapter approaches the ancient conflict of scaling 
versus lognormal by arguing that the observed concentration ratios afford 
persuasive evidence against the lognormal distributions, and in favor of 
scaling with a < 1, which implies an infinite first moment, or at most a not 
much above l. 

Chapter E5 also introduces a helpful metaphor that associates the 
mild, slow and wild states of randomness, respectively, with the solid, 
liquid and gas states of matter. Everyone agrees that the distribution of 
firm sizes is far from Gaussian, hence the proper metaphor is not a "soft," 
but a "hard" object. This leaves open the question of whether it is a real 
solid or a glass. Physics describes glasses as being extremely viscous 
liquids that mimic solids and happen to be particularly difficult to study. 
In the same way, the lognormal distribution averages mildly in the very 
long run, but in the short run it mimics the wild randomness of the 
scaling in very treacherous fashion. One can call it a sheep in wolf's 
clothing. 

A metaphor will never solve a scientific conflict, but may make it lose 
some of its bite. The question should be viewed as having changed: it is 
no longer which of two claimants is closest to a deep truth, but which 
claimant has the more useful basis for predictions concerning meaningful 
questions, in particular, the degree of concentration. The fractal viewpoint 
based on the scaling distribution makes specific predictions described in 
Chapter E7 and E9. The nature of those predictions may not be welcome, 
and they may be either falsified or confirmed by new data, but they are 
available, simple (though not given by elementary formulas), and easy to 
describe and test. To the contrary, lognormal fitting yields predictions 
that are analytically unmanageable, hence of no practical use. 

A consequence is that the possible failure of the predictions based on 
the scaling distribution would not mean that the distribution of firm sizes 
proves after all not to be "hard," it would not even mark the triumph of 
the lognormal. But, it would mark a significant postponement of the hope 
of achieving a simple rational approach to industrial concentration. A 
similar situation is described in M 1963e{E3}, which argues that the alter­
native to scaling is not one non-scaling distribution or another, but a kind 
of lawlessness. 

Finiteness of the population moments is a central issue here. Scaling 
and L-stable distributions with an exponent satisfying 1 < a < 2 have finite 
expectation. They occur throughout this book in the context of financial 
data and the distribution of personal income. Firm sizes force us to move 
one more step away from mild randomness, and to deal primarily with 
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scaling and/or L-stable distributions with an exponent satisfying < 1, 
hence an infinite expectation. 

A few words may help those who are not familiar with the themes of 
this book. Distributions with an infinite expectation were recognized by 
the mathematicians. To his contrary, the few examples glimpsed in the 
course of scientific work were viewed as anomalous, not as proper and 
non-pathological. To paraphrase a famous line that is quoted in M 
1982F{FGN}, p. 38, it used to be the case that nearly all statisticians 
"turned away from this lamentable plague in fear and horror." Some con­
tinue to do so! In sharp contrast, a major lesson of fractal geometry is that 
many aspects of reality are best viewed as exhibiting mathematical behav­
iors one had learned to view as pathological. This lesson applies in this 
and many other contexts. 

An important property of most well-known frequency distributions 
was already alluded to in this chapter, but is worth amplifying a bit here. 
Take N sample values Un drawn independently from the same distrib­
ution, and let N -+ 00. The average of the Un converges to a constant (this 
is the law of large numbers), and it is possible to weight the sum L~;lUn 
in such a way that, as N increases, the distribution of the weighted sample 
sum tends to the normal or Gaussian distribution (this is central limit 
theorem.) Random variables exhibiting this property are said to be 
"attracted to the Gaussian," and I prefer the shorter term, "preGaussian." 

Elementary textbooks prove those theorems for special cases, and 
stress the fact that attraction holds under much wider conditions. But 
there are exceptions. For this chapter's purposes, the most significant indi­
rect criterion for being pre-Gaussian is the following. For every ~U, the 
weighted sum of the quantities Urn - ~U tends towards a Gaussian limit if, 
and only if, the largest ex-post contribution is asymptotically negligible 
compared to the sum. Here is a consequence expressed in the terms of 
this chapter: if the size distribution of firms were a lognormal, or any 
other distribution attracted by the Gaussian, the degree of concentration 
would tend to zero as the number of firms increases. 

The acknowledged weakness of the preceding argument is that it con­
cerns an asymptotic long-run, while "in the long-run we shall all be 
dead." Another maxim one must not forget is that "it is better to be 
approximately right than certifiably wrong." It is too much to expect 
asymptotics to yield a correct quantitative representation of the middle-run, 
but it is legitimate to expect it to yield a degree of qualitative under­
standing. 
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Now, what about the census data on the total number of firms in an 
industry and its relation to the degree of concentration? Those data 
suggest that concentration ratios vary little and in non-systematic fashion 
with changes in the number of firms in the industry. To argue that a 
preGaussian distribution is appropriate as a description of firm sizes, arti­
ficial modifications are required, or the argument becomes complicated 
transients. 

For example, suppose we abandon the idea that firms are drawn at 
random and independently from a statistical population, and assume, 
instead, that the giants collude to divide the market among all firms. If 
so, any degree of concentration could be justified under lognormal or any 
other hypothesis. It may be difficult to accept the view that conspiracy is 
so widespread and effective. By contrast, it is not necessary to introduce 
such external determining forces if the statistical theory is founded upon a 
distribution with infinite first moment (practically a synonym for a scaling 
distribution with a < 1.) 

To sum up, change in industry size with unchanged concentration 
ratio is a consequence of a scaling distribution of firm sizes. Size distrib­
utions with finite population moments up to at least the second order 
predict a concentration that decreases with industry size. The unvarying 
concentration ratios are important, because they necessarily relate to 
oligopolistic market phenomena. 



PART IV: THE 1963 MODEL OF PRICE CHANGE 

My efforts to improve on Bachelier's Brownian model started with markets on 
which the dominant factor is the highly non Gaussian nature of the distribution's 
tails. In IBM Report NC-87, liThe Variation of certain speculative prices, 
published on March 26, 1962, the title pointedly meant not necessarily all. For 
external publication, the hefty NC-87 was split. Its core became M 1963b{E14}, 
which is the centerpiece of this part. My interests having changed, what was left 
of NC-87 appeared years later, as M 1967b{E15}; this awkward composite adds 
some data on cotton and continues with wheat, railroad securities and interest 
rates, but also includes answers to criticism of M 1963b{E14} and other material 
that made the text closer to being self-contained. A final small piece from NC-87 
is published for the first time as Pre-publication Appendix I to Chapter E14. 

&&&&&&&&&&&&&&&&&&&&&&&&&&& 

The Journal of Business, 36, 1963, 394-419 & 45, 1972, 542-3 
Econometrica, 31, 1963, 757-758. Current Contents, 14, 1982,20. E14 

The variation of certain speculative prices 

.. Pre-publication abstract (M 1962a). The classic model of the temporal 
variation of speculative prices (Bacheller 19(0) assumes that successive 
changes of a price Z(t) are independent Gaussian random variables. But, 
even if 2(t) is replaced by log Z(t), this model is contradicted by facts in 
four ways, at least: 
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(1) Large price changes are much more frequent than predicted by the 
Gaussian; this reflects the "excessively peaked" ("leptokurtic") character of 
price relatives, which has been well-established since at least 1915. 

(2) Large practically instantaneous price changes occur often, contrary 
to prediction, and it seems that they must be explained by causal rather 
than stochastic models. 

(3) Successive price changes do not "look" independent, but rather 
exhibit a large number of recognizable patterns, which are, of course, the 
basis of the technical analysis of stocks. 

(4) Price records do not look stationary, and statistical expressions such 
as the sample variance take very different values at different times; this 
nonstationarity seems to put a precise statistical model of price change out 
of the question. 

I shall show that there is a simple way to solve difficulties (1), (2) and 
(4), and - to some extent - difficulty (3). This will imply that it is not nec­
essary to give up the stationary stochastic models. Suppose indeed that 
the price relatives are so extremely leptokurtic (1), as to lead to infinite 
values for the population variance, and for other population moments 
beyond the first. This could - and indeed does - explain the erratic 
behavior of the sample moments (4), and the sample paths generated by 
such models would indeed by expected to include large discontinuities (2). 
Additionally, some features of the dependence between successive changes 
(3) could be taken into account by injecting a comparatively limited weak­
ening asymptotic? of the hypothesis of independence; that is, "patterns" 
that have such a small probability in a Gaussian function that their occur­
rence by chance is practically impossible, now acquire a credibly large 
probability of occurring by chance. 

As known in the case of the Cauchy distribution, having an infinite 
variance does not prevent a distribution from being quite proper, but it 
does make it quite peculiar. For example, the classical central limit 
theorem is inapplicable, and the largest of M addends is not negligibly 
small but rather provides an appreciable proportion of their sum. Fortu­
nately, these peculiar consequences actually happen to describe certain 
well-known features of the behavior of prices. 

The basic distribution with an infinite variance is scaling with an 
exponent between 1 and 2. My theory of prices is based upon distrib­
utions with two scaling tails, as well as upon L-stable distributions. The 
latter are akin to the scaling law, and appear in the first significant gener-
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alization of the classical central limit theorem. My theory is related to my 
earlier work on the distribution of personal income. .. 

I. INTRODUCTION 

Louis Bachelier is a name mentioned in relation to diffusion processes in 
physics. Until very recently, however, few people realized that his path­
breaking contribution, Bachelier 1900, was a by-product of the construction 
of a random-walk model for security and commodity markets. Let Z(t) be 
the price of a stock, or of a unit of a commodity, at the end of time period 
t. Then, Bachelier's simplest and most important model assumes that suc­
cessive differences of the form Z(t + 1) - Z(t) are independent Gaussian 
random variables with zero mean and with variance proportional to the 
differencing interval T. 

That simplest model implicitly assumes that the variance of the differ­
ences Z(t + 1) - Z(t) is independent of the level of Z(t). There is reason to 
expect, however, that the standard deviation of AZ(t) will be proportional 
to the price level, which is why many authors suggest that the original 
assumption of independent increments of Z(t) be replaced by the assump­
tion of independent and Gaussian increments of 10geZ(t). 

Despite the fundamental importance of Bachelier's process, which has 
come to be called "Brownian motion," it is now obvious that it does not 
account for the abundant data accumulated since 1900 by empirical econo­
mists. Simply stated, the empirical distributions of price changes are usually too 
"peaked" to be viewed as samples from Gaussian populations. To the best of 
my knowledge, the first to note this fact was Mitchell 1915. But unques­
tionable proof was only given by Olivier 1926 and Mills 1927. Other evi­
dence, regarding either Z(t) or log Z(t), can be found in Larson 1960, 
Osborne 1959 and Alexander 1961. 

That is, the histograms of price changes are indeed unimodal and their 
central "bells" are reminiscent of the "Gaussian ogive." But there are typi­
cally so many "outliers" that ogives fitted to the mean square of price 
changes are much lower and flatter than the distribution of the data them­
selves (see, Fig. 1). The tails of the distributions of price changes are in 
fact so extraordinarily long that the sample second moments typically vary 
in an erratic fashion. For example, the second moment reproduced in 
Figure 2 does not seem to tend to any limit even though the sample size is 
enormous by economic standards. 
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It is my opinion that these facts warrant a radically new approach to 
the problem of price variation in speculative markets. The purpose of this 
paper will be to present and test a new model that incorporates this belief. 
(A closely related approach has also proved successful in other contexts; 
see M 1963e{E3}. But I believe that each of the applications should stand 
on their own feet and I have minimized the number of cross references. 

The model I propose begins like the Bachelier process as applied to 
10geZ(t) instead of Z(t). The major change is that I replace the Gaussian 
distribution throughout by ilL-stable," probability laws which were first 
described in Levy 1925. In a somewhat complex way, the Gaussian is a 
limiting case of this new family, so the new model is actually a generaliza­
tion of that of Bachelier. 

Since the L-stable probability laws are relatively unknown, I shall 
begin with a discussion of some of the more important mathematical prop­
erties of these laws. Following this, the results of empirical tests of the 
L-stable model will be examined. The remaining sections of the paper will 
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FIGURE E14-1. Two histograms illustrating departure from normality of the fifth 
and tenth difference of monthly wool prices, 1890-1937. In each case, the con­
tinuous bell-shaped curve represents the Gaussian "interpolate" from 
- 30" to 30" based upon the sample variance. Source: Tintner 1940. 
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then be devoted to a discussion of some of the more sophisticated math­
ematical and descriptive properties of the L-stable model. I shall, in par­
ticular, examine its bearing on the very possibility of implementing the 
stop-loss rules of speculation. 

II. MATHEMATICAL TOOLS: L-STABLE DISTRIBUTIONS 
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FIGURE EI4-2. Both graphs represent the sequential variation of the sample 
second moment of cotton price changes. The horizontal scale represents time 
in days, with two different origins To. On the upper graph, To was September 
21, 1900; on the lower graph, To was August 1, 1900. The vertical lines repre­
sent the value of the function 

t=T 

(T- TO)-lI[L(t, l)i, 
t=To 

where L(t, 1) = log~(t + 1) -log~(t) and Z(t) is the closing spot price of cotton 
on day t. I am grateful to the United States Department of Agriculture for 
making these data available. 
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II.A. ilL-stability" of the Gaussian distribution and generalization of the 
concept of L-stability 

One of the principal attractions of the modified Bachelier process is that 
the logarithmic relative 

is a Gaussian random variable for every value of T; the only thing that 
changes with T is the standard deviation of L(t, n. This feature is the con­
sequence of the following fact: 

Let G' and G" be two independent Gaussian random variables, of zero means 
and of mean squares equal to (J",2 and (J",,2, respectively. Then the sum G' + G" is 
also a Gaussian variable of mean square equal to (J",2 + (J",,2. In particular, the 
"reduced" Gaussian variable, with zero mean and unit square, is a solution to 

(S) s'U + s"U = sU, 

where s is a function of s' and s" given by the auxiliary relation 

It should be stressed that, from the viewpoint of the equation (5) and 
relation A2, the quantities s', s", and s are simply scale factors that 
"happen" to be closely related to the root-mean-square in the Gaussian 
case. 

The property (S) expresses a kind of L-stability or invariance under 
addition, which is so fundamental in probability theory that it came to be 
referred to simply as L-stability. The Gaussian is the only solution of 
equation (S) for which the second moment is finite - or for which the 
relation A2 is satisfied. When the variance is allowed to be infinite, 
however, (S) possesses many other solutions. This was shown construc­
tively by Cauchy, who considered the random variable U for which 

Pr {U > u} = Pr{U < - u} = 1/2 - (l/rr)tan -lU, 

so that its density is of the form 

d Pr{U < u} = 1 2 
rr(l + u ) 
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For this law, integral moments of all orders are infinite, and the auxiliary 
relation takes the form 

s = s' + s", 

where the scale factors s', s", and s are not defined by any moment. 

The general solution of equation (S) was discovered by Levy 1925. 
(The most accessible source on these problems is, however, Gnedenko & 
Kolmogorov 1954.) The logarithm of its characteristic function takes the 
form 

(L) loo a{ i$z } log exp(iuz)d Pr{U < u} = i8z - y I z I 1 + - tan o.2TT • 
-00 Izl 

It is clear that the Gaussian law and the law of Cauchy are stable and 
that they correspond to the cases (a = 2; $ arbitrary) and (a. = 1; $ = 0), 
respectively. 

Equation (L) determines a family of distribution and density functions 
Pr{U < u} and d Pr{U < u} that depend continuously upon four parameters. 
These four parameters also happen to play the roles the Pearson classifica­
tion associates with the first four moments of U. 

First of all, the a. is an index of "peakedness" that varies in ]0,2], that 
is, from 0 (excluded) to 2 (included). This a. will turn out to be intimately 
related to the scaling exponent. The $ is an index of "skewness" that can 
vary from - 1 to + 1, except that, if 0.= 1, $ must vanish. If $ = 0, the 
stable densities are symmetric. 

One can say that a. and $ together determine the "type" of a stable 
random variable. Such a variable can be called "reduced" if y = 1 and 
8 = O. It is easy to see that, if U is reduced, sU is a stable variable with the 
same a., $ and 8, and y equal to sa. This means that the third parameter, y, 
is a scale factor raised to the power of a.. Suppose now that U' and U" are 
two independent stable variables, reduced and having the same values for 
a and $. It is well-known that the characteristic function of s'U' + s"U" is 
the product of those of s'U' and of s"U". Therefore, the equation (5) is 
readily seen to be accompanied by the auxiliary relation 

(A) 
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More generally, suppose that U' and U" are stable, have the same values 
of a, /3 and of 8 = 0, but have different values of y (respectively, y' and y"), 
the sum U' + U" is stable and has the parameters a, /3, y = y' + y" and 8 = o. 
Now recall the familiar property of the Gaussian distribution, that when 
two Gaussian variables are added, one must add their" variances." The 
variance is a mean-square and is the square of a scale factor. The role of a 
scale factor is now played by y, and that of a variance by a scale factor 
raised to the power a. 

The final parameter is 8; strictly speaking, equation (5) requires that 
8 = 0, but we have added the term i8z to (PL) in order to introduce a 
location parameter. If 1 < a ::5 2, so that E(U) is finite, one has 8 = E(U). If 
/3 = 0, so that the stable variable has a symmetric density function, 8 is the 
median or modal value of U. But when 0 < a < 1, with /3 *" 0, 8 has no 
obvious interpretation. 

II.B. Addition of more than two stable random variables 

Let the independent variables Un satisfy the condition (PL) with values of 
a, /3, y, and 8 equal for all n. The logarithm of the characteristic function 
of 

is N times the logarithm of the characteristic function of Un' and equals 

a 
i 8Nz - Ny I z I [1 + i/3(z/ I z I )tan(a1T /2)]. 

Thus SN is stable with the same a and /3 as Un' and with parameters 8 and 
y multiplied by N. It readily follows that 

N 

U - 8 and ~1/a"'U -8 
n ~ n 

n=1 

have identical characteristic functions and thus are identically distributed 
random variables. (This is, or course, a most familiar fact in the Gaussian 
case, a = 2.) 

The generalization of the classical "TI !2 law." In the Gaussian model of 
Bachelier, in which daily increments of Z(t) are Gaussian with the 
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standard deviation (J'(l), the standard deviation of Il.Z(t), where Il. is taken 
over T days, is equal to (J'(T) = T1/ 2(J'(l). 

The corresponding prediction of my model is as follows: Consider 
any scale factor such as the intersextile range, that is, the difference 
between the quantity zr which is exceeded by one-sixth of the data, and 
the quantity U- which is larger than one-sixth of the data. It is easily 
found that the expected range satisfies 

We should also expect that the deviations from these expectations exceed 
those observed in the Gaussian case. 

Differences between successive means if Z(t). In all cases, the average of 
Z(t), taken over the time span to + 1 to to + N, can be written as: 

(1/ N)[Z(tO + 1) + Z(tO + 2) + .. .2(tO + N) J 

= (l/N){N Z(tO + 1) + (N -1)[Z(t° + 2) - Z(t° + 1)J + ... 

+ (N - n)[Z(tO + n + 1) - Z(tO + n)] + ... [Z(tO + N) - Z(tO + N - 1)]}. 

To the contrary, let the average over the time span to - N + 1 to to be 
written as 

(l/N){N Z(t°) + (N -1)[Z(to) - Z(tO -1)J ... 

+ (N - n)[Z(tO - n + 1) - Z(tO - n)] ... 

+ [Z(tO - N + 2) - Z(tO - N + 1)]}. 

Thus, if the expression Z(t + 1) - Z(t) is a stable variable U(t) with 8 = 0, 
the difference between successive means of values of Z is given by 

U(tO) + [(N -l)/N][U(t° + 1) + U(tO -1)J 

+ ... [(N - n)/N][U(t° + n) + U(tO - n)] 

+ ... [U(tO + N -1) ... U(t° - N + 1)]. 

This is clearly a stable variable, with the same a and f3 as the original U, 
and with a scale parameter equal to 
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As N - 00, one has 

yO(N) 2N ---y(U) (a + 1) , 

whereas a genuine monthly change of Z(t) has a parameter y(N) = Ny(U). 
Thus, the effect of averaging is to multiply y by the expression 2/(a + 1), 
which is smaller than 1 if a > 1. 

III.C. L-stable distributions and scaling 

Except for the Gaussian limit case, the densities of the stable random vari­
ables follow a generalization of the asymptotic behavior of the Cauchy 
law. It is clear, for example, that as u -+ 00, the Cauchy density behaves as 
follows: 

u Pr{U > u} = u Pr{U < - u} - I/TT. 

More generally, Levy has shown that the tails of all nonGaussian stable 
laws follow an asymptotic form of scaling. There exist two constants, 
C' = u,a and C" = u"a, linked by P = (C' - C")/(C' + C"), such that, 

Hence, both tails are scaling if I P I "# I, a solid reason for replacing the 
term "stable nonGaussian" by the less negative one of "L-stable." The two 
numbers cr and cr' share the role of the standard deviation of a Gaussian 
variable. They will be denoted as the "standard positive deviation" and 
the "standard negative deviation," respectively. 

Now consider the two extreme cases: when P = 1, hence C" = 0, and 
when P = -I, hence C' = 0). In those cases, one of the tails (negative and 
positive, respectively) decreases faster than the scaling distribution of 
index a. In fact, one can prove (Skorohod 1954-1961) that the short tail 
withers away even faster that the Gaussian density so that the extreme 
cases of stable laws are, for all practical purposes, J-shaped. They play an 
important role in my theory of the distributions of personal income and of 
city sizes. A number of further properties of L-stable laws may therefore 
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be found in my publications devoted to these topics. See M 1960HEI0}, 
1963p{Ell} and 1962g{E12}. 

11.0. The L-stable variables as the only possible limits of weighted sums 
of independent, identically distributed addends 

The L-stability of the Gaussian law can be considered to be only a matter 
of convenience, and it often thought that the following property is more 
important. 

Let the Un be indeper-dent, identically distributed random variables, with a 
finite cr = E[ Un - E(U)] . Then the classical central limit theorem asserts that 

N 

lim ~1/20"-1~[Un - E(U)] 
N-oo L 

n=l 

is a reduced Gaussian variable. 
This result is, of course, the basis of the explanation of the presumed 

occurrence of the Gaussian law in many practical applications relative to 
sums of a variety of random effects. But the essential thing in all these 
aggregative arguments is not that L[Un - E(U)] is weighted by any 
special factor, such as lr 112, but rather that the following is true: 

There exist two functions, A(N) and B(N), such that, as N -+ 00, the 
weighted sum 

N 
(L) A(N) L Un - B(N), 

n=l 

has a limit that is finite and is not reduced to a nonrandom constant. 
If the variance of Un is not finite, however, condition (L) may remain 

satisfied while the limit ceases to be Gaussian. For example, if Un is stable 
nonGaussian, the linearly weighted sum 

was seen to be identical in law to Un' so that the "limit" of that expression 
is already attained for N = 1 and a stable nonGaussian law. Let us now 
suppose that Un is asymptotically scaling with 0 <a < 2, but not stable. 
Then the limit exists, and it follows the L-stable law having the same 
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value of a. As in the L-stability argument, the function A(N) can be chosen 
equal to ~ l/a. These results are crucial but I had better not attempt to 
rederive them here. The full mathematical argument is available in the lit­
erature. I have constructed various heuristic arguments to buttress it. But 
experience shows that an argument intended to be illuminating often 
comes across as basing far-reaching conclusions on loose thoughts. Let me 
therefore just quote the facts: 

The Doeblin-Gnedenko conditions. The problem of the existence of a limit 
for A(N)'LUn - B(N) can be solved by introducing the following generaliza­
tion of asymptotic scaling (Gnedenko & Kolmogorov 1954). Introduce the 
notations 

Pr{U> u} = Q'(u)u- a; Pr{U < - u} = Q"(u)u- a. 

The term Doeblin-Gnedenko condition will denote the following state­
ments: (a) when u --+ 00, Q'(u)/Q"(u) tends to a limit C' /C"; (b) there 
exists a value of a > 0 such that for every k> 0, and for u --+ 00, one has 

Q'(u) + Q"(u) 
---::-'-c:------::---:-----:- --+ 1 Q'(ku) + Q"(ku) . 

These conditions generalize the scaling distribution, for which Q/(u) 

and Q"(u) themselves tend to limits as u --+ 00. With their help, and unless 
a = 1, the problem of the existence of weighting factors A(N) and B(N) is 
solved by the following theorem: 

If the Un are independent, identically distributed random variables, there may 
exist no functions A(N) and B(N) such that A(N)'LUn - B(N) tends to a proper 
limit. But, if such functions A(N) and B(N) exist, one knows that the limit is 
one of the solutions of the L-stability equation (5). More precisely, the limit is 
Gaussian if, and only if, the Un has finite variance; the limit is nonGaussian if, 
and only if, the Doeblin-Gnedenko conditions are satisfied for some 0 < a < 2. 
Then, f3 = (C' - C")/(C' + C") and A(N) is determined by the requirement that 

(For all values of a, the Doeblin-Gnedenko condition (b) also plays a 
central role in the study of the distribution of the random variable 
max Un') 



E14 <> <> THE VARIATION OF CERTAIN SPECULATIVE PRICES 383 

As an application of the above definition and theorem, let us examine 
the product of two independent, identically distributed scaling (but not 
stable) variables U' and U". First of all, for u > 0, one can write 

Pr{U'U" > u} = Pr{U' > 0; U" > 0; and log U' + log U" > log u} 

+ Pr{U' < 0; U" < 0; and log I u' I + log I u" I > log u}. 

But it follows from the scaling distribution that 

Pr{U> eZ } - C' exp( - az) and Pr{U < - eZ } - C" exp( - az), 

where U is either U' or U". Hence, the two terms P' and P" that add up to 
Pr{U'U" > u} satisfy 

p,C'2az exp( - az) and p"C,,2az exp( - az). 

Therefore, 

Similarly, 

Pr{U'U" < - u} - a2C'C"( lo&u)u- a. 

It is obvious that the Doeblin-Gnedenko conditions are satisfied for the 
functions Q'(u) - (C2 + C,,2)a logeu and Q"(u) - 2C'C"a logeu. Hence the 
weighted expression 

N 

(N log N)-l/a I u' nU" n 

n=l 

converges toward a L-stable limit with the exponent a and the skewness 

f3 = C'2 + C,,2 - 2C'C" 
c 2 + C,,2 + 2C'C" 

[ C' - C" ]2 
C' + C" ~ o. 

In particular, the positive tail should always be bigger than the negative 
tail. 
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II.E. Shape of the L-stable distributions outside the asymptotic range 

There are closed expressions for three cases of L-stable densities: Gauss 
(a = 2, f3 = 0), Cauchy (a = 1, f3 - 0), and third, (a = 1/2; f3 = 1). In every 
other case, we only know the following: (a) the densities are always 
unimodal; (b) the densities depend continuously upon the parameters; (c) 
if f3 > 0, the positive tail is the fatter - hence, if the mean is finite (i.e., if 
1 < a < 2), it is greater than the median. 

To go further, I had to resort to numerical calculations. Let us, 
however, begin by interpolative arguments. 

The sym1{'etric cases, f3 = O. For a = 1, one has the Cauchy density 
[rr(1 + u2)]- • It is always smaller than the scaling density l/rru2 toward 
which it converges as u --+ 00. Therefore, Pr{U> u} < l/rr u, and it follows 
that for a = 1, the doubly logarithmic graph of 10gJPr{U> u}] is entirely 
on the left side of its straight asymptote. By continuity, the same shape 
must appear when a is only a little higher or a little lower than 1. 

For a = 2, the doubly logarithmic graph of the Gaussian 10gePr{(U > u)} 
drops very quickly to negligible values. Hence, again by continuity, the 
graph must also begin with decreasing rapidly when a is just below 2. 
But, since its ultimate slope is close to 2, it must have a point of inflection 
corresponding to a maximum slope greater than 2, and it must begin by 
"overshooting" its straight asymptote. 

Interpolating between 1 and 2, we see that there exists a smallest value 
of a, call it a, for which the doubly logarithmic graph begins by over­
shooting its asymptote. In the neighborhood of a, the asymptotic a can be 
measured as a slope even if the sample is small. If a < a, the asymptotic 
slope will be underestimated by the slope of small samples; for a > a it 
will be overestimated. The numerical evaluation of the densities yields a 
value of a in the neighborhood of 1.5. A graphical presentation of the 
results of this section is given in Figure 3. 

The skew cases. If the positive tail is fatter than the negative one, it 
may well happen that the doubly logarithmic graph of the positive tail 
begins by overshooting its asymptote, while the doubly logarithmic graph 
of the negative tail does not. Hence, there are two critical values of aD, 
one for each tail. If the skewness is slight, if a lies between the critical 
values, and if the sample size is not large enough, then the graphs of the 
two tails will have slightly different overall apparent slopes. 
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II.F. Joint distribution of independent L-stable variables 

Let Pl(Ul ) and P2(u2) be the densities of Ul and of U2• If both ul and ~ are 
large, the joint probability density is given by 

The lines of equal probability belong to hyperbolas ul u2 = constant. They 
link together as in Figure 4, into fattened signs +. Near their maxima, 
10gePl(Ul) and logeP2(u2) are approximated by a.l - (u/b/ and a.2 - (u2/b/. 
Hence, the probability isolines are of the form 

FIGURE EI4-3. The various lines are doubly logarithmic plots of the symmetric 
L-stable probability distributions with 6 = 0, y = 1, {3 = 0 and a as marked. 
Horizontally: logeu; vertically: loglr{U> u} = loglr{U < - u}. Sources: 
unpublished tables based upon numerical computations performed at the 
author's request by the IBM T. J. Watson Research Center. 
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The transition between the ellipses and the "plus signs" is, of course, 
continuous. 

II.G. Distribution of U1 when U1 and U2 are independent L-stable 
variables and U1 + U2 = U is known 

This conditional distribution can be obtained as the intersection between 
the surface that represents the joint density po(ul' u2) and the plane 
ul + ~ = u. Thus, the conditional distribution is unimodal for small u. For 
large u, it has two sharply distinct maxima located near ul = 0 and near 
u2 =O. 

More precisely, the conditional density of U1 is given by 
PI(UI )P2(U - uI )/ q(u), where q(u) is the density of U = UI + U2. Let u be posi­
tive and very large; if ul is small, one can use the scaling approximations 
for P2(U2) and q(u), obtaining 

PI(UI)P2(U - UI) 

q(u) 

If u2 is small, one similarly obtains 

PI (UI)P2(U - UI) 

q(u) 

In other words, the conditional density PI(uI )P2(U - ul)/q(u) looks as if two 
unconditioned distributions, scaled down in the ratios C'/(C'I + C'2) and 
C' 2/ (C' I + C' 2)' had been placed near U1 = 0 and ul = U. If u is negative, but 
very large in absolute value, a similar result holds with C" 1 and C" 2 

replacing C'l and C' 2' 

For example, for a = 2 - £ and C'l = C' 2' the conditional distribution is 
made up of two almost Gaussian bells, scaled down to one-half of their 
height. But, as a tends toward 2, these two bells become smaller and a 
third bell appears near U1 = u/2. Ultimately, the two side bells vanish, 
leaving a single central bell. This limit corresponds to the fact that when 
the sum U1 + U2 is known, the conditional distribution of a Gaussian U1 is 
itself Gaussian. 
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III. EMPIRICAL TESTS OF THE L-STABLE LAWS: COTTON PRICES 

This section has two different aims. From the viewpoint of statistical eco­
nomics, its purpose is to motivate and develop a model of the variation of 
speculative prices based on the L-stable laws discussed in the previous 
section. From the viewpoint of statistics considered as the theory of data 
analysis, it shows how I use the theorems concerning the sums 'L.Un to 
build a new test of the scaling distribution. Before moving on to the main 
points of the section, however, let us examine two alternative ways of han­
dling the large price changes which occur in the data with frequencies not 
accounted for by the normal distribution. 

FIGURE EI4-4. Joint distribution of successive price relatives L(t, 1) and L(t + 1, 1). 

If L(t, 1) and L(t + 1, 1) are independent, their values should be plotted 
along the horizontal and vertical coordinates axes. 

If L(t, 1) and L(t + 1, 1) are linked by the model in Section VII, their values 
should be plotted along the bisectors, or else the figure should be rotated by 
45°, before L(t, 1) and L(t + 1, 1) are plotted along the coordinate axes. 
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III.A. Explanation of large price changes as due to causal or random 
" contaminators" 

One very common approach is to note that, a posteriori, large price 
changes are usually traceable to well-determined "causes," and should be 
eliminated before one attempts a stochastic model of the remainder. Such 
preliminary censorship obviously brings any distribution closer to the 
Gaussian. This is, for example, what happens when the study is limited to 
"quiet periods" of price change. Typically, however, no discontinuity is 
observed between the "outliers" and the rest of the distribution. In such 
cases, the notion of outlier is indeterminate and arbitrary. above censor­
ship is therefore usually indeterminate. 

Another popular and classical procedure assumes that observations 
are generated by a mixture of two normal distributions, one of which has 
a small weight but a large variance and is considered as a random 
"contaminator." In order to explain the sample behavior of the moments, 
it unfortunately becomes necessary to introduce a larger number of 
contaminators, and the simplicity of the model is destroyed. 

III.B. Introduction of the scaling distribution to represent price changes 

I propose to explain the erratic behavior of sample moments by assuming 
that the corresponding population moments are infinite. This is an 
approach that I used successfully in a number of other applications and 
which I explained and demonstrated in detail elsewhere. 

In practice, the hypothesis that moment are infinite beyond some 
threshold value is hard to distinguish from the scaling distribution. 
Assume that the increment, for example, 

L(t, 1) = 10&Z(t + 1) -lo&Z(t) 

is a random variable with infinite population moments beyond the first. 
This implies that fp(u) u2du diverges but fp(u) udu converges (the integrals 
being taken all the way to infinity). It is of course natural, at least in the 
first stage of heuristic motivating argument, to assume that p(u) is 
somehow "well-behaved" for large u. If so, our two requirements mean 
that, as u -+ 00, p(u)u3 tends to infinity and p(u)u2 tends to zero. 

In other words: p(u) must somehow decrease faster than u- 2 and 
slower than u- 3• The Simplest analytical expressions of this type are 
asymptotically scaling. This observation provided the first motivation of the 
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present study. It is surprising that I could find no record of earlier applica­
tion of the scaling distribution to two-tailed phenomena. 

My further motivation was more theoretical. Granted that the facts 
impose a revision of Bachelier's process, it would be simple indeed if one 
could at least preserve the following convenient feature of the Gaussian 
model. Let the increments, 

L(t, T) = 10geZ(t + T) -lo&Z(t), 

over days, weeks, months, and years. In the Gaussian case, they would 
have different scale parameters, but the same distribution. This distrib­
ution would also rule the fixed-base relatives. This naturally leads directly 
to the probabilists' concept of L-stability examined in Section II. 

In other words, the facts concerning moments, together with a desire 
for a simple representation, led me to examine the logarithmic price rela­
tives (for unsmoothed and unprocessed time series relative to very active 
speculative markets), and check whether or not they are L-stable. Cotton 
provided a good example, and the present paper will be limited to the 
examination of that case. 

Additional studies. My theory also applies to many other commodities 
(such as wheat and other edible grains), to many securities (such as those 
of the railroads in their nineteenth-century heyday), and to interest rates 
such as those of call or time money. These examples were mentioned in 
my IBM Research Note NC-B7 (dated March 26, 1962). Later papers {P.S. 
1996: see M 1967j{E15}} shall discuss these examples, describe some prop­
erties of cotton prices that my model fails to predict correctly and deal 
with cases when few "outliers" are observed. It is natural in these cases to 
favor Bachelier's Gaussian model - a limiting case in my theory as well as 
its prototype. 

III.C. Graphical method applied to cotton price changes 

Let us first describe Figure 5. The horizontal scale u of lines la, 1b, and Ie 
is marked only on lower edge, and the horizontal scale u of lines 2a, 2b, 
and 2c is marked along the upper edge. 

(A) 

The vertical scale gives the following relative frequencies: 

{ 
(la) 
(2a) 

Fr { 10&Z(t + one day) -logeZ(t) > u}, 
Fr { 10geZ(t + one day) -logeZ(t) < - u}, 



390 THE JOURNAL OF BUSINESS: 36,1%3,394-419 <> <> E14 

both for the daily closing prices of cotton in New York, 1900-1905. 
(Source: the United Stated Department of Agriculture.) 

(B) { 
(lb) 
(2b) 

Fr {lo&Z(t + one day) -lo&Z(t) > u}, 
Fr { logeZ(t + one day) -lo&Z(t) < - u}, 

both for an index of daily closing prices of cotton in the United States, 
1944-58. (Source: private communication from Hendrick S. Houthakker.) 

(C) { 
(le) 

(2c) 
Fr {lo&Z(t + one month) -lo&Z(t) > u}, 
Fr {logeZ(t + one month) -lo&Z(t) < - u}, 

both for the closing prices of cotton on the 15th of each month in New 
York, 1880-1940. (Source: private communication from the United States 
Department of Agriculture.) 

The theoretical log Pr{U > u}, relative to 8 = 0, n = 1.7, and P = 0, is 
plotted as a solid curve on the same graph for comparison. 

If it were true that the various cotton prices are L-stable with 8 = 0, 
n = 1.7 and P = 0, the various graphs should be horizontal translates of 
each other. To ascertain that, on cursory examination, the data are in close 
conformity with the predictions of my model, the reader is advised to 
proceed as follows: copy on a transparency the horizontal axis and the 
theoretical distribution and to move both horizontally until the theoretical 
curve is superimposed on one or another of the empirical graphs. The 
only discrepancy is observed for line 2b; it is slight and would imply an 
even greater departure from normality. 

A closer examination reveals that the positive tails contain systemat­
ically fewer data than the negative tails, suggesting that P actually takes a 
small negative value. This is confirmed by the fact that the negative tails, 
but not the positive, begin by slightly "overshooting" their asymptote, cre­
ating the expected bulge. 

III.D. Application of the graphical method to the study of changes in the 
distribution across time 

Let us now look more closely at the labels of the various series examined 
in the previous section. Two of the graphs refer to daily changes of cotton 
prices, near 1900 and 1950, respectively. It is clear that these graphs do 
not coincide, but are horizontal translates of each other. This implies that 
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between 1900 and 1950, the generating process has changed only to the 
extent that its scale y has become much smaller. 

Our next test will concern monthly price changes over a longer time 
span. It would be best to examine the actual changes between, say, the 
middle of one month and the middle of the next. A longer sample is 
available, however, when one takes the reported monthly averages of the 
price of cotton; the graphs of Figure 6 were obtained in this way. 

If cotton prices were indeed generated by a stationary stochastic 
process, our graphs should be straight, parallel, and uniformly spaced. 
However, each of the IS-year subsamples contains only 200-odd months, 
so that the separate graphs cannot be expected to be as straight as those 
relative to our usual samples of 1,000-odd items. The graphs of Figure 6 
are, indeed, not quite as neat as those relating to longer periods; but, in 
the absence of accurate statistical tests, they seem adequately straight and 
uniformly spaced, except for the period of 1880-96. 

1,0 
u=-O,OI u=-O,I u=-I,O 

Ib 10 Ie , , • • •• • • • • • 
OJ • • • • • 

• 
• • • • • • • • • • 

0,01 • • 
• • 

• • • • • • • • • • • • 
u=OPI u..o,l u-I,O 

FIGURE E14-S. Composite of doubly logarithmic graphs of positive and negative 
tails for three kinds of cotton price relatives, together with a plot of the cumu­
lated density function of a stable distribution. 
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I conjecture therefore, that, since 1816, the process generating cotton 
prices has changed only in its scale, with the possible exception of the 
periods of the Civil War and of controlled or supported prices. Long 
series of monthly price changes should therefore be represented by mix­
tures of L-stable laws; such mixtures remain scaling. See M 1963e{E3}. 

III.E. Application of the graphical method to study effects of averaging 

It is, of course, possible to derive mathematically the expected distribution 
of the changes between successive monthly means of the highest and 
lowest quotation; but the result is so cumbersome as to be useless. I have, 
however, ascertained that the empirical distribution of these changes does 
not differ significantly from the distribution of the changes between the 
monthly means, obtained by averaging all the daily closing quotations 
over a month. One may, therefore, speak of a single average price for 
each month . 
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FIGURE El4-6. A rough test of stationarity for the process of change of cotton 
prices between 1816 and 1940. The horizontal axis displays negative changes 
between successive monthly averages. (Source: Statistical Bulletin No. 99 of the 
Agricultural Economics Bureau, United States Department of Agriculture.) To 
avoid interference between the various graphs, the horizontal scale of the kth 
graph from the left was multiplied by zk-I.) The vertical axis displays relative 
frequencies Fr (U < - u) corresponding respectively to the following periods 
(from left to right): 1816-60, 1816-32, 1832-47, 1847-61, 1880-96, 1896-1916, 
1916-31, 1880-1940. 
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Moving on to Figure 7, we compare the distribution of the averages 
with that of actual monthly values. We see that, overall, they only differ 
by a horizontal translation to the left, as predicted in Section ne. Actually, 
in order to apply the argument of that section, it would be necessary to 
rephrase it by replacing Z(t) by 10geZ(t) throughout. However, the 
geometric and arithmetic averages of daily Z(t) do not differ much in the 
case of medium-sized overall monthly changes of Z(t). 

But the largest changes between successive averages are smaller than 
predicted. This seems to suggest that the dependence between successive 
daily changes has less effect upon actual monthly changes than upon the 
regularity with which these changes are performed. {P.S. 1996: see 
Appendix I of this chapter.} 

III.F. A new presentation of the evidence 

I will now show that the evidence concerning daily changes of cotton 
price strengthens the evidence concerning monthly changes, and con­
versely. 

The basic assumption of my argument is that successive daily changes 
of log (price) are independent. (This argument will thus have to be 
revised when the assumption is improved upon.) Moreover, the popu­
lation second moment of L(t) seems to be infinite, and the monthly or 
yearly price changes are patently nonGaussian. Hence, the problem of 
whether any limit theorem whatsoever applies to 10geZ(t + n -logeZ(t) can 
also be answered in theory by examining whether the daily changes satisfy 
the Pareto-Doeblin-Gnedenko conditions. In practice, however, it is impos­
sible to attain an infinitely large differencing interval T, or to ever verify 
any condition relative to an infinitely large value of the random variable u. 
Therefore, one must consider that a month or a year is infinitely long, and 
that the largest observed daily changes of 10geZ(t) are infinitely large. 
Under these circumstances, one can make the following inferences. 

Inference from aggregation. The cotton price data concerning daily 
changes of 10geZ(t) appear to follow the weaker asymptotic? condition of 
Pareto-Doeblin-Gnedenko. Hence, from the property of L-stability, and 
according to Section lID, one should expect to find that, as T increases, 

tends towards a L-stable variable with zero mean. 
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Inference from disaggregation. Data seem to indicate that price changes 
over weeks and months follow the same law, except for a change of scale. 
This law must therefore be one of the possible nonGaussian limits, that is, 
it must be L-stable. As a result, the inverse part of the theorem of Section 
lID shows that the daily changes of log Z(t) must satisfy the Doeblin­
Gnedenko conditions. (The inverse D-G condition greatly embarrassed me 
in my work on the distribution of income. It is pleasant to see that it can 
be put to use in the theory of prices.) A few of the difficulties involved 
in making the above two inferences will now be discussed. 

Disaggregation. The D-G conditions are less demanding than asymptotic 
scaling because they require that limits exist for Q'(u)/Q"(u) and for 
[Q'(u) + Q"(u)]/[Q'(ku) + Q"(ku)], but not for Q'(u) and Q"(u) taken sepa­
rately. Suppose, however, that Q'(u) and Q"(u) still vary a great deal in 
the useful range of large daily variations of prices. In this case, 
A(N)'LUn - B(N) will not approach its own limit until extremely large 
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FIGURE El4-7. These graphs illustrate the effect of averaging. Dots reproduce the 
same data as the lines Ie and 2e of Figure 5. The X 's reproduce distribution 
of logeZo(t + 1) - logeZo(t), where ZO(t) is the average spot price of cotton in 
New York during the month t, as reported in the Statistical Bulletin No. 99 of 
the Agricultural Economics Bureau, United States Department of Agriculture. 
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values of N are reached. Therefore, if one believes that the limit is rapidly 
attained, the functions Q'(u) and Q"(u) of daily changes must vary very 
little in the tails of the usual samples. In other words, it is necessary, after 
all, that daily price changes be asymptotically scaling. 

Aggregation. Here, the difficulties are of a different order. From the 
mathematical viewpoint, the L-stable law should become increasingly 
accurate as T increases. Practically, however, there is no sense in even 
considering values of T as long as a century, because one cannot hope to 
get samples sufficiently long to have adequately inhabited tails. The year 
is an acceptable span for certain grains, but here the data present other 
problems. The long available yearly series do not consist of prices actually 
quoted on some market on a fixed day of each year, but are averages. 
These averages are based on small numbers of quotations, and are 
obtained by ill-known methods that are bound to have varied in 
time. From the viewpoint of economics, two much more fundamental 
difficulties arise for very large T. First of all, the model of independent 
daily L's eliminates from consideration every "trend," except perhaps the 
exponential growth or decay due to a nonvanishing 8. Many trends that 
are negligible on the daily basis would, however, be expected to be pre­
dominant on the monthly or yearly basis. For example, the effect of 
weather upon yearly changes of agricultural prices might be very different 
from the simple addition of speculative daily price movements. 

The second difficulty lies in the "linear" character of the aggregation 
of successive L's used in my model. Since I use natural logarithms, a 
smalllogeZ(t + 1) -logeZ(t) will be indistinguishable from the relative price 
change [Z(t + n - Z(t)]/Z(t). The addition of small L's is therefore related 
to the so-called "principle of random proportionate effect." It also means 
that the stochastic mechanism of prices readjusts itself immediately to any 
level that Z(t) may have attained. This assumption is quite usual, but very 
strong. In particular, I shall show that if one finds that 
log Z(t + one week) -log Z(t) is very large, it is very likely that it differs 
little from the change relative to the single day of most rapid price vari­
ation (see Section VE); naturally, this conclusion only holds for inde­
pendent L's. As a result, the greatest of N successive daily price changes 
will be so large that one may question both the use of 10geZ(t) and the 
independence of the L's. 

There are other reasons (see Section IVB) to expect to find that a 
simple addition of speculative daily price changes predicts values too high 
for the price changes over periods such as whole months. 



396 THE JOURNAL OF BUSINESS: 36, 1963, 394-419 <> <> E14 

Given all these potential difficulties, I was frankly astonished by the 
quality of the prediction of my model concerning the distribution of the 
changes of cotton prices between the fifteenth of one month and the fif­
teenth of the next. The negative tail has the expected bulge, and even the 
most extreme changes of price can be extrapolated from the rest of the 
curve. Even the artificial excision of the Great Depression and similar 
periods would not affect the results very greatly. 

It was therefore interesting to check whether the ratios between the 
scale coefficients, C(D/C(1) and C"(D/C"(l), were both equal to T, as 
predicted by my theory whenever the ratios of standard deviations 
a'(D I (J"(s) and (J'''(D I (J'''(s) follow the Tl/a generalization of the "Tl/2 

Law," which was referred to in Section lIB. If the ratios of the C parame­
ters are different from T, their values may serve as a measure of the 
degree of dependence between successive L(t, 1). 

The above ratios were absurdly large in my original comparison 
between the daily changes near 1950 of the cotton prices collected by H. 
Houthakker, and the monthly changes between 1880 and 1940 of the 
prices given by the USDA. This suggested that the price varied less 
around 1950, when it was supported, than it had in earlier periods. There­
fore, I also plotted the daily changes for the period near 1900, which was 
chosen haphazardly, but not actually at random. The new values of 
C(D/C(l) and C"(D/C"(l) became quite reasonable: they were equal to 
each other and to 18. In 1900, there were seven trading days per week, 
but they subsequently decreased to five. Besides, one cannot be too dog­
matic about estimating C(D/C(l). Therefore, the behavior of this ratio 
indicated that the "apparent" number of trading days per month was 
somewhat smaller than the actual number. 

{P.S. 1996. Actually, I had badly misread the data: cotton was not 
traded on Sundays in 1900, and correcting this error improved the fit of 
the M 1963 model; see Appendix IV to this Chapter.} 

IV. WHY ONE SHOULD EXPECT TO FIND NONSENSE MOMENTS 
AND NONSENSE PERIODICITIES IN ECONOMIC TIME SERIES 

IV.A. Behavior of second moments and failure of the least-squares 
method of forecasting 

It is amusing to note that the first known nonGaussian stable law, namely, 
the Cauchy distribution, was introduced in the course of a study of the 
method of least squares. A surprisingly lively argument followed the 
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reading of Cauchy 1853. In this argument, Bienayme 1853 stressed that a 
method based upon the minimization of the sum of squares of sample 
deviations cannot reasonably be used if the expected value of this sum is 
known to be infinite. The same argument applies fully to the problem of 
least-squares smoothing of economic time series, when the "noise" follows 
a L-stable law other than that of Cauchy. 

Similarly, consider the problem of least-squares forecasting, that is, of 
the minimization of the expected value of the square of the error of 
extrapolation. In the L-stable case, this expected value will be infinite for 
every forecast, so that the method is, at best, extremely questionable. 

One can perhaps apply a method of "least 1;-power" of the forecasting 
error, where 1; < a., but such an approach would not have the formal sim­
plicity of least squares manipulations. The most hopeful case is that of 
1; = 1, which corresponds to the minimization of the sum of absolute values 
of the errors of forecasting. 

IV.B. Behavior of the sample kurtosis and its failure as a measure of the 
"peakedness" or "long-tailedness" of a distribution 

Pearson proposed to measure the peakedness or long-tailedness of a dis­
tribution by the following quantity, call "kurtosis" 

fourth population moment 
kurtosis = - 3 + ------:--:---=---=---:---:--:----­

square of the second population moment 

In the L-stable case with 0 < a < 2, the numerator and the denominator 
both have an infinite expected value. One can, however, show that the 
sample kurtosis + 3 behaves proportionately to the following "typical" 
value 

(t (the most probable value of 2:>4) 

2 

{ ~ (the most probable value of I L 2) } 

(a constant)~1+4/a 
= = (a constant)N. 

{(a constant) N- 1 + 2/ a}2 

It follows that the kurtosis is expected to increase without bound as 
N -+ 00. For small N, things are less Simple, but presumably quite similar. 
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In this light, examine Cootner 1962. This paper developed the 
tempting hypothesis that prices vary at random as long as they do not 
wander outside a "penumbra", defined as an interval that well-informed 
speculators view as reasonable. But random fluctuations triggered by ill­
informed speculators will eventually let the price go too high or too low. 
When this happens, the operation of well-informed speculators will induce 
this price to come back within the "penumbra." If this view of the world 
were correct, one would conclude that the price changes over periods of, 
say, fourteen weeks would be smaller than expected if the contributing 
weekly changes were independent. 

This theory is very attractive a priori, but could not be generally true 
because, in the case of cotton, it is not supported by the facts. As for 
Cootner's own justification, it is based upon the observation that the price 
changes of certain securities over periods of fourteen weeks have a much 
smaller kurtosis than one-week changes. Unfortunately, his sample con­
tains 250-0dd weekly changes and only 18 fourteen-week periods. Hence, 
on the basis of general evidence concerning speculative prices, I would 
have expected, a priori, to find a smaller kurtosis for the longer time incre­
ment. Also, Cootner's evidence is not a proof of his theory; other methods 
must be used in order to attack the still very open problem of the possible 
dependence between successive price changes. 

IV.C. Method of spectral analysis of random time series 

These days, applied mathematicians are frequently presented with the task 
of describing the stochastic mechanism capable of generating a given time 
series u(t), known or presumed to be random. The first response to such a 
problem is usually to investigate what is obtained by applying a theory of 
the "second-order random process." That is, assuming that E(U) = 0, one 
forms the sample covariance 

r(T) = N 1 
-T 

1=1"'+N-T I u(t)u(t + T), 

1=1"'+1 

which is used, somewhat indirectly, to evaluate the population covariance 

R(T) = E[U(t)U(t + T)]. 
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Of course, R(T) is always assumed to be finite for all T. The Fourier trans­
form of R(T) is the "spectral density" of the process U(t), and rules the 
"harmonic decomposition" of U(t) into a sum of sine and cosine terms. 

Broadly speaking, this method has been very successful, though many 
small-sample problems remain unsolved. Its applications to economics 
have, however, been questionable even in the large-sample case. Within 
the context of my theory, there is, unfortunately, nothing surprising in this 
finding. Indeed, 

2 2 2 
2E[U(t)U(t + T)] = E[U(t) + U(t + T)] - E[U(t)] - E[U(t + T)] . 

For time series covered by my model, the three variances on the right 
hand side are all infinite, so that spectral analysis loses its theoretical moti­
vation. This is a fascinating problem, but I must postpone a more detailed 
examination of it. 

V. SAMPLE FUNCTIONS GENERATED BY L-STABLE PROCESSES; 
SMALL-SAMPLE ESTIMATION OF THE MEAN "DRIFT" 

The curves generated by L-stable processes present an even larger number 
of interesting formations than the curves generated by Bachelier's 
Brownian motion. If the price increase over a long period of time happens 
a posteriori to have been exceptionally large, one should expect, in a 
L-stable market, to find that most of this change occurred during only a 
few periods of especially high activity. That is, one will find in most cases 
that the majority of the contributing daily changes are distributed on a 
fairly symmetric curve, while a few especially high values fall way outside 
this curve. If the total increase is of the usual size, to the contrary, the 
daily changes will show no "outliers." 

In this section these results will be used to solve one small-sample sta­
tistical problem, that of the estimation of the mean drift 8, when the other 
parameters are known. We shall see that there is no "sufficient statistic" 
for this problem, and that the maximum likelihood equation does not nec­
essarily have a single root. This has severe consequences from the view­
point of the very definition of the concept of "trend." 
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V.A. Some properties of sample paths of Brownian motion 

The sample paths of Brownian motion very much "look like" the empirical 
curves of time variation of prices or of price indexes. This was noted by 
Bachelier and (independently of him and of each other) by several modern 
writers (see especially Working 1934, Kendall 1953, Osborne 1959 and 
Alexander 1964), At closer inspection, however, one sees very clearly the 
effect of the abnormal number of large positive and large negative changes 
of 10geZ(t). At still closer inspection, one finds that the differences concern 
some of the economically most interesting features of the generalized 
central-limit theorem of the calculus of probability. It is therefore neces­
sary to discuss this question in detail, beginning with a review of some 
classical properties of Gaussian random variables. 

Conditional distribution of a Gaussian addend L( + T, 1), knowing the sum 
L(t, n = L(t, 1) + .•. + L(t + T - 1, 1). Let the probability density of L(t, n 
be 

1 exp{ _ u - 8T2 } 
~21TcrT 2Tcr' 

It is then easy to see that, if one knows the value of u of L(t, n, the 
density of any of the quantities L(t + T, 1) is given by 

1 {(u' - uln2 } 

2rrcr(T - 1) IT exp - 2cr(T - 1) IT' 

This means that each of the contributing L(t + T, 1) equals ulT plus a 
Gaussian error term. For large T, that term has the same variance as the 
unconditioned L(t, 1) - one can in fact prove that the value of u has little 
influence upon the size of the largest of those "noise terms." One can 
therefore say that, whatever its value, u is roughly uniformly distributed 
over the T time intervals, each contributing negligibly to the whole. 

Sufficiency of u for the estimation of the mean drift 8 from the L(t + T, 1). 
In particular, 8 has vanished from the distribution of any L(t + T, 1) condi­
tioned by the value of u. In the vocabulary of mathematical statistics u is a 
"sufficient statistic" for the estimation of 8 from the values of all the 
L(t + T, 1). That is, whichever method of estimation a statistician may 
favor, his estimate of 8 must be a function of u alone. The knowledge of 
intermediate values of 10geZ(t + T) is of no help. Most methods recom-
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mend estimating 8 from ulT and extrapolating the future linearly from 
the two known points, 10geZ(t) and 10geZ(t + n. Since the causes of any 
price movement can be traced backwards only if the movement is of suffi­
cient size, all that one can explain in the Gaussian case is the mean drift 
interpreted as a trend. Bachelier's model, which assumes a zero mean for 
the price changes, can only represent the movement of prices once the 
broad causal parts or trends have been removed. 

V.B. One value from a process of independent L-stable increments 

Returning to the L-stable case, suppose that the values of y, of f3 (or of C' 
and C") and of a are known. The remaining parameter is the mean drift 
8; one must estimate 8 starting from the known L(t, n = loge 
Z(t + n -logeZ(t). 

The unbiased estimate of 8 is L(t, n IT, while the estimate matches the 
observed L(t, n to its a priori most probable value. The "bias" of the 
maximum likelihood is therefore given by an expression of the form 
yl/~f3), where the function f(f3) must be determined from the numerical 
table of the L-stable densities. Since f3 is mostly manifested in the relative 
sizes of the tails, its evaluation requires very large samples, and the 
quality of predictions will depend greatly upon the quality of one's know­
ledge of the past. 

It is, of course, not at all clear that anybody would wish the extrapo­
lation to be unbiased with respect to the mean of the change of the loga­
rithm of the price. Moreover, the bias of the maximum likelihood estimate 
comes principally from an underestimate of the size of changes that are so 
large as to be catastrophic. The forecaster may very well wish to treat 
such changes separately, and to take into account his private opinions 
about many things that are not included in the independent-increment 
model. 

V.c. Two values from a L-stable process 

Suppose now that T is even and that one knows L(t, T 12) and 
L(t + T 12, T 12), and thus also their sum L(t, n. Section IIG has shown that 
when the value u = L(t, n is given, the conditional distribution of L(t, T 12) 
depends very sharply upon u. This means that the total change u is not a 
sufficient statistic for the estimation of 8; in other words, the estimates of 
8 will be changed by the knowledge of L(t, T /2) and L(t + T 12, T /2). 

Consider, for example, the most likely value 8. If L(t, T /2) and 
L(t + T /2, T /2) are of the same order of magnitude, this estimate will 
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remain close to L(t, niT, as in the Gaussian case. But suppose that the 
actually observed values of L(t, T /2) and L(t + T /2, T /2) are very unequal, 
thus implying that at least one of these quantities is very different from 
their common mean and median. Such an event is most likely to occur 
when 8 is close to the observed value of either L(t + T 12, T 12)/(T /2) or 
L(t, T 12)1 (t/2). 

As a result, the maximum likelihood equation for 8 has two roots, one 
near 2L(t, T 12) IT and the other near 2L(t + T /2, T /2) IT. That is, the 
maximum-likelihood procedure says that one of the available items of 
information should be neglected, since any weighted mean of the two 
recommended extrapolations is worse than either. But nothing says which 
item should be neglected. 

It is clear that few economists will accept such advice. Some will 
stress that the most likely value of 8 is actually nothing but the most prob­
able value in the case of the uniform distribution of a priori probabilities 
of 8. But it seldom happens that a priori probabilities are uniformly dis­
tributed. It is also true, of course, that they are usually very poorly deter­
mined. In the present problem, however, the economist will not need to 
determine these a priori probabilities with any precision: it will be suffi­
cient to choose the most likely for him of the two maximum-likelihood esti­
mates. 

An alternative approach (to be presented later in this paper) will argue 
that successive increments of 10geZ(t) are not really independent, so that 
the estimation of 8 depends upon the order of the values of L(t, T /2) and 
L(t + T /2, T 12), as well as upon their sizes. This may help eliminate the 
indeterminacy of estimation. 

A third alternative consists in abandoning the hypothesis that 8 is the 
same for both changes L(t, T 12) and L(t + T 12, T 12). For example, if these 
changes are very unequal, one can fit the data better by assuming that the 
trend 8 is not linear but parabolic. In a first approximation, extrapolation 
would then consist in choosing among the two maximum-likelihood esti­
mates the one which is chronologically the latest. This is an example of a 
variety of configurations which would have been so unlikely in the 
Gaussian case that they would have been considered nonrandom, and 
would have been of help in extrapolation. In the L-stable case, however, 
their probability may be substantial. 
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V.D. Three values from the L-stable process 

The number of possibilities increases rapidly with the sample size. 
Assume now that T is a multiple of 3, and consider L(t, T 13), 
L(t + T 13, T 13), and L(t + 2T 13, T 13). If these three quantities are of compa­
rable size, the knowledge of log Z(t + T 13) and log Z(t + 2T 13) will again 
bring little change to the estimate based upon L(t, T). 

But suppose that one datum is very large and the others are of much 
smaller and comparable sizes. Then, the likelihood will have two local 
maximums, well separated, but of sufficiently equal sizes as to make it 
impossible to dismiss the smaller one. The absolute maximum yields the 
estimate 8 = (3/2T) (sum of the two small data); the smaller local 
maximum yields the estimate 8 = (3/T) (the large datum). 

Suppose, finally, that the three data are of very unequal sizes. Then 
the maximum likelihood equation has three roots. 

This indeterminacy of maximum likelihood can again be lifted by one 
of the three methods of Section Vc. For example, if only the middle 
datum is large, the methods of nonlinear extrapolation will suggest a 
logistic growth. If the data increase or decrease - when taken 
chronologically - a parabolic trend should be tried. Again, the probability 
of these configurations arising from chance under my model will be much 
greater than in the Gaussian case. 

V.E. A large number of values from a L-stable process 

Let us now jump to the case of a very large amount of data. In order to 
investigate the predictions of my L-stable model, we must first reexamine 
the meaning to be attached to the statement that, in order that a sum of 
random variables follow a central limit of probability, it is necessary that 
each of the addends be negligible relative to the sum. 

It is quite true, of course, that one can speak of limit laws only if the 
value of the sum is not dominated by any single addend known in advance. 
That is, to study the limit of A(N)LUn - B(N), one must assume that, for 
every n, Pr IA(N)Un - B(N)INI ~ E tends to zero with liN. 

As each addend decreases with liN, their number increases, however, 
and the condition of the preceding paragraph does not by itself insure that 
the largest of the IA(N)Un - B(N)/NI is negligible in comparison with the 
sum. As a matter of fact, the last condition is true only if the limit of the 
sum is Gaussian. In the scaling case, on the contrary, the ratios 
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max IA(N)Un - B(N)/NI 
and 

plex pssum of k largest IA(N)Un - B(N)/NI 

A(N) I Un - B(BN) A(N) I Un - B(N) 

tend to nonvanishing limits as N increases (Darling 1952 and Arov & 
Bobrov 1960). In particular, it can be proven that, when the sum 
A(N)'LUn - B(N) happens to be large, the above ratios will be close to one. 

Returning to a process with independent L-stable L(t), we may say the 
following: If, knowing a, /3, y, and 6, one observes that L(t, T = one 
month) is not large, the contribution of the day of largest price change is 
likely to be nonnegligible in relative value, but it will remain small in 
absolute value. For large but finite N, this will not differ too much from 
the Gaussian 'prediction that even the largest addend is negligible. 

Suppose, however, that L(t, T = one month) is very large. The scaling 
theory then predicts that the sum of few largest daily changes will be very 
close to the total L(t,7). If one plots the frequencies of various values of 
L(t,1), conditioned by a known and very large value for L(t,7), one 
should expect to find that the law of L(t + T, 1) contains a few widely 
"outlying" values. However, if the outlying values are taken out, the con­
ditioned distribution of L(t + T, 1) should depend little upon the value of 
the conditioned L(t, 7). I believe this last prediction to be well satisfied by 
prices. 

Implications concerning estimation. Suppose now that 6 is unknown and 
that one has a large sample of L(t + T, 1)'s. The estimation procedure then 
consists of plotting the empirical histogram and translating it horizontally 
until its fit to the theoretical density curve has been optimized. One 
knows in advance that the best value will be very little influenced by the 
largest outliers. Hence, "rejection of the outliers" is fully justified in the 
present case, at least in its basic idea. 

V.F. Conclusions concerning estimation 

The observations made in the preceding sections seem to confirm some 
economists' feeling that prediction is feasible only if the sample size is 
both very large and stationary, or if the sample size is small but the 
sample values are of comparable sizes. One can also make predictions 
from a sample size of one, but here the availability of a unique estimator 
is due only to ignorance. 
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V.G. Causality and randomness in L-stable processes 

We mentioned in Section VA that, in order to be "causally explainable," 
an economic change must be large enough to allow the economist to trace 
back the sequence of its causes. As a result, the only causal part of a 
Gaussian random function is the mean drift 8. The same is true of 
L-stable random functions when their changes happen to be roughly uni­
formly distributed. 

But it is not true in the cases where 10geZ(t) varies greatly between the 
times t and t + T, changing mostly during a few of the contributing days. 
Then, the largest changes are sufficiently clear-cut, and are sufficiently sep­
arated from "noise," to be explained causally, just as well as the mean 
drift. 

In other words, a careful observer of a L-stable random function will 
be able to extract causal parts from it. But if the total change of 10geZ(t) is 
neither very large nor very small, there will be a large degree of arbitrar­
iness in this distinction between causal and random. Hence, it would not 
be possible to determine whether the predicted proportions of the two 
kinds of effects are empirically correct. 

In sum, the distinction between the causal and the random areas is 
sharp in the Gaussian case and very diffuse in the L-stable case. This 
seems to me to be a strong recommendation in favor of the L-stable 
process as a model of speculative markets. Of course, I have not the 
slightest idea why the large price movements should be representable in 
this way by a simple extrapolation of movements of ordinary size. I have 
come to believe, however, that it is very desirable that both "trend" and 
"noise" be aspects of the same deeper "truth." At this point, we can ade­
quately describe it but cannot provide an explanation. I am certainly not 
antagonistic to the goal of achieving a decomposition of economic "noise" 
into parts similar to the trend, and to link various series to each other. 
But, until we come close to this goal, we should be pleased to be able to 
represent some trends as similar to "noise." 

V.H. Causality and randomness in aggregation "in parallel" 

Borrowing a term from elementary electrical circuit theory, the addition of 
successive daily changes of a price may be denoted by the term "aggre­
gation in series," the term "aggregation in parallel" applying to the opera­
tion 
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I I T-l 

L(t, D = IL(i, t, D, = II L(i, t + T, 1), 
i=l i=l T=O 

where i refers to "events" that occur simultaneously during a given time 
interval such as T or 1. 

In the Gaussian case, one should, of course, expect any occurrence of a 
large value for L(t, D to be traceable to a rare conjunction of large changes 
in all or most of the L(i, t, D. In the L-stable case, one should, on the con­
trary, expect large changes L(t, D to be traceable to one or a small number, 
of the contributing L(i, t, D. It seems obvious that the L-stable prediction is 
closer to the facts. 

If we add up the two types of aggregation in a L-stable world, we see 
that a large L(t, D is likely to be traceable to the fact that L(i, t + T, 1) 
happens to be very large for one or a few sets of values of i and of T. 

These contributions would stand out sharply and be causally explainable. 
But after a while, they should rejoin the "noise" made up of the other 
factors. The next rapid change of 10geZ(t) should be due to other "causes." 
If a contribution is "trend-making," in the above sense, during a large 
number of time-increments, one will naturally doubt that it falls under the 
same theory as the fluctuations. 

VI. PRICE VARIATIONS IN CONTINUOUS TIME AND THE THEORY 
OF SPECULATION 

The main point of this section is to examine certain systems of speculation, 
which appear advantageous, and to show that, in fact, they cannot be fol­
lowed in the case of price series generated by a L-stable process. 

VI.A. Infinite divisibility of L-stable variables 

In theory, it is possible to interpolate L(t, 1) indefinitely. That is, for every 
N, one can consider that a L-stable increment 

L(t, 1) = 10geZ(t + 1) -logeZ(t) 

is the sum of N independent, identically distributed random variables. 
The only difference between those variables and L(t, 1) is that the con­
stants y, C' and e" are N times smaller in the parts than in the whole. 
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In fact, it is possible to interpolate the process of independent L-stable 
increments to continuous time, assuming that L(t, dt) is a L-stable variable 
with a scale coefficient y(dt) = dt y(1). This interpolated process is a very 
important "zeroth" order approximation to the actual price changes. That 
is, its predictions are without doubt modified by the mechanisms of the 
market, but they are very illuminating nonetheless. 

VI.B. Path functions of a L-stable process in continuous time 

Mathematical models of physical or of social sciences almost universally 
assume that all functions can safely be considered to be continuous and to 
have as many derivatives as one may wish. Contrary to this expectation, 
the functions generated by Bachelier have no derivatives, even though 
they are indeed continuous. In full mathematical rigor, "there is a proba­
bility equal to 1 that they are continuous but nondifferentiable almost 
everywhere, but price quotations are always rounded to simple fractions 
of the unit of currency. If only for this reason, we need not worry about 
mathematical rigor here. 

In the scaling case things are quite different. If my process is interpo­
lated to continuous t, the paths which it generates become discontinuous 
in every interval of time, however small (in full rigor, they become 
"almost surely almost everywhere discontinuous"). That is, most of their 
variation occurs through noninfinitesimal "jumps." Moreover, the number 
of jumps larger than u and located within a time increment T is given by 
the law C'TI d(u- a) I. 

Let us examine a few aspects of this discontinuity. Again, very small 
jumps of 10geZ(t) could not be perceived, since price quotations are always 
expressed in simple fractions. More interesting is the fact that there is a 
nonnegligible probability of witnessing a price jump so large that supply 
and demand cease to be matched. In other words, the L-stable model can 
be considered as predicting the occurrence of phenomena likely to force 
the market to close. In a Gaussian model, such large changes are so 
extremely unlikely that the occasional closure of the markets must be 
explained by nonstochastic considerations. 

The most interesting fact is, however, the large probability predicted 
for medium-sized jumps by the L-stable model. Clearly, if those medium­
sized movements were oscillatory, they could be eliminated by market 
mechanisms such as the activities of the specialists. But if the movement 
is all in one direction, market specialists could at best transform a disconti­
nuity into a change that is rapid but progressive. On the other hand, very 
few transactions would then be expected at the intermediate smoothing 
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prices. As a result, even if the price Zo is quoted transiently, it may be 
impossible to act rapidly enough to satisfy more than a minute fraction of 
orders to "sell at Zo-" In other words, a large number of intermediate 
prices are quoted even if Z(t) performs a large jump in a short time; but 
they are likely to be so fleeting, and to apply to so few transactions, that 
they are irrelevant from the viewpoint of actually enforcing a "stop loss 
order" of any kind. In less extreme cases - as, for example, when bor­
rowings are over-subscribed - the market may have to resort to special 
rules of allocation. 

These remarks are the crux of my criticism of certain systematic 
trading methods: they would perhaps be very advantageous if only they 
could be followed systematically; but, in fact, they cannot be followed. I 
shall be content here with a discussion of one example of this kind of rea­
soning. 

VI.c. The fairness of Alexander's "filter" game 

Alexander 1964 has suggested the following rule of speculation: "If the 
market goes up 5%, go long and stay long until it moves down 5%, at 
which time sell and go short until it again goes up 5%." 

This procedure is motivated by the fact that, according to Alexander's 
interpretation, data would suggest that "in speculative markets, price 
changes appear to follow a random walk over time; but ... if the market 
has moved up x%, it is likely to move up more than x% further before it 
moves down x%." He calls this phenomenon the "persistence of moves." 
Since there is no possible persistence of moves in any "random walk" with 
zero mean, we see that if Alexander's interpretation of facts were con­
firmed, it would force us to seek immediately a model better than the 
random walk. 

In order to follow this rule, one must, of course, watch a price series 
continuously in time and buy and sell whenever its variation attains the 
prescribed value. In other words, this rule can be strictly followed if and 
only if the process Z(t) generates continuous path functions, as for 
example in the original Gaussian process of Bachelier. 

Alexander's procedure cannot be followed, however, in the case of my 
own first-approximation model of price change in which there is a proba­
bility equal to one that the first move not smaller than 5% is greater than 
5% and not equal to 5%. It is therefore mandatory to modify the filter 
method: one can at best recommend buying or selling when moves of 5% 
are first exceeded. One can prove that the L-stable theory predicts that this 
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is game also fair. Therefore, evidence - as interpreted by Alexander -
would again suggest that one must go beyond the simple model of inde­
pendent increments of price. 

But Alexander's inference was actually based upon the discontinuous 
series constituted by the closing prices on successive days. He assumed 
that the intermediate prices could be interpolated by some continuous 
function of continuous time - the actual form of which need not be speci­
fied. That is, whenever there was a difference of over 5% between the 
closing price on day F' and day F", Alexander implicitly assumed that 
there was at least one instance between these moments when the price had 
gone up exactly 5 per cent. He recommends buying at this instant, and he 
computes the empirical returns to the speculator as if he were able to 
follow this procedure. 

For price series generated by my process, however, the price actually 
paid for a stock will almost always be greater than that corresponding to a 
5% rise; hence the speculator will almost always have paid more than 
assumed in Alexander's evaluation of the returns. Similarly, the price 
received will almost always be less than suggested by Alexander. Hence, 
at best, Alexander overestimates the yield corresponding to his method of 
speculation and, at worst, the very impression that the yield is positive 
may be a delusion due to overoptimistic evaluation of what happens 
during the few most rapid price changes. 

One can, of course, imagine contracts guaranteeing that the broker will 
charge (or credit) his client the actual price quotation nearest by excess (or 
default) to a price agreed upon, irrespective of whether the broker was 
able to perform the transaction at the price agreed upon. Such a system 
would make Alexander's procedure advantageous to the speculator, but 
the money he would be making, on the average, would come from his 
broker and not from the market, and brokerage fees would have to be 
such as to make the game at best fair in the long run. 

VII. A MORE REFINED MODEL OF PRICE VARIATION, 
TAKING ACCOUNT OF SERIAL DEPENDENCE 

Broadly speaking, the predictions of my main model seem to me to be rea­
sonable. At closer inspection, however, one notes that large price changes 
are not isolated between periods of slow change; they rather tend to be the 
result of several fluctuations, some of which "overshoot" the final changes. 
Similarly, the movements of prices in periods of tranquility seem to be 
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smoother than predicted by my process. In other words, large changes 
tend to be followed by large changes - of either sign - and small changes 
tend to be followed by small changes, so that the isolines of low proba­
bility of [L(t, 1), L(t -1, I)J are X-shaped. In the case of daily cotton 
prices, Hendrik S. Houthakker stressed this fact in several conferences and 
in private conversation. 

Such an X-shape is easily obtained by a 90° rotation from the 0+ 

shape" which was observed when Ut, 1) and Ut - 1, 1) are statistically 
independent and symmetric (Figure 4). This rotation introduces the two 
expressions: 

S(t) = (1/2)[Ut, 1) + L(t -1, I)J = (1/2)[ logeZ(t + 1) -logeZ(t - I)J 

and 

D(t) = (1/2)[L(t, 1) - L(t -1, I)J 

= (1/2)[ logeZ(t + 1) - 2logeZ(t) + logeZ(t - 1)]. 

It follows that in order to obtain X-shaped empirical isolines, it would 
be sufficient to assume that the first and second finite differences of 
logeZ(t) are two L-stable random variables, independent of each other, and 
naturally of logeZ(t) (Figure 4). Such a process is invariant by time inver­
sion. 

It is interesting to note that the distribution of L(t,I), conditioned by 
the known L(t - 1, 1), is asymptotically scaling with an exponent equal to 
2a + 1. A derivation is given at the end of this section. For the cases, we 
are interested in, a> 1.5, hence 2a + 1 > 4. It follows that the conditioned 
L(t, 1) has a finite kurtosis; no L-stable law can be associated with it. 

Let us then consider a Markovian process with the transition proba­
bility I have just introduced. If the initial L(tJ, 1) is small, the first values 
of L(t, 1) will be weakly asymptotic scaling with a high exponent 2a + 1, so 
that logeZ(t) will begin by fluctuating much less rapidly than in the case of 
independent L(t, 1). Eventually, however, a large UtO, 1) will appear. 
Thereafter, L(t, 1) will fluctuate for some time between values of the orders 
of magnitude of L(tO, 1) and - UtO, 1). This will last long enough to com­
pensate fully for the deficiency of large values during the period of slow 
variation. In other words, the occasional sharp changes of L(t, 1) predicted 
by the model of independent L(t, 1) are replaced by oscillatory periods, 
and the periods without sharp change are shown less fluctuating then 
when the L(t, 1) are independent. 
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We see that, if a is to estimated correctly, periods of rapid changes of 
prices must be considered with the other periods. One cannot argue that 
they are "causally" explainable and ought to be eliminated before the 
"noise" is examined more closely. If one succeeded in eliminating all 
large changes in this way, one would indeed have a Gaussian-like 
remainder. But this remainder would be devoid of any significance. 

Derivation of the value 2a + 1 for the exponent. Consider 

Pr{L(t, 1) > u, when w < L(t - 1, 1) < w + dw}. 

This is the product by (1/ dw) of the integral of the probability density 
of [L(t - I, l)L(t, 1)], over a strip that differs infinitesimally from the zone 
defined by 

S(t) > (u + w)/2; w + S(t) < D(t) < w + S(t) + dw. 

Hence, if u is large as compared to w, the conditional probability in ques­
tion is equal to the integral 

foo C'as-<O+ 1JC'a(s + w)-<o+ lJds _ (2a + 1)-1(C')2a22-<2a+llu -<2a+1l. 

<u +wJI2 

&&&& POST-PUBLICATION APPENDICES &&&& 

These four appendices from different sources serve different purposes. 

APPENDIX I (1996): THE EFFECTS OF AVERAGING 

The M 1963 model of price variation asserts that price changes between 
equally spaced closing times are L-stable random variables. As shown 
momentarily, the model also predicts that changes between monthly 
average prices are L-stable. 

To the contrary, Figure 7 suggests that the tails are shorter than pre­
dicted and the text notes that this is a token of interdependence between 
successive price changes. 
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The incorrect prediction. If L(O) = 0 and L(t) has independent L-stable 
increments, consider the increment between the "future" average from 0 to 
t and the value at t. Integration by parts yields 

+ f: L(s)ds - L(t) = - ! f: sdL(s). 

The r.h.s. is a L-stable random variable for which (scale)a equals 

The "past increment" is independent of the "future increment," and 
follows the same distribution. So does the difference between the two 

APPENDIX II (MOSTLY A QUOTE FROM FAMA & BLUME 1966): 
THE EXEMPLARY FALL OF ALEXANDER'S FILTER METHOD 

Section VI C of M 1963b criticizes a rule of speculation suggested in 
Alexander 1961, but does not provide a revised analysis of Alexander's 
data. However, Alexander's filters did not survive this blow. The story 
was told by Fama and Blume 1966 in the following terms: 

"Alexander's filter technique is a mechanical trading rule which 
attempts to apply more sophisticated criteria to identify movements in 
stock prices. An x% filter is defined as follows: If the daily closing price 
of a particular security moves up at least x per cent, buy and hold the 
security until its price moves down at least x% from a subsequent high, at 
which time simultaneously sell and go short. The short position is main­
tained until daily closing prices rises at least x% above a subsequent low 
at which time one covers and buys. Moves less than XO/O in either direc­
tion are ignored. 

"Alexander formulated the filter technique to test the belief, widely 
held among market professionals, that prices adjust gradually to new 
information. 

"The professional analysts operate in the belief that there exist certain 
trend generating facts, knowable today, that will guide a speculator to 
profit if only he can read them correctly. These facts are assumed to gen­
erate trends rather than instantaneous jumps because most of those 
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trading in speculative markets have imperfect knowledge of these facts, 
and the future trend of price will result from a gradual spread of aware­
ness of these facts throughout the market [Alexander 1961, p.71. 

"For the filter technique, this means that for some values of x we 
would find that 'if the stock market has moved up x% it is likely to move 
up more than x per cent further before it moves down by x% ' [Alexander 
1961, p.261. 

"In his Table 7, Alexander 1961 reported tests of the filter technique 
for filters ranging in size from 5 to 50 per cent. The tests covered different 
time periods from 1897 to 1959 and involved closing "prices" for two 
indexes, the Dow-Jones Industrials from 1897 to 1929 and Standard and 
Poor's Industrials from 1929 to 1959. In general, filters of all different 
sizes and for all the different time periods yielded substantial profits -
indeed profits significantly greater than those of the simple buy-and-hold 
policy. This led Alexander to conclude that the independence assumption 
of the random-walk model was not upheld by his data. 

"M 1963b [Section VI.C1 pointed out, however, that Alexander's com­
putations incorporated biases which led to serious overstatement of the 
profitability of the filters. In each transaction Alexander assumed that this 
hypothetical trader could always buy at a prices exactly equal to the low 
plus x per cent and sell at the high minus x per cent. In fact, because of 
the frequency of large price jumps, the purchase price will often be some­
what higher than the low plus x per cent, while the sale price will often be 
below the high minus x per cent. The point is of central theoretical impor­
tance for the L-stable hypothesis. 

"In his later paper [Alexander 1964, Table 11 Alexander reworked his 
earlier results to take account of this source of bias. In the corrected tests 
the profitability of the filter technique was drastically reduced. 

"However, though his later work takes account of discontinuities in 
the price series, Alexander's results are still very difficult to interpret. The 
difficulties arise because it is impossible to adjust the commonly used 
price indexes for the effects of dividends. This will later be shown to 
introduce serious biases into filter results." 

Fama & Blume 1966 applied Alexander's technique to series of daily 
closing prices for each individual security of the Dow-Jones Industrial 
Average. They concluded that the filter method does not work. 

Thus, the filters are buried for good, but many "believers" never 
received this message. 
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APPENDIX III (1996): ESTIMATION BIAS AND OTHER REASONS 
FOR a>2 

Chapter EIO, reproducing M 1960HEI0}, is followed by Post-Publication 
Appendix IV, adapted from M 1963HEI0}. The body of the present 
chapter, M 1963b, was written near-simultaneously with that appendix, 
and very similar comments can be made here. That is, for a close to 2, the 
diagrams in Figure 3 are inverse S-shaped, therefore, easily mistaken for 
straight lines with a slope that is > a, and even> 2. 

A broader structure is presented in Chapters El and E6, within which 
a has no upper bound. Therefore, the remark in the preceding paragraph 
must not be misconstrued. Estimation bias is only one of several reasons 
why an empirical log log plot of price changes may have a slope that con­
tradicts the restriction [I, 2] that is characteristic of L-stability with 
EU < 00. 

APPENDIX IV (M 1972b): CORRECTION OF AN ERROR IN VCSP 

• Section foreward. The correction of an error in VCSP = M 1963b 
improved in the fit between the data and the M 1963 model, eliminating 
some pesky descrepancies that VCSP had pointed out as deserving a fresh 
look. • 

Infinite variance and of non-Gaussian L-stable distribution of price differ­
entials were introduced for the first time in M 1963b. The prime material 
on which both hypotheses were based came in part from H.S. Houthakker 
and in part from the United States Department of Agriculture; it con­
cerned daily spot prices of cotton. 

Since then, the usefulness of those hypotheses was confirmed by the 
study of many other records, both in my work and in that of others. But 
it has now come to my attention that part of my early evidence suffered 
from a serious error. In the data sheets received from the USDA, an 
important footnote had been trimmed off, and as a result they were 
misread. Numbers which I had interpreted as Sunday closing prices were 
actually weekly price averages. They were inserted in the blanks conven­
iently present in the data sheets. My admiring joke about hard-working 
American cotton dealers of 1900-1905 was backfiring; no one corrected me 
in public, but I shudder at some comments that must have been made in 
private about my credibility. The error affected part of Figure 5 of M 
1963b: the curves la and 2a relative to that period were incorrect. 
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After several sleepless nights, this error was corrected, and the anal­
ysis was revised. I am happy to report that my conclusion was upheld, in 
fact, much simplified, and the fit between the theory and the data 
improved considerably. M 1963b{E14} noted numerous peculiarities that 
had led me to consider my hypotheses as no more than rough first 
approximations. For example, the simplest random-walk model implied 
that a monthly price change is the sum of independent daily price 
changes. In fact, as I was careful to note, such was the case only if one 
assumed that a month included an "apparent number of trading days ... 
smaller than the actual number." The theory also implied that, whenever a 
monthly price change is large, it is usually about equal to the largest con­
tributing daily price change. In fact, instances when large monthly 
changes resulted from, say, three large daily changes (one up and two 
down, or conversely) were more numerous in the data than predicted. 
Both findings suggested that a strong negative dependence exists between 
successive price changes. Also, prices seemed to have been more volatile 
around 1900 than around 1950. After the data have been corrected, these 
peculiarities have disappeared. In particular, the corrected curves 1a and 
2a are nearly indistinguishable from the corresponding curves 1b and 2b 
relative to the Houthhakker data concerning the period 1950-58. 

APPENDIX V (M 1982c): A liCIT A nON CLASSIC" 

• Section foreward. In 1982, the Citation Index of the Institute of Scientific 
Information determined that M 1963b had become a Citation Classic. 
Current Contents/Social and Behavioral Sciences invited me to comment, 
"emphasizing the human side of the research - how the project was initi­
ated, any obstacles encountered, and why the work was highly cited." • 

• Abstract. Changes of commodity and security prices are fitted 
excellently by the L-stable probability distributions. Their parameter a is 
the intrinsic measure of price volatility. The model also accounts for the 
amplitudes of major events in economic history. An unprecedented 
feature is that price changes have an infinite population variance. • 

Early in 1961, coming to Harvard to give a seminar on my work on 
personal income distributions, I stepped into the office of my host, H. S. 
Houthakker. On his blackboard, I noticed a diagram that was nearly iden­
tical to one I was about to draw, but concerned a topic of which I knew 
nothing: the variability of the price of cotton. My host had given up his 
attempt to model this phenomenon and challenged me to take over. 
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In a few weeks, I had introduced a radically new approach. It pre­
served the random walk hypothesis that the market is like a lottery or a 
casino, with prices going up or down as if determined by the throw of 
dice. It also preserved the efficient marked hypothesis that the market's 
collective wisdom take account of all available information, hence, the 
price tomorrow and on any day thereafter will on the average equal today's 
price. The third basis of the usual model is that price changes follow the 
Gaussian distribution. All these hypotheses, due to Louis Bachelier 1900, 
were first taken seriously in 1960. The resulting theory, claiming that 
price (or its logarithm) follows a Brownian motion, would be mathemat­
ically convenient, but it fits the data badly. 

Most importantly, the records of throws of a die appear unchanged 
statistically. In comparison, the records of competitive price changes "look 
nonstationary"; they involve countless configurations that seem too striking 
to be attributable to mere chance. A related observation: the histograms of 
price changes are very far from the Galton ogive; they are long-tailed to 
an astonishing degree, due to large excursions whose size is obviously of 
the highest interest. 

My model replaces the customary Gaussian hypothesis with a more 
general one, while allowing the population variance of the price changes 
to be infinite. The model is time invariant, but it creates endless config­
urations, and accounts for all the data, including both the seemingly non­
stationary features, and the seemingly nonrandom large excursions. 

A visiting professorship of economics at Harvard, 1962-1963, was trig­
gered by IBM Research Note NC-87 (M 1962i), which tackled the prices of 
cotton and diverse commodities and securities. Also, M 1963b was imme­
diately reprinted in Cootner 1964, along with discussions by E. F. Fama, 
who was my student at the time, and by the editor. This publication must 
have affected my election to Fellowship in the Econometric Society. 
However, after a few further forays in economics, my interest was drawn 
irresistibly toward the very different task of creating a new fractal geom­
etry of nature. Having learned to live with the unprecedented infinite var­
iance syndrome had trained me to identify telltale signs of divergence in 
the most diverse contexts, and to account for them suitably. 

By its style, my work on prices remains unique in economics; while all 
the other models borrow from the final formulas of physics, I lean on its 
basic mental tool (invariance principles) and deduce totally new formulas 
appropriate to the fact that prices are not subjected to inertia, hence need 
not be continuous. My work is also unique in its power: the huge bodies 
of data that it fits involve constant jumps and swings, but I manage to fit 
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everything without postulating that the rules themselves shift and change. 
Thus, my models are acknowledged as having opened a path toward a 
new and more realistic economics. Nevertheless, the progress of this new 
economics is slow, due to inherent mathematical difficulties and to my 
failure to push its development. All too often (though with notable 
exceptions, e.g. in Samuelson 1967), a publication devoted to the totally 
discredited Gaussian model quotes my work largely to show the author's 
awareness of his own work's limitations, and possibly to assuage his con­
science. 

&&&&&&&&&&&& ANNOTATIONS &&&&&&&&&&&& 

Comment on a generalized L-stability. To avoid unnecessary compli­
cation, this chapter does not write down the general definition of 
L-stability, which adds a constant to the right-hand side of (S). The effect 
is to introduce additional L-stable laws with a = 1; they are of possible rel­
evance in the study of business concentration (Chapter E13). 

How this paper came to be written. This paper's publication story is 
unique in my record, since it led a serious economics journal to follow a 
practice that is reputed to characterize The Reader's Digest. The story 
begins with M 1962i, IBM Research Note NC-B7, dated March 26, 1962. I 
followed that text when teaching in the Harvard Department of Economics 
in 1962-63 and it was discussed at the 1962 Annual Meeting of the 
Econometric Society (see Chapter E17). 

Later in 1963, after I had moved from the Harvard Economics Depart­
ment to the Harvard Applied Physics program, Paul Cootner called from 
MIT. His book of reprints on The Random Character of Stock Market Prices 
was nearing completion, and he was sorry I was not a contributor. He 
was very familiar with my Report NC-B7 and also knew that I was plan­
ning to expand this report into a short book. He wanted me to contribute 
to his book a short text based on NC-B7, but did not want to include 
unpublished pieces, only actual reprints. Could my work be rushed into 
print somewhere, anywhere, so he could then reprint it? His publisher 
would accept page proofs. 

I called every economics journal editor in turn. Some asked me to 
spell my name, others inquired about my field of work, a few knew me, 
but bemoaned the length of their backlog and the slowness of their ref-
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erees. Finally, I struck gold with Merton Miller, an editor of the Journal of 
Business of the University of Chicago. He asked for a few hours to check a 
few things, then called back with a deal: NC87 was already well-known 
in Chicago, therefore no refereeing was needed; if I could manage to mail 
a rough version of the paper within a week, he would stop an issue about 
to go to press, and add my paper to it. The journal would even provide 
editorial assistance, and there would be no bill for "excess" corrections in 
proof. This deal could not be turned down, and the paper and its reprint 
became widely known on the research side of the financial community. 
At one time, a reprint combining M 1963b and Fama 1963 was given as 
premium to new subscribers of the Journal of Business. 

Belated acknowledgement. Only after the paper had appeared did Merton 
Miller tell me that the editor Miller selected was E. F. Fama, who was no 
longer my student but on the University of Chicago faculty. Had this 
information been available in advance, I would have acknowledged 
Fama's help in my paper. I thanked him verbally, but this was not 
enough. To thank him in writing, late is better than never. 



The Journal of Business 40, 1967, 393-413 E15 

The variation of the prices of cotton, wheat, and 
railroad stocks, and of some financial rates 

• Chapter foreword. M 1963b{E14} argues that the description of price 
variation requires probability models less special than the widely used 
Brownian, because the price relatives of certain prices series have a vari­
ance so large that it may in practice be assumed infinite. This theme is 
developed further in the present chapter, which covers the following 
topics. 

1. Restatement of the M 1963{E14} model of price variation, and 
additional data on cotton. 

2. The variation of wheat price in Chicago, 1883-1936. 
3. The variation of some railroad stock prices 1857-1936. 
4. The variation of some interest and exchange rates. 
5. Token contribution to the statistical estimation of the exponent u. 

Much of the empirical evidence in this paper was part of IBM Research 
Note NC-87 (March 1962), from which M 1963b{E14} is also excerpted • 

THIS CHAPTER CONTINUES Chapter £14, to be referred to as vCSP. 

{P.S. 1996: In view of the current focus on serial dependence, special 
interest attaches to Section 4. Indeed, changes in interest and exchange 
rates cannot possibly be independent, hence cannot follow the M 1963 
model. The sole question tested in this chapter is whether or not the mar­
ginal distribution is L-stable, irrespective of serial dependence. The vari­
ation of those records in time may be best studied by the methods that 
Chapter Ell uses for personal income.} 
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1. RESTATEMENT OF THE M 1963 MODEL OF PRICE VARIATION, 
AND ADDITIONAL DATA ON COTTON 

One goal of this restatement is to answer certain reservations concerning 
my L-stable model of price variation. Trusting that those reservations will 
be withdrawn and not wishing to fan controversy, I shall name neither the 
friendly nor the unfriendly commentators. 

1.1 Bachelier's theory of speculation 

Consider a time series of prices, Z(t), and designate by L(t, T) its loga­
rithmic relative 

L(t, T) = 10geZ(t, T) -lo&Z(t). 

The basic model of price variation, a modification of one proposed in 1900 
in Louis Bachelier's theory of speculation, assumes that successive incre­
ments L(t, T) are (a) random, (b) statistically independent, (c) identically 
distributed, and (d) Gaussian with zero mean. The process is called a 
"stationary Gaussian random walk" or "Brownian motion." 

Although this model continues to be extremely important, its assump­
tions are working approximations that must not be made into dogmas. In 
fact, Bachelier 1914 made no mention of earlier claims of the empirical evi­
dence in favor of Brownian motion. (To my shame, I missed this dis­
cussion when I first glanced through Bachelie 1914 and privately criticized 
him for blind reliance on the Gaussian. Luckily, my criticism was not 
committed to print.) 

Bachelier noted that his original model contradicts the evidence in at 
least two ways: Firstly, the sample variance of L(t, T) varies in time. He 
attributed this to variability of the population variance, interpreting the 
sample histograms as being relative to mixtures of distinct populations, 
and observed that the tails of the histogram could be expected to be fatter 
than in the Gaussian case. Second, Bachelier noted that no reasonable 
mixture of Gaussian distributions could account for the sizes of the very 
largest price changes, and he treated them as "contaminators" or 
"outliers." Thus, he pioneered not only in discovering the Gaussian 
random-walk model, but also in noting its major weakness. 

However, new advances in theory of speculation continues to be best 
expressed as improvements upon the Brownian model. VCSP shows that 
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an appropriate generalization of hypothesis (d) suffices to "save" (a), (b), 
and (c) in many cases, and in other cases greatly postpones the moment 
when the misfit between the data and the theory is such that the latter 
must be amended.. I shall comment upon Bachelier's four hypotheses, 
then come to the argument of VCSP. 

1.2 Randomness 

To say that a price change is random is not to claim that it is irrational, 
only that it was unpredictable before that fact and is describable by the 
powerful mathematical theory of probability. The two alternatives to ran­
domness are "predictable behavior" and "haphazard behavior," where the 
latter term is taken to mean "unpredictable and not subject to probability 
theory." By treating the largest price changes as "outliers," Bachelier 
implicitly resorted to this concept of "haphazard." This might have been 
unavoidable, but the power of probability theory has since increased and 
should be used to the fullest. 

1.3 Independence 

The assumption of statistical independence of successive LCt, n is 
undoubtedly a simplification of reality. It was surprising to see VCSP crit­
icized for expressing blind belief in independence. For examples of reser­
vations on this account, see its Section VII as well as the final paragraph of 
its Sections III E, III F, and IV B. In defense of independence, I can offer 
only one observation; very surprisingly, models making this assumption 
account for many features of price behavior. 

Incidentally, independence implies that no investor can use his know­
ledge of past data to increase his expected profit. But the converse is not 
true. There exist processes in which the expected profit vanishes, but 
dependence is extremely long range. In such cases, knowledge of the past 
may be profitable to those investors whose utility function differs from the 
market's. An example is the "martingale" model of M 1966b{E19}, which 
is developed and generalized in M 196ge. The latter paper also touches on 
various aspects of the spectral analysis of economic time series, another 
active topic whose relations with my work have aroused interest. For 
example, when a time series is non-Gaussian, its spectral whiteness, that 
is, the absence of correlation, is compatible with great departures from the 
random-walk hypothesis. 
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1.4 Stationarity 

One implication of stationarity is that sample moments vary little from 
sample to sample, as long as the sample is sufficiently long. In reality, 
price moments often fail to behave in this manner. The notorious fact is 
understated in the literature, since "negative;' results are seldom published 
- one exception being Mills 1927. 

Figure 1 adds to VCSP, and displays the enormous variability in time 
of the sample second moment of cotton prices in the period of 19PO-1905. 
The points refer to successive fifty-day sample means of [L(t, 1)] , where 
the L(t,l) are the daily price relatives. In Brownian motion, these sample 
means would have stabilized near the population mean. Since no stabili­
zation is in fact observed, we see conclusively that the price of cotton did 
not follow a Gaussian stationary random walk. 

The usual accounts for this variability claim that the mechanism for 
price variation changes in time. We shall, loosely speaking, distinguish 
systematic, random, and haphazard changes of mechanism. 

The temptation to refer to systematic changes is especially strong. 
Indeed, to explain the variability of the statistical parameters of price vari­
ation would constitute a worthwhile first step toward an ultimate explana­
tion of price variation itself. An example of systematic change is given by 
the yearly seasonal effects, which are strong in the case of agricultural 
commodities. However, Figure 1 goes beyond such effects: not all ends 
of season are accompanied by large price changes, and not all large price 
changes occur at any prescribed time in the growing season. 

The most controversial systematic changes are due to deliberate 
changes in the policies of the Federal Government or of the Exchanges. 
For an example of unquestionable long-term change of this type, take 
cotton prices (Section III D of VCSP.) All measures of scale of L(t, n (such 
as the interquartile interval) did vary between 1816 and 1958. Indeed, 
lines 1a and 2a of Figure 5 of VCSP, which are relative to the 1900's, 
clearly differ from lines 1b and 2b, which are relative to the 1950's. This 
clearcut decrease in price variability must, at least in part, be a conse­
quence of the deep changes in economic policy that occurred in the early 
half of this century. However, precisely because it is so easy to read in 
the facts a proof of the success or failure of changes in economic policy, 
the temptation to resort to systematic nonstationarity must be carefully 
controlled. 

{P.S. 1996. The extremely cautious phrasing of the last sentences was 
rewarded: the large apparent decrease in volatility from 1904 to 1952 
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proved in fact to be caused by misleadingly presented data; see M 1972b, 
i.e., Appendix III of Chapter E14}. 

In order to model what they perceived to be a "randomly changing" 
random process, many authors have invoked a random-walk process in 
which the sizes and probabilities of the steps are chosen by some other 
process. If this second "master process" is stationary, Z(t) itself is not a 
random walk but remains a stationary random process. 

The final possibility is that the variability of the price mechanism is 
haphazard, that is, not capable of being treated by probability theory. 
This belief is, of course, firmly entrenched among nonmathematical econo­
mists. But to construct a statistical model one expects to change before it 
has had time to unfold, can hardly be viewed as a sensible approach. 

Moreover, and more importantly, early resort to haphazard variation 
need not be necessary, as is demonstrated by the smoothness and regularity 
of the graph of Figure 2, which is the histogram of the data of Figure 1. 

5 10 15 20 25 30 

FIGURE E15-1. Sample second moment of the daily change of log Z(t), where Z(t) 
is the spot price of cotton. The period 1900-1905 was divided into thirty suc­
cessive fifty-day samples, and the abscissa designates the number of the 
sample in chronological order. Logarithmic ordinate. A line joins the sample 
points to improve legibility. 
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1.5 Gaussian hypothesis 

Bachelier's assumption, that the marginal distribution of L(t, n is Gaussian 
with vanishing expectation, might be convenient, but virtually every 
student of the distribution of prices has commented on their leptokurtic 
(i.e., very long-tailed) character. For an old but eminent practitioner's 
opinion, see Mills 1927; for several recent theorists' opinions see Cootner 
1964. It was mentioned that Bachelier himself regarded Ut, n as a con­
taminated mixture of Gaussian variables; see M and Taylor 1967{E22, 
Sections 1 and 2}. 

1.6 Infinite population variance and the L-stable distributions 

Still other approaches were suggested to take into account the failure of 
Brownian motion to fit data on price variation. In all these approaches, 
each new fact necessitates an addition to the explanation. Since a new set 
of parameters is thereby added, I don't doubt that reasonable "curve­
fitting" is achievable in many cases. 
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FIGURE ElS-2. Cumulated absolute-frequency distribution for the data of Figure 
1. Abscissa: log of the sample second moment. Ordinate: log of the absolute 
number of instances where the sample moment marked as abscissa has been 
exceeded. The L-stable model predicts a straight line of slope a/2 - 1.7/2, 
which is plotted as a dashed line. 
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However, this form of "symptomatic medicine" (a separate drug for 
each complaint) could not be the last word! The beauty of science - and 
the key to its effectiveness - is that it sometimes evolves central assump­
tions, from which many independently made observations can be shown 
to follow. These observations are thus organized, and predictions can be 
made. The ambition of VCSP was to suggest such a central assumption, 
the infinite-variance hypothesis, and to show that it accounts for substan­
tial features of price series (of various degrees of volatility) without 
nonstationarity, without mixture, without master processes, without con­
tamination, but with a choice of increasingly accurate assumptions about 
the interdependence of successive price changes. 

When selecting a family of distributions to implement the infinite­
variance hypothesis, one must be led by mathematical convenience (e.g., 
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FIGURE E15-3. Sequential variation of the sample kurtosis of the daily changes of 
log Z(t), where Z(t) is the spot price of cotton, 1900-1905. The abscissa is the 
sample size. Linear coordinates. 
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the existence of a ready-made mathematical theory) and by simplicity. For 
a probability distribution, one important criterion of simplicity is the 
variety of its properties of "invariance." For example, it would be most 
desirable to have the same distribution (up to some - hopefully linear -
weighting) apply to daily, monthly, etc., price changes. Another measure 
of simplicity is the role that a family of distributions plays in central limit 
theorems of the calculus of probability. 

In accordance with this logic, VCSP proposed to represent the mar­
ginal distribution of L(t, T) by an appropriate member of a family of prob­
ability distributions called "L-stable." The L-stable laws measure volatility 
by a single parameter a ranging between 2 and O. The simplest members 
of the family are the symmetric probability densities defined by 

Po(u) = (l/rr) L'" exp( - ysO) cos(su)ds. 

Their limit case a = 2 is the Gaussian, but my theory also allows non­
Gaussian or "L-stable" cases a < 2. Suitable a's turn out to represent satis­
factorily the data on volatile prices (see VCSP and Section 2 and 3 below). 

In assessing the realm of applicability of the M 1963 model, , one should 
always understand it as including its classical limit. It is therefore impossible 
to "disprove" VCSP by identifying out price series for which the Gaussian 
hypothesis may be tenable. 

Now to discuss the fact that L-stable variables with a < 2 have an infi­
nite population variance; mathematicians sometimes say that they have 
"no variance." Firstly, one must reassure those who expressed the fear that 
the sole reason for my finding E(L 2) = 00 was that I inadvertently took the 
logarithm of zero! Serious concern was expressed at the implication of 
this feature for statistics, and surprise was expressed at the paradoxically 
discontinuous change that seems to occurs when a becomes exactly 2. 

This impression of paradox is unfounded. The population variance 
itself cannot be measured, and every measurable characteristic of a 
L-stable distribution behaves continuously near a = 2 as will be seen later 
in an example. Consequently, there is no "black and white" contrast 
between the scaling case a < 2 and the Gaussian case a = 2, but a contin­
uous shading of gray as a -> 2. The finding that the population second 
moment is discontinuous at a = 2 "only" shows that this moment is not 
well suited to a study of price variation. 
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In particular, the applicability of second-order statistical methods is 
questionable. This word could not mean "totally inapplicable," because 
the statistical methods based upon variances suffer no sudden and cat­
astrophic breakdown as a ceases to equal 2. Therefore, to be unduly con­
cerned with a few specks of "gray" in a price series whose a is near 2, 
may be as inadvisable as to treat very gray series as white. Moreover, sta­
tistics would be unduly restricted if its tools were to be used only where 
they have been fully justified. (As a matter of fact, the quality of statistical 
method is partly assessed by its "robustness," i.e., the quality of its per­
formance when used without justification.) However, one should look for 
other methods. For example, as predicted, least-squares forecasting (as 
applied to past data) would often have led to very poor inferences; least­
sums-of-absolute-deviations forecasting, on the other hand, is always at 
least as good and usually much superior, and its development should be 
pressed. 

1.7 The behavior of the variance L-stable samples and cotton 

Define V(a, N) as the variance of a sample of N independent random vari­
ables U1, •.• Un' ... UN' whose common distribution is L-stable of exponent 
a. To obtain a balanced view of the practical properties of such variables, 
one must not focus upon mathematical expectations and/or infinite sample 
sizes. Instead, one should consider quantiles and samples of large but 
finite size. Let us therefore select a "finite horizon" by choosing a value of 
N and a quantile threshold q such that events whose probability is below q 
will be considered "unlikely." Save for extreme cases contributing to a 
"tail," of probability q, the values of V(a, N) will be less than some func­
tion V(a, N, q). This function's behavior tells us much of what we need to 
know about the sample variance. 

As mentioned earlier, when N is finite and q > 0, the function 
V(a, N, q) varies smoothly with a. For example, over a wide range of 
values of N, the derivative of V(a, N, q) at a = 2 is very close to zero, hence 
V(a, N, q) changes very little from a = 2.00 to a = 1.99. This insensitivity is 
due to the fact that a = 2.00 and a = 1.99 differ only in the sizes that they 
predict for some outliers; but those outliers belong to those cases whose 
effects were excluded by the definition of V(a, N, q). Increasing N or 
decreasing q, decreases the range of exponents in which a is approximable 
by 2. 

A r;eader who really objects to infinite variance, and is only concerned 
with meaningful finite-sample problems, may "truncate" U so as to attri­
bute to its variance a very large finite value depending upon a, N, and q. 
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The resulting theory may have the asset of familiarity, but the specification 
of the value of the truncated variance will be useless because it will tell 
nothing about the "transient" behavior of V(a., N, q) when N is finite and 
small. Thus, even when one knows the variance to be finite but very large 
(as in the case of certain of my more detailed models of price variation; 
see M 196ge), the study of the behavior of V(a., N, q) is much simplified if 
one approximates the distribution with finite but very large variance by a 
distribution with infinite variance. Similarly, it is well known that photog­
raphy is simplest when the object is infinitely far from the camera. There­
fore, the photographer can set the distance at infinity if the actual distance 
is finite but exceeds some finite threshold dependent on the quality of the 
lens and its aperture. 

1.8 The behavior of the kurtosis for L-stable samples and cotton prices 

Pearson's kurtosis measures the peakedness of a distribution by 

3. 

The discussion of this quantity in VCSP was called obscure, therefore 
additional detail may be useful. If U is L-stable with a. < 2, the kurtosis is 
undetermined, because E(z.t) = co and E(U2) = co, One can show, however, 
that, as N - co, the random variable 

tends toward a limit that is finite and different from zero. Therefore, the 
"expected sample kurtosis," defined as 

is asymptotically proportional to N. 

The kurtosis of L(t,l) as plotted on Figure 3 for the case of cotton, 
1900-1905, indeed increases steeply with N. While exact comparison is 
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impossible because the theoretical distribution was not tabulated, this 
kurtosis does fluctuate around a line expressing proportionality to sample 
size. (For samples of less than fifty, the kurtosis is negative, but too small 
to be read off the figure.) 

1.9 Three approximations to a L-stable distribution: implications for 
statistics and for the description of the behavior of prices 

It is important that there should exist a single theory of prices that 
subsumes various degrees of volatility. My theory is, unfortunately, hard 
to handle analytically or numerically, but simple approximations are avail­
able in different ranges of values of a Thus, given a practical problem 
with a finite time horizon N, it is best to replace the continuous range of 
degrees of "grayness" by the following trichotomy (where the boundaries 
between the categories are dependent upon the problem in question). 

The Gaussian a = 2 is the best known and simplest. There is no need 
to worry about a long-tailed distribution, hence one stands a reasonable 
chance of rapid progress in the study of dependence. For example, one 
can use spectral methods and other covariance-oriented approaches. Very 
close to a = 2, Gaussian techniques cannot lead one too far astray. 

In the zone far away from a = 2, another kind of simplicity reigns. 
Substantial tails of the L-stable distribution are approximations by the 
scaling distributions with the same a-exponent ruling both tails. A prime 
example was provided by the cotton prices studied in VCSP. Sections 2 
and 3 examine some other volatile price series: wheat, the prices of some 
nineteenth-century rail securities and some rates of exchange of interest. 

The zone of transition between the almost Gaussian and the clearly 
scaling cases is by far the most complicated of the three zones. It also pro­
vides a test of the meaningfulness and generality of the M 1963 model. If 
it holds, the histogram of price changes is expected to plot on biogarithmic 
paper as one of a specific family of inverse-S-shaped curves. (Levy's 
a-exponent, therefore, is not to be confused with slope of a straight 
bilogarithmic plot, M 1963e{E3, Appendix III}.) If the M 1963 model fails, 
the transition between the almost Gaussian and the highly scaling cases 
would be performed in some other way. 

We shall examine in this light the variation of wheat prices and find 
that it falls into the "light gray" zone of low but positive values for 2 - a 
and medium volatility. Section 2.1 examines wheat data; it is similar in 
purpose to Fama's 1964 Chicago thesis, Fama 1965, which was the first 
further test of the ideas of VCSP. To minimize "volatility" and maximize 
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the contrast with my original data, Fama chose thirty stocks of large and 
diversified contemporary corporations and found their L-stable "grayness" 
to be unquestionable, although less marked than that of cotton. 

2. THE VARIATION OF WHEAT PRICES IN CHICAGO, 1883-1936 

Spot prices of cotton refer to standardized qualities of this commodity, but 
wheat cash prices refer to variable grades of grain. At any given time 
(say, at closing time), one can at best speak of a span of cash prices, and 
the closing spans corresponding to successive days very often overlap. As 
a result, Working 1934 chose the week as the shortest period for which 
one can reasonably express "the" change of wheat price by a single 
number rather than by an interval. Further interpolation being impossible, 
the long record from 1883 to 1936 yields a smaller sample than one might 
have hoped - though a very long one by the standards of economics. 

Kendall 1953 suggested that Working's wheat price relatives follow a 
Gaussian distribution. After all, a casual visual inspection of the 
histograms of these relatives, as plotted on natural coordinates, shows 
them to be nicely "bell shaped." However, natural coordinates notoriously 
underestimate the "tails." To the contrary, as seen in Figure 4, probability­
paper plots of wheat price relatives are definitely S-shaped, though less so 
than for cotton. As the Gaussian corresponds to a == 2 and M 1963b{E14} 
reports the value a == 1.7 for cotton, it is natural to investigate whether 
wheat is L-stable with an a somewhere between 1.7 and 2. 

2.1 The evidence of doubly logarithmic graphs 

Figure 3 of VCSP shows that the L-stable distribution predicts that every 
doubly logarithmic plot of a histogram of wheat price changes should 
have a characteristic S-shape. It would end with a "scaling" straight line of 
slope near 2, but would start with a region where the local slope increases 
with u and even begins by markedly exceeding its asymptotic value, M 
1963p. 

The above conjecture is verified, as seen in Figures 5 and 6. Moreover, 
by comparing the data relative to successive subsamples of the period 
1883-1936, no evidence was found that the law of price variation had 
changed in kind, despite the erratic behavior of the outliers. 

When this test was started, one only knew that wheat lies between the 
highly erratic cotton series and the minimally erratic Gaussian limit. 
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FIGURE E1S-4. Probability-paper plots of the distribution of changes of log Z(t), 
where Z(t) is the spot price of wheat in Chicago, 1883-1934, as reported by 
Working 1934. The scale - 0.3, - 0.2, - 0.1,0,0.1,0.2,0.3 applies to the weekly 
changes, marked by dots, and to the yearly changes, marked by crosses. The 
other scale applies to changes over lunar months, marked by x. 
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Therefore, Figures 5 and 6 are evidence that the L-stable model predicted 
how the price histogram of wheat price changes "should" behave. 

To establish the "goodness of fit" of such an S-shaped graph requires 
a larger sample than in the case of the straight graphs characteristic of 
cotton. But the available samples are actually smaller. Thus the doubly 
logarithmic evidence is unavoidably less clear-cut than for cotton. 

2.2 The evidence of sequential variance 

When price series is approximately stationary, one can test whether 0. = 2 
or 0. < 2 by examining the behavior of the sequential sample second 
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FIGURE E1S-S. Weekly changes of log Z(t), where Z(t) is the price of wheat as 

reported by Working 1934. Ordinate: log of the absolute frequency with 
which L ~ u, respectively L :S - u. Abscissas: the lower scale refers to negative 
changes, the upper scale to positive changes. 
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moment. If a. < 2, the median of the distribution of the sample variance 
increases as JV 1+2/a for "large" N. If a. = 2, it tends to a limit. More impor­
tantly, divide the sample variance by its median value; this ratio's vari­
ation becomes increasingly erratic as a. moves away from 2. Thus, while 
the cotton second moment increases very erratically, but the wheat second 
moment should increase more slowly and more regularly. Figure 7 shows 
that such is indeed the case. 

2.3 Direct test of L-stability 

The term "L-stable" arose from the following fact: when N such random 
variables Un are independent and identically distributed, one has 

• • 
• 

100 

10 

p+v I/.~ u..;,o u} ~ Pr{U.;,o u} . 

.I 

• • 
• • 

• 

<0 

• 

•• • 
• 
• • 

x • 
• 
• 

• • 

-X 
• 
• x 
• 

• 
• 

• 
• 

• 

• 
• 
• • 

• 
>0 • 

x 

• 
• • • 

• • • •• • • 
• x • 

• 

• x 

FIGURE E1S-6. Changes of log Z(t) over lunar months and years, where Z(t) is the 
price of wheat as reported in Working 1935. Abscissas and ordinates as in 
Figure 5. 
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I settled on N = 4. When the random variables Un are the weekly price 
changes, I~ = 1 Un is the price change over a "lunar month" of four weeks. 
Since a is expected to be near 2, the factor 4- 1/ u will be near 1/2. 

One can see in Figure 4 that weekly price changes do indeed have an 
S-shaped distribution indistinguishable from that of one-half of monthly 
changes. (The bulk of the graph, corresponding to the central bell con­
taining 80% of the cases, was not plotted for the sake of legibility.) Sam­
pling fluctuations are apparent only at the extreme tails and do not appear 
systematic. Applied in Fama 1965 to common-stock price changes, this 
method also came in favor of L-stability. 

The combination of Figures 5 and 6 provides another test of 
L-stability. They were plotted with absolute, not relative, frequency as the 
ordinate, and the L-stable theory predicts that such curves should be 
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FIGURE E1S-7. Sequential variation of the second moment of the weekly changes 
of log Z(t), where Z(t) is the price of wheat as reported in Working 1934. One 
thousand weeks beginning in 1896. Bilogarithmic coordinates. For small 
samples, the sample second moments are plotted separately; for lay samples, 
they are replaced (for the sake of legibility) by a freely drawn continuous line. 
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superposable in their tails, except, of course, for sampling fluctuations. (In 
outline, the reason for this prediction is that, in a L-stable universe, a large 
monthly price change is of the same order of magnitude as the largest 
among the four weekly changes adding to this monthly change.) Clearly, 
wheat data pass this second test also. 

It should be stressed that, while the two tests use the same data, they 
are conceptually distinct. Figure 4 compares one-half of a monthly change 
to the weekly change of the same frequency; Figures 5 and 6 compare 
monthly and weekly changes of the same size. Stability is thus doubly 
striking. 

2.4 The evidence of yearly price changes 

Working 1934 also published a table of average January prices of wheat, 
and Figure 4 also included the corresponding changes of log Z(t). 

Assuming that successive weekly price changes are independent, the 
evidence of the yearly changes again favors L-stability. It is astonishing 
that the hypothesis of independence of weekly changes can be consistently 
carried so far, showing no discernible discontinuity between long-term 
adjustments to follow supply and demand, which would be the subject 
matter of economics, and the short-term fluctuations that some economists 
discuss as "mere effects of speculation." 

3. THE VARIATION OF RAILROAD STOCKS PRICES, 1857-1936 

For nineteenth-century speculators, railroad stocks were preeminent 
among corporation securities, and played a role comparable to that of the 
basic commodities. Unfortunately, Macaulay 1932 reports them incom­
pletely: for each major stock, it gives the mean of the highest and lowest 
quotation during the months of January; for each month, it gives a 
weighted index of the high and low of every stock. 

I began by examining the second series, even though it is averaged too 
many times for comfort. If one considers that there "should" have been 
no difference in kind between various nineteenth-century speculations, one 
would expect railroad stock changes to be L-stable, and averaging would 
bring an increase in the slope of the corresponding doubly logarithmic 
graphs, similar to what has been observed in the case of cotton price aver­
ages (Section III E of VCSP). Indeed, Figure 8, relative to the variation of 
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the monthly averages, yields precisely what one expects for averages of 
L-stable processes with an exponent very dose to that of cotton. 

Yearly data, to the contrary, are little affected by averaging. Figure 9 
should be regarded as made of two parts: the first five graphs concern 
companies with below average merger activity, the others to companies 
with above average merger activity. 

The first five graphs, in my opinion, proved striking confirmations of 
the tools and concepts I developed in the study of cotton. Basically, one 
sees that the fluctuations of the price of these stocks were all L-stable, with 
the same a.-exponent characteristic of the industry and dearly below the 
critical value 2. (Moreover, they all had practically the same value of the 
positive and negative "standard deviations," U' and u", defined in VCSP.) 

For the companies with an unusual amount of merger activity, the evi­
dence is similar but more erratic. 
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FIGURE E15-S. Monthly changes of log Z(t), where Z(t) is the index of rail stock 
prices, as reported in Macaulay 1932. Abscissas and ordinates as in Figure 5. 
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FIGURE E1S-9. Yearly changes of log Z(t), where Z(t) is the index based on the 
prices of nine selected rail stocks in January, as reported in Macaulay 1932. 
Ordinates: absolute frequencies. Abscissas are not marked to avoid confusion: 
for each graph, they vary from 1 to 10. 
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4. THE VARIATION OF SOME INTEREST AND EXCHANGE RATES 

Various rates of money - and especially the rate of call money in its 
heyday - reflect the overall state of the speculative market. One would 
therefore expect analogies between the behaviors of speculative prices and 
of speculative rates. But one cannot expect them to be ruled by identical 
process. For example, one cannot assume (even as rough approximations) 
that successive changes of a money rate are statistically independent: 
Such rates would eventually blow up to infinity, or they would vanish. 
Neither behavior is realistic. As a result, the distribution of Z(t) itself is 
meaningless when Z is a commodity price, but it is meaningful when it is 
a money rate. Additionally, a 5% rate of money is a price near equal to 
1.05, and for small values of Z, one has 10g(1 + Z) - Z. Therefore, in the 
case of money rates, one should study Z(t + T) - Z(t) rather than 
log Z(t + T) -log Z(t). 

4.1 The rate of interest on call money 

In Figure 10, the abscissa is based on the data in Macaulay 1932, con­
cerning the excess of rate of call money over its "typical" value, 6%. I 
have not even attempted to plot the distribution of the other tail of the dif­
ference "rate minus 6%," since that expression is by definition very short­
tailed, being bounded by 6 per cent, while the positive value of "rate 
minus 6%" can go sky high (and occasionally did.) 

The several lines of Figure 10 correspond, respectively, to the total 
period 1857-1936 and to three subperiods. They show that call money 
rates are single-tailed scaling, with an exponent markedly smaller than 2. 
Scale factors (such as the upper quartile) have changed - a form of non­
stationarity - but the exponent a seems to have preserved a constant 
value, lying within the range in which the scaling distribution is known to 
be invariant under mixing of data from populations having the same a 
and different y; see M 1963e{E3}. 

4.2 Other interesting money rates 

Examine next the distribution of the classic data collected by Erastus B. 
Bigelow (Figure 11, dashed line) relative to "street rates of first class paper 
in Boston" (and New York) at the end of each month from January 1836 to 
December 1860. (Bigelow also reports some rates applicable at the begin­
nings or middles of the same months, but I disregarded them to avoid the 
difficulties due to averaging.) The dots on Figure 11 again represent the 



E15 0 0 COTTON, WHEAT, RAILROAD, AND SOME FINANCIAL RATES 439 

difference between Bigelow's rates and the typical 6%; their behavior is 
what we would expect if essentially the same scaling law applied to these 
rates and those of call money. 

Finally, examine a short sample of rates, reported by Davis 1960, on 
the basis of records of New England textile mills. These rates remained 
much closer to 6% than those of Bigelow. They are plotted in such a way 
that the crosses of Figure 11 represent ten times their excess over 6%. The 
sample is too short for comfort, but, until further notice, it suggests that 
the two series have differed mostly by their scales. 

4.3 The dollar-sterling exchange in the nineteenth century 

The exchange premium or discount in effect on a currency exchange seems 
to reflect directly the difference between the various "forces" that condi­
tion the variations of the values of the two currencies taken separately. 

10 

.01 0.1 1.0 

FIGURE E15-10. The distribution of the excess of over 6% of the monthly average 
of call money rates as reported in Macaulay 1932. Ordinates: absolute fre­
quencies. Bold line: total sample 1857-1936. Thin lines, read from left to right: 
subsamples 1877-97, 1898-1936, 1857-76. Note that the second subsample is 
twice as long as the other two. Thus, the general shape of the curves has not 
changed except for the scale, and the scale has steadily decreased in time. 
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This differential quantity has an advantage over the changes of rates: one 
can consider it without resorting to any kind of economic theory, not even 
the minimal assumption that price changes are more important than price 
levels. We have therefore plotted the values of the premium or discount 
between dollar and sterling between 1803 and 1895, as reported by Davis 
and Hughes 1960 (Figure 12). This series is based upon operations which 
involved credit as well as exchange. In order to eliminate the credit com­
ponent, the authors used various series of money rates. We also plotted 
the series based upon Bigelow's rates. Note that all the graphs of Figure 
11 conform strikingly with the expectations generalized from the known 
behavior of cotton prices. 
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FIGURE E15-11. Four miscellaneous distributions of interest and exchange rates. 
Reading from the left: two different series of dollar-sterling premium rates. 
Crosses: ten times the excess over 6% of Davis's textile interest rate data. 
Dashed line: excess over 6% of Bigelow's money rates. The four series, all very 
short, were chosen haphazardly. The point of the figure is the remarkable 
similarity between the various curves. 
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5. MAXIMUM LIKELIHOOD ESTIMATION OF a NEAR a= 2 

A handicap for the theory of VCSP is that no closed analytic form is 
known for the L-stable distributions, nor is a closed form ever likely to be 
discovered. Luckily, the cases where the exponent a is near 1.7 can be 
dealt with on the basis of an approximating hyperbolic distribution. Now 
let a be very near 2. To estimate 2 - a or to test a = 2 against a < 2 is 
extremely important, because a = 2 corresponds to the Gaussian law and 
differs "qualitatively" from other values of a. To estimate such an a is 
very difficult, however, and the estimate will intrinsically be highly 
dependent upon the number and the "erratic" sizes of the few most 
"outlying" values of un' I hope to show in the present section that simpli­
fying approximations are fortunately available for certain purposes. The 
main idea is to represent a L-stable density as a sum of two easily man­
ageable expressions, one of which concerns the central "bell," while the 
other concerns the tails. 

5.1 A square central"bell" with scaling tails 

The following probability density can be defined for 3/2 < a < 2: 

p(U) = a - 3/2 if I U I ~ 1 (adding up to 2a - 3); 
-(u+l) 

p(u) = (2 - a)a I u I if I u I > 1 (adding up to 4 - 2a). 

When a is near 2, p(u) is a rough first approximation to a L-stable 
density that lends itself to maximum-likelihood estimation. 

Order up ... un' ... , UN' a sample of values of U, by decreasing absolute 
size, and denote by M the values such that I un I ~ 1. The likelihood func­
tion is 

N M { M }-(U+ll 

TIp(Un)=(a- ~) - [(2-a)a]M D,IUnI 

The logarithm of the likelihood is 

M 

L(a) = (N - M) log(a - ~ ) + M loge (2 - a)a] - (a + 1) I log I Un I. 
n=l 
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This L(a) is a continuous function of a. If M = 0, it is monotone increasing 
and attains its maximum for a = 2. This is a reasonable answer, since 
I u I < 1 for a = 2. 

To the contrary, if M > 0, L(a) tends to - 00 as a ....... 3/2 or a ....... 2. 
Therefore, L(a) has at least one maximum, and its most likely value &. is 
the root of the third-degree algebraic equation 

M 
N-M M M" I 
a-3/2 - 2-a +a-- L log Unl =0. 

n=l 

Thus, &. only depends on M/ Nand M- lL~= 1 log I un I = V. 

For the latter log I u I , conditioned by log I u I > 1, satisfies 

Pr{log lui> u I log lui> O} = exp( - au). 

Its expected value is II a. Therefore, as M ....... 00 and N ....... 00, 

M 

the terms ~ - ~ I log I Un I will tend to 0, 
n=l 

and can be neglected in the first approximation. When both M and N are 
large, the equation in &. simplifies to the first degree and 

&. =2 -M/2N. 

This value depends on the un through the ratio of these numbers in the 
two categories I U I < 1 and I U I > 1, i.e., the relative number of the 
"outliers" defined by lui> 1. 

For example, if MIN is very small, &. is very close to 2. As N 1M 
barely exceeds 1, &. nears 312. However, this is range in which p(u) is a 
very poor approximation to a L-stable probability density. 

It may be observed that, knowing N, MIN is symptotically Gaussian, 
and so is &. for all values of a. 

In a second approximation, valid for a near 2, one will use a = 2 to 
compute 
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w = ~ = ~ I log 1 Un I. 

The equation for tx. is now of the second order. One root is very large 
and irrelevant; the other root is such that a - (2 - M/2N) is proportional 
to W. 

5.2 Scope of estimation based upon counts of outliers 

The method of Section 5.1, namely, estimation of tx. from M/N, applies 
without change under a variety of seemingly generalized conditions: 

1. Suppose that the tails are asymmetric, that is, 

p(u) = (2 - a)ap'u - ea + 1) if u > 1 
-(a+ 1) 

p(u) = (2 - a)ap"l u 1 if u < -1, 

where p' + p" = 1. In estimating a, one will naturally concentrate upon the 
random variable 1 U I, which is the same as in Section 5.1 

2. The conditional density of U, given that 1 U 1 < 1, may be non­
uniform as long as it is independent of a. Suppose, for example, that for 
1 u 1 < 1, p(u) = (a - 3/2) D exp( - u2/2cr), where I/D(a) is defined as 
equal to f!..1 exp( - 52 /2cr)d5. The likelihood of a then equals 

[D(a")2-1(a-3/2)]N-M exp - i ~ [(2-a)a]M ITIUnI . ( ] ( ]

-ea+l) 

n=M+l 2 n=l 

As function of the Un' the maximum likelihood is as in Section 5.1. 

Acknowledgement. This text incorporates several changes suggested by 
Professor Eugene F. Fama. 
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Mandelbrot on price variation 
(a guest contribution by E. F. Fama) 

THERE HAS BEEN A TRADITION AMONG ECONOMISTS which holds 
that prices in speculative markets, such as grain and securities markets, 
behave very much like random walks. References include Bachelier 1900, 
Kendall 1953, Osborne 1959, Roberts 1959, Cootner 1962, and Moore 1962. 
The random walk theory is based on two assumptions: (1) price changes 
are independent random variables, and (2) the changes conform to some 
probability distribution. This paper will be concerned with the nature of 
the distribution of price changes rather than with the assumption of inde­
pendence. Attention will be focused on an important new hypothesis con­
cerning the form of the distribution which has recently been advanced by 
Benoit Mandelbrot. We shall see later that if Mandelbrot's hypothesis is 
upheld, it will radically revise our thinking concerning both the nature of 
speculative markets and the proper statistical tools to be used when 
dealing with speculative prices. 

I. INTRODUCTION 

Prior to the work of Mandelbrot, the usual assumption, which we shall 
henceforth call the Gaussian hypothesis, was that the distribution of price 
changes in a speculative series is approximately Gaussian that is, normal. 
In the best-known theoretical expositions of the Gaussian hypothesis, 
Bachelier 1900 and Osborne 1959 use arguments based on the central limit 
theorem to support the assumption of normality. If the price changes 
from transaction to transaction are independent, identically distributed 
random variables with finite variance, and if transactions are fairly uni­
formly spaced through time, the central limit theorem leads us to believe 
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that price changes across differencing intervals such as a day, a week, or a 
month will be normally distributed since they are simple sums of the 
changes from transaction to transaction. Empirical evidence in support of 
the Gaussian hypothesis has been offered by Kendall 1953 and Moore 
1962. Kendall found that weekly price changes for Chicago wheat and 
British common stocks were "approximately" normally distributed, and 
Moore reported similar results for the weekly changes in log price of a 
sample of stocks from the New York Stock Exchange. 

Mandelbrot contends, however, that this past research has overempha­
sized agreements between the empirical distribution of price changes and 
the normal distribution, and has neglected certain departures from 
normality which are consistently observed. In particular, in most empir­
ical work, Kendall's and Moore's included, it has been found that the 
extreme tails of empirical distributions are higher (i.e., contain more of the 
total probability) than those of the normal distribution. Mandelbrot feels 
that these departures from normality are sufficient to warrant a radically 
new approach to the theory of random walks in speculative prices. This 
new approach, which henceforth shall be called the L-stable hypothesis, 
makes two basic assertions: (1) the variances of the empirical distributions 
behave as if they were infinite, and (2) the empirical distributions conform 
best to the non-Gaussian members of a family of limiting distributions 
which Mandelbrot has called L-stable. To date, Mandelbrot's most com­
prehensive work in this area is M 1963b{E14}. 

The infinite variance of the L-stable model has extreme implications. 
From a purely statistical standpoint, if the population variance of the dis­
tribution of first differences is infinite, the sample variance is probably a 
meaningless measure of dispersion. Moreover, if the variance is infinite, 
other statistical tools (e.g., least-squares regression), which are based on 
the assumption of finite variance will, at best, be considerably weakened 
and may in fact give very misleading answers. Because past research on 
speculative prices has usually been based on statistical tools which assume 
the existence of a finite variance, the value of much of this work may be 
doubtful if Mandelbrot's hypothesis is upheld by the data. 

In the remainder of this paper we shall examine further the theoretical 
and empirical content of Mandelbrot's L-stable hypotheSis. The first step 
will be to examine some of the important statistical properties of the 
L-stable distributions. The statistical properties will then be used to illus­
trate different types of conditions that could give rise to a L-stable market. 
After this, the implications of the hypothesis for the theoretical and empir­
ical work of the economist will be discussed. Finally, the state of the evi-
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dence concerning the empirical validity of the hypothesis will be 
examined. 

II. THE L-STABLE DISTRIBUTIONS 

The derivation of most of the important properties of L-stable distributions 
is due to Levy 1925. A rigorous and compact mathematical treatment of 
the statistical theory can be found in Gnedenko & Kolmogorov 1954. A 
more comprehensive mathematical treatment can be found in M 
1963b{EI4}. A descriptive treatment of the statistical theory is found in 
Fama 1963a. 

II.A. The parameters of L-stable distributions 

The characteristic function for the L-stable family of distribution satisfies 

log fit) = log L: exp(i/1t)dP(U < u) 

a 
= i8t - y I t I [1 + ifi(t/ I t I )tan(a1T /2)]. 

The characteristic function tells us that L-stable distributions have four 
parameters: a, fi, 8, and y. The location parameter is 8, and if a is 
greater than 1, 8 is equal to the expectation of mean of the distribution. 
The scale parameter is y, while the parameter {3 is an index of skewness 
which can take any value in the interval -1 ~ {3 ~ 1. When {3 = 0 the dis­
tribution is symmetric. When {3 > 0 (and 1 < a < 2), the distribution is 
skewed right (i.e., has a long tail to the right), and the degree of right 
skewness increases in the interval 0 < {3 ~ 1 as {3 approaches 1. Similarly, 
when {3 < 0 (and 1 < a < 2) the distribution is skewed left, with the degree 
of left skewness increasing in the interval-l ~ {3 < 0 as (3 approaches -1. 

Of the four parameters of a L-stable distribution, the characteristic 
exponent a is the most important for the purpose of comparing "the good­
ness of fit" of the Gaussian and L-stable hypotheses. The character expo­
nent a determines the height of, or total probability contained in, the 
extreme tails of the distribution, and can take any value in the interval 
o < a ~ 2. When a = 2, the relevant L-stable distribution is the normal dis­
tribution. The logarithm of the characteristic function of a normal distrib­
ution is logfit) = i/1t - cli/2. This is the logarithm of the characteristic 
function of a L-stable distribution with parameters a = 2, 8 = /1, and 
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y = cr / 2. When a is in the interval 0 < a < 2, the extreme tails of the 
L-stable distributions are higher than those of the normal distribution, 
with the total probability in the extreme tails increasing as a moves away 
from 2 and toward o. The most important consequence of this is that the 
variance exists (i.e., is finite) only in the extreme case a = 2. The mean, 
however, exists as long as a> 1. For a proof of these statements, see 
Gnedenko & Kolmogorov 1954. 

Mandelbrot's L-stable hypothesis states that for distributions of price 
changes in speculative series, a is in the interval 1 < a < 2, so that the dis­
tributions have means but their variances are infinite. The Gaussian 
hypothesis, on the other hand, states that a is exactly equal to 2. 

It is important to distinguish between the L-stable distributions and the 
L-stable hypothesis. Under both the L-stable and the Gaussian hypotheses it 
is assumed that the underlying distribution is L-stable. The conflict 
between the two hypotheses involves the value of the characteristic expo­
nent a. The Gaussian hypothesis says that a = 2, while the L-stable 
hypothesiS says that a < 2. 

II.B. Estimation of a: the asymptotic scaling range 

Since the conflict between the L-stable and Gaussian hypotheses hinges, 
essentially on the value of the characteristic exponent a, a choice between 
the hypotheses can be made, in theory, solely by estimating the true value 
of this parameter. Unfortunately, this is not a simple task. Explicit 
expressions for the densities of L-stable distributions are known for only 
three cases: the Gaussian (a = 2, f3 = 0), the Cauchy (a = 1, f3 = 0), and the 
coin-tossing case (a = 1/2, f3 = 1, 8 = 0, and y = 1). Without density func­
tions, it is very difficult to develop and prove propositions concerning the 
sampling behavior of any estimators of a that may be used. 

Of course, these problems of estimation are not limited to the charac­
teristic exponent a. The absence of explicit expressions for the density 
functions makes it very difficult to analyze the sampling behavior of esti­
mators of all the parameters of L-stable distributions. The statistical 
intractability of these distributions is, at this point, probably the most 
important shortcoming of the L-stable hypotheSiS. 

The problem of estimation is not completely unsolvable, however. 
Although it is impossible to say anything about the sample error of any 
given estimator, of a, one can attempt to bracket the true value by using 
many different estimators. This is essentially the approach that I followed 
in my dissertation. Three different techniques were used to estimate 
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values of a for the daily first differences of log price for each individual 
stock of the Dow-Jones Industrial Average. Two of the estimation proce­
dures, one based on certain properties of fractile ranges of L-stable vari­
ables, and the other derived from the behavior of the sample variance, 
were introduced for the first time in the dissertation. An examination of 
these techniques would take us more deeply into the statistical theory of 
L-stable distributions than is warranted by the present paper. The third 
technique, double log graphing, is widely known, however, and will now 
be discussed in detail. 

Levy has shown that the tails of L-stable distributions for values of a 
less than 2 follow an asymptotic form of scaling. Consider the distrib­
utions following the strong form of this law, 

Pr {U > u} = (u/Vt)-a u > 0, (1) 

and 

(2) 

where U is the random variable and the constants Vt and V2 are defined 
by 

13= vf-Vf 
\1+ Vf . 

In this case, of course, 13, is the parameter for skewness discussed previ­
ously. The asymptotic form of scaling is 

Pr {U> u} -- (u/Vt)-a as u -- 00 (3) 

and 

(4) 

Taking logarithms of both sides of expressions (3) and (4), we have, 

log Pr {U> u} -- - a( log u -log Vt), u > 0 (5) 

and 
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log Pr {U < u} -+ - o.(log I u I -log V2), u < O. (6) 

Expressions (5) and (6) imply that, if Pr {U > u} and Pr {U < u} are 
plotted against I u I on double log paper, the two lines should become 
asymptotically straight and have slope that approaches - a. as I u I 
approaches infinity. Double log graphing, then, is one technique for esti­
mating a.. 

Unfortunately, the simplicity of the double log graphing technique is, 
in some cases, more apparent than real. In particular, the technique is 
asymptotic when the characteristic exponent is close to 2. For a dis­
cussion, see M 1963p and also Fama 1963a, Chap. IV. 

II.C. Other properties of L-stable distributions 

The three most important properties of L-stable distributions are (1) the 
asymptotically scaling nature of the extreme tail areas, (2) L-stability or 
invariance under addition, and (3) the fact that these distributions are the 
only possible limiting distributions for sums of independent, identically 
distributed, random variables. Asymptotic scaling was discussed in the 
previous Section. We shall now consider in detail the property of 
L-stability and the conditions under which sums of random variables 
follow L-stable limiting distributions. 

1. Stability or invariance under addition. By definition, a L-stable distrib­
ution is any distribution that is invariant under addition. That is, the dis­
tribution of sums of independent, identically distributed, L-stable variables 
is itself L-stable and has the same form as the distribution of the indi­
vidual summands. "Has the same form" is, of course, an imprecise verbal 
expression of a precise mathematical property. A rigorous definition of 
L-stability is given by the logarithm of the characteristic function of sums 
of independent, identically distributed, L-stable variables. This function is 

n logfit) = i(n8)t - (ny) I t I a {I + i{3 if ( tan a.; )}, 

where n is the number of variables in the sum and log fit) is the logarithm 
of the characteristic function of the individual summands. The above 
expression is exactly the same as the expression for logfit), except that the 
parameters 8 (location) and y (scale) are multiplied by n. That is, the dis­
tribution of the sums is, except for origin and scale, exactly the same as 
the distribution of the individual summands. More simply, L-stability 
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means that the values of the parameters a and 13 remain constant under 
addition. 

The above discussion assumes that the individual, L-stable variables in 
the sum are independent and identically distributed. That is, the distrib­
ution of each individual summand has the same values of the four param­
eters a, 13, 8, and y. It will now be shown that L-stability still holds when 
the values of the location and scale parameters, 8 and y, are not the same 
for each individual variable in the sum. The logarithm of the character­
istic function of the sums of n such variables, each with different location 
and scale parameters, 8j and Yj' is 

This is the characteristic function of a L-stable distribution with parame­
ters a and 13, and with location and the sums of the scale parameters 
equal, respectively, to the sums of the location and the sums of the scale 
parameters of the distributions of the individual summands. That is, the 
sum of the L-stable variables, where each variable has the same values of 
a and 13 but different location and scale parameters, is also L-stable with 
the same values of a and p. 

The property of L-stability (in the sense of invariance under addition) 
is responsible for much of the appeal of L-stable distributions as 
descriptions of empirical distributions of price changes. The price change 
in a speculative series for any time interval can be regarded as the sum of 
the changes from transaction to transaction during the interval. If the 
changes between transactions are independent, identically distributed, 
L-stable variables, daily, weekly, and monthly changes will follow L-stable 
distributions of exactly the same form, except for origin and scale. For 
example, if the distribution of daily changes is normal with mean Jl and 
variance if, the distributions of weekly (or five-day) changes will also be 
normal with mean 5Jl and variance seT'. It would be very convenient if the 
form of the distribution of price changes were independent of the differ­
encing interval for which the changes were computed. 

2. Limiting distributions. It can be shown that L-stability (again, in the 
sense of invariance under addition) leads to a most important corollary 
property of L-stable distributions: they are the only possible limiting dis­
tributions for sums of independent, identically distributed random vari­
ables (Gnedenko & Kolmogorov 1954 pp. 162-63). It is well known that if 
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such variables have finite variance, the limiting distribution for the sum 
will be the normal distribution. If the basic variables have infinite vari­
ance, however, and if their sums follow a limiting distribution, the limiting 
distribution must be L-stable with 0 < a < 2. 

It has been proven independently by Gnedenko and Doeblin that in 
order for the limiting distribution of sums to be L-stable with characteristic 
exponent a (0 < a < 2), it is necessary and sufficient that (Gnedenko & 
Kolmogorov 1954 pp. 175-80) 

F( - u) C1 
-- as u- 00, 1- F(u) C2 

(7) 

and that for every constant k > 0, 

1 - F(u) + F( - u) a 

1 _ F(ku) + F( _ ku) - k as u - 00, 
(8) 

where F is the cumulative distribution function of the random variable U 
and C1 and C2 are constants. Expressions (7) and (8) will henceforth be 
called the conditions of Doeblin and Gnedenko. 

It is clear that any variable that is asymptotically scaling (regardless of 
whether it is also L-stable) will satisfy these conditions. For example, con­
sider a variable U that is asymptotically scaling but not L-stable. Then as 
u- 00 

and 

-a 
1-F(u)+F(-u) _ (u/V1)-a+(I-ul/v2) =ka 

1- F(ku) + F( - ku) (ku/V1)-a + (I _ ku I /V2) a ' 

and the conditions of Doeblin and Gnedenko are satisfied. 

To the best of my knowledge, nonstable, asymptotically scaling vari­
ables are the only known variables of infinite variance that satisfy condi­
tions (7) and (8). Thus, they are the only known nonstable variables 
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whose sums approach L-stable limiting distributions with characteristic 
exponents less than two. 

III. THE ORIGIN OF A L-ST ABLE MARKET: SOME POSSIBILITIES 

The price changes in a speculative series can be regarded as a result of the 
influx of new information into the market, and of the reevaluation of 
existing information. At any point in time, there will be many items of 
information available. Thus, price changes between transactions will 
reflect the effects of many different bits of information. The previous 
Section suggests several ways in which these effects may combine to 
produce L-stable distributions for daily, weekly, and monthly price 
changes. 

In the simplest case,the price changes implied by individual bits of 
information may themselves follow L-stable distributions with constant 
values for the parameters a and (3, but possibly different values for the 
location and scale parameters, 8 and y. If the effects of individual bits of 
information combine in a simple, additive fashion, then by the property of 
L-stability the price changes from transaction to transaction will also be 
L-stable with the same values of the parameters a and (3. Since the price 
changes for intervals such as a day, week, or month are the simple sums 
of the changes from transaction to transaction, the changes for these inter­
vals will also be L-stable with the same values of the parameters a and (3. 

Now suppose that the price changes implied by individual items of 
information are asymptotically scaling, but not L-stable. This means that 
the necessary and sufficient conditions of Doeblin and Gnedenko will be 
satisfied. Thus, if the effects of individual bits of information. combine in a 
simple, additive fashion, and if there are very many bits of information 
involved in a transaction, the distributions of price changes between trans­
actions will be L-stable. It may happen, however, that there are not 
enough bits of information involved in individual transactions to insure 
that the limiting L-stable distribution is closely achieved by the distrib­
ution of changes from transaction to transaction. In this case, as long as 
there are many transactions per day, week, or month, the distributions of 
price changes for these differencing intervals will be L-stable with the 
same values of the parameters a and (3. 

Mandelbrot has shown that these results can be generalized even 
further. (See M 1963e{E5}.) As long as the effects of individual bits of 
information are asymptotically scaling, various types of complicated com-
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binations of these effects will also be asymptotically scaling. For example, 
although there are many bits of information in the market at any given 
time, the price change for individual transactions may depend solely on 
what the transactors regard as the largest or most important piece of infor­
mation. Mandelbrot has shown that, if the effects of individual items of 
information are asymptotically scaling with exponent a, the distribution of 
the largest effect will also be asymptotically scaling with the same expo­
nent a. Thus the distribution of changes between transactions will be 
asymptotically scaling, and the conditions of Doeblin and Gnedenko will 
be satisfied. If there are very many transactions in a day, week, or month, 
the distributions of price changes for these differencing intervals will be 
L-stable with the same value of the characteristic exponent a. 

In sum, so long as the effect of individual bits of information combine 
in a way which makes the price changes from transaction to transaction 
asymptotically scaling with exponent a, then, according to the conditions of 
Doeblin and Gnedenko, the price changes for longer differencing intervals 
will be L-stable with the same value of a. According to our best know­
ledge at this time, however, it is necessary that the distribution of the price 
changes implied by the individuals bits of information be at least 
asymptotically scaling (but not necessarily L-stable) if the distributions of 
changes for longer time periods are to have L-stable limits. 

IV. IMPORTANCE OF THE L-STABLE HYPOTHESIS 

The L-stable hypothesis has many important implications. First of all, if 
we retrace the reasoning of the previous Section, we see that the hypoth­
esis implies that there are a larger number of abrupt changes in the eco­
nomic variables that determine equilibrium prices in speculative markets 
than would be the case under a Gaussian hypothesis. If the distributions 
of daily, weekly, and monthly price changes in a speculative series are 
L-stable with 0 < a < 2, the distribution of changes between transactions 
must, at the very least, be asymptotically scaling. Changes between trans­
actions are themselves the result of the combination of the effects of many 
different bits of information. New information, in turn, should ultimately 
reflect changes in the underlying economic conditions that determine equi­
librium prices in speculative markets. Thus, following this line of rea­
soning, the underlying economic conditions must themselves have an 
asymptotically scaling character, and are therefore subject to a larger 
number of abrupt changes than would be the case if distributions of price 
changes in speculative markets conformed to the Gaussian hypothesis. 
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The fact that there are a large number of abrupt changes in a L-stable 
market means, of course, that such a market is inherently more risky for 
the speculator or investor than a Gaussian market. The variability of a 
given expected yield is higher in a L-stable market than it would be in a 
Gaussian market, and the probability of large losses is greater. 

Moreover, in a L-stable market speculators cannot usually protect 
themselves from large losses by means of such devices as "stop-loss" 
orders. In a Gaussian market, if the price change across a long period of 
time is very large, the chances are that the total change will be the result 
of a large number of very small changes. In a market that is L-stable with 
a < 2, however, a large price change across a long interval will more than 
likely be the result of a few very large changes that took place during 
smaller subintervals. (For a proof see Darling 1952 or Arov & Bobrov 
1960.) This means that if the price level is going to fall very much, the 
total decline will probably be accomplished very rapidly, so that it may be 
impossible to carry out many "stop-loss" orders at intermediate prices. 
(See M 1963b{E14}.) 

The inherent riskiness of a L-stable market may account for certain 
types of investment behavior which are difficult to explain under the 
hypothesis of a Gaussian market. For example, it may partially explain 
why many people avoid speculative markets altogether, even though at 
times the expected gains from entering these markets may be quite large. 
It may also partially explain why some people who are active in these 
markets hold a larger proportion of their assets in less speculative, liquid 
reserves than would seem to be necessary under a Gaussian hypothesis. 

Finally, the L-stable hypothesis has important implications for data 
analysis. As mentioned earlier, when a < 2, the variance of the underlying 
L-stable distribution is infinite, so that the sample variance is an inappro­
priate measure of variability. Moreover, other statistical concepts, such as 
least-squares regression, which are based on the assumptions of finite vari­
ance are also either inappropriate or considerably weakened. 

The absence of a finite variance does not mean, however, that we are 
helpless in describing the variability of L-stable variables. As long as the 
characteristic exponent a is greater than 1, estimators which involve only 
first powers of the L-stable variable have finite expectation. This means 
that concepts of variability, such as fractile ranges and the absolute mean 
deviations, which do involve only first powers, have finite expectation and 
thus are more appropriate measures of variability for these distributions 
than the variance. 
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A fractile range shows the range of values of the random variable that 
fall within given fractiles of its distributions. For example, the 
inter quartile range shows the range of values of the random variable that 
fall within the 0.25 and 0.75 fractiles of the distribution. N being the total 
sample size, the absolute mean deviation is defined as 

f I~-XI 
IDI=L N 

i= 1 

V. THE STATE OF THE EVIDENCE 

The L-stable hypothesis has far-reaching implications. The nature of the 
hypothesis is such, however, that its acceptability must ultimately depend 
on its empirical content rather than on its intuitive appeal. The empirical 
evidence up to this point has tended to support the hypothesis, but the 
number of series tested has not been large enough to warrant the conclu­
sion that further tests are unnecessary. 

For commodity markets, the single most impressive piece of evidence 
is a direct test of the infinite variance hypothesis for the case of cotton 
prices. Mandelbrot computed the sample second moments of the daily 
first differences of the logs of cotton prices for increasing samples of from 
1 to 1,300 observations. He found that as the sample size is increased, the 
sample moment does not settle down to any limiting value but rather con­
tinues to vary in absolutely erratic fashion, precisely as would be expected 
under the L-stable hypothesis. (See M 1963b{E14}.) 

Mandelbrot's other tests in defense of the L-stable hypothesis are 
based primarily on the double log graphing procedure mentioned earlier. 
If the distribution of the random variable U is L-stable with a < 2, the 
graphs of log Pr {U < u}, u negative, and log Pr {U > u}, u positive, against 
log I u I should be curves that become asymptotically straight with slope 
- a. The graphs for the same cotton price data seemed to support the 
hypothesis that a is less than 2. The empirical value of a for cotton prices 
appears to be about 1.7. 

Finally, in my dissertation (Fama 1963-1965), the L-stable hypothesis 
has been tested for the daily first differences of log price of each of the 
thirty stocks in the Dow-Jones Industrial Average. Simple frequency dis­
tributions and normal probability graphs were used to examine the tails of 
the empirical distributions for each stock. In every case the empirical dis-



456 JOURNAL OF BUSINESS: 36, 1963, 420-429 0 0 E16 

tributions were long-tailed, that is, they contained many more observa­
tions in their extreme tail areas than would be expected under a 
hypothesis of normality. In addition to these tests, three different proce­
dures were used to estimate values of the characteristic exponent a for 
each of the the thirty stocks. The estimates produced empirical values of 
a consistently less than 2. The conclusion of the dissertation is that for the 
important case of stock prices, the L-stable hypothesis is more consistent 
with the data than the Gaussian hypothesis. 

VI. CONCLUSION 

In summary, the L-stable hypothesis has been directly tested only on a 
limited number of different types of speculative price series. But it should 
be emphasized that every direct test on unprocessed and unsmoothed 
price data has found the type of behavior that would be predicted by the 
hypothesis. Before the hypothesis can be accepted as a general model for 
speculative prices, however, the basis of testing must be broadened to 
include other speculative series. 

Moreover, the acceptability of the L-stable hypothesis will be 
improved not only by further empirical documentation of its applicability 
but also by making the distributions themselves more tractable from a sta­
tistical point of view. At the moment, very little is known about the sam­
pling behavior of procedures for estimating the parameters of these 
distributions. Unfortunately, as mentioned earlier, rigorous, analytical 
sampling theory will be difficult to develop as long as explicit expressions 
for the density functions are not known. However, pending the discovery 
of such expressions, Monte Carlo techniques could be used to learn some 
of the properties of various procedures for estimating the parameters. 

Mandelbrot's L-stable hypothesis has focused attention on a long­
neglected but important class of statistical distributions. It has been dem­
onstrated that among speculative series, the first differences of the 
logarithms of stock and cotton prices seem to confirm to these distrib­
utions. The next step must be both to test the L-stable hypothesis on a 
broader range of speculative series and to develop more adequate statis­
tical tools for dealing with L-stable distributions. 
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&&&&&&&&&&&& ANNOTATIONS &&&&&&&&&&&& 

This exploritory paper greatly helped M 1963b{E14} become understood in 
the economics community. At the time, I was supervising Fama's Ph.D. 
from far away, using the telephone, letters, and visits. After his thesis, 
subtitled" A test of Mandelbrot's Paretian hypothesis" (Fama 1965), Fama 
stayed in Chicago to pursue the study of my model of price variation. 
Within a few years, he produced many high quality students, beginning 
with R. Roll, M. Blume and M. Jensen. 

It must be revealed, however, that I never agreed with Fama that 
prices follow a "random walk." This contention did not seem to be empir­
ically established, see M 1963b{E14}. I saw no reason a priori to expect it 
to be true, therefore drew Fama's attention to martingales and to 
Bachelier's efficient market hypothesis. 

Fama & Blume 1966 later wrote that" Although independence of suc­
cessive price changes implies that the history of prices series cannot be 
used to increase expected gains, the reverse proposition does not hold. It 
is possible to construct models where successive price changes are 
dependent, yet the dependence is not of a form which can be used to 
increase expected profits. In fact, M 1966b{E19} and Samuelson 1965 show 
that, under fairly general conditions, in a market that fully discounts all 
available information, prices will follow a martingale which mayor may 
not have the independence property of a pure random walk. In particular, 
the martingale property implies only that the expected values of future 
prices will be independent of the values of past prices; the distributions of 
future prices, however, may very well depend on the values of past prices. 
In a martingale, though price changes may be dependent, the dependence 
cannot be used by the trader to increase expected profits. . .. In most cases 
the degree of dependence shown by a martingale will be so small that for 
practical purposes it will not do great violence to the independence 
assumption of the random-walk model." I never believed that. 

Editorial note. The original title was "Mandelbrot and the stable Paretian 
hypothesis." I hesitated before changing the title of someone else's paper, 
but went ahead because of a dislike for the word "hypothesis." 
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WHILE TEACHING ECONOMICS AT HARVARD, I spent part of the 
1962 Christmas vacation in Pittsburgh PA, where the Econometric Society 
held its Annual Meeting. M 1962i, which was to provide the substance of 
M 1963b{E14} and 1967b{E1S}' was honored by being made the sole topic 
of a session. Instead of three talks, each followed by a brief discussion, 
this session included my talk followed by several discussions. The two 
that were written down were thoughtful, but demanded a response. 
Sections 1 and 2 reproduce some telling points of those comments, in 
italics and between quote marks, and followed by my responses. Two 
other discussants, Lawrence Fisher and George Hadley of the University 
of Chicago, left no record. The source of the quite separate contribution 
by W. S. Morris will be mentioned in Section 3. 

1. COMMENTS BY PAUL H. COOTNER (1962-1964), PRINTED IN 
ITALICS AND FOLLOWED BY THE EDITOR'S RESPONSES 

• Cootner (1930-1978), best known for his work on speculation, hedging, 
commodity prices and the operation of the futures markets, was at the 
Sloan School of Industrial Management of M.LT. and later moved to 
Stanford as e.O.G. Miller Professor of Finance. An influential book he 
edited, Cootner 1964, reprints M 1963b{E14} and Fama 1963{E16}, but also 
adds extensive comments of his own, "to make available his skeptical 
point of view." Those comments began with elegant praise quoted in the 
Preface, and continued with meticulous criticism not always based on 
meticulous reading. Beale 1966 (p. 219) wrote that "while I found his 
remarks useful, I suspect Cootner, the editor, has compromised unduly 
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with Cootner, the protagonist, in this instance." Indeed, I was not asked 
to respond in print, and detailed responses communicated privately were 
disregarded. 

Most notably, my insistence on dealing with "certain" prices was 
careful and always implied "not necessarily all," and I never viewed 
random walk (or even the martingale property) as anything more than a 
first approximation. Indeed, Section VII of M 1963b{E14} clearly marked 
my early contact with dependence. I always was sensitive to these two 
objections, because they keep being brought up to this day. 

However, it was proper and necessary that the expert should scruti­
nize an intensive beginner's "manifesto" with more than ordinary severity. 
Besides Cootner was helpful in stating in the open what others say in 
private to this day, and some flaws that he noted were genuine and 
natural in a first paper: they concerned issues I also recognized, but could 
not handle until much later - as described in Chapter E1. A belated and 
muted response appeared in Section 1 of M 1967b{E1S}, but had no 
impact, and Cootner doubtlessly blunted the effects of my eloquence and 
of that of Fama. As suggested in the Preface, many of those whom my 
work had shaken and challenged in 1964 were motivated by the 
inquisitorial tone to wait and see. To conclude this introduction, I regret 
that Cootner cannot further comment, but believe that even at this late 
date a purpose is served by responding in writing. • 

The same passionate devotion that makes [M 1963b{E14}] such a vivid exposition 
of ideas lends it a messianic tone which makes me just a bit uncomfortable. I was 
continually reminded, as I read it, of the needling question a teacher of mine liked 
to ask - What evidence would you accept in contradiction of your hypothesis? 
While there is a wealth of evidence presented in the lengthy paper, much of it is 
disturbingly casual. Much of the evidence is graphical and involves slopes of 
lines which are not given precise numerical values in the paper. Nor is there any 
concern that the values of a which fit the tails will also fit the rest of the distrib­
ution. 

The evidence presented in M 1963b{E14}, and later in M 1967b{E1S} 
was incontrovertible and easily "falsifiable." My tone was casual for two 
reasons: to be read and provoke discussion, it was necessary to avoid 
pedantry. More importantly, I was acutely aware, though of course in 
lesser technical detail than today, that there is a deep contrast between 
mild and wild randomness, and that the latter called for more than a 
careful use of standard statistics. 
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The statisticians' knocking down of graphical evidence was always 
excessive, and is becoming much less strident in recent years. Computer 
graphics vindicate my long-held belief that, in a first analysis, graphical evi­
dence is unbeatable, both in its power to analyze, and in its power to com­
municate the results of analysis. 

Concerning the "precise numerical" a, Figure 5 of M 1963b{EI4} 
explained in Section II C, incorporates a continuous curve described as the 
tail probability density of the L-stable distribution for a = 1.7. Rough 
visual estimation was the best anyone could hope for in 1963. Besides, 
a -1.7 was confirmed in diverse contexts (examples being found in Walter 
1994) and may perhaps turn out to be of wide occurrence, and even 
"universal." 

In any event, "exact fit" is rarely an issue in science, it is never an 
issue in first-order models, and I recall distinctly that the mathematician 
Willy Feller was scathing in his criticism of those who claimed that any sci­
entific data could be exactly Gaussian. Some data are close enough to 
Gaussian, and no one is bothered by the need for corrective terms to 
account for local discrepancies. Similarly, market price data are surely not 
exactly fitted by the L-stable distribution. The only issues worth tackling 
are the overall shape of the distribution and precise fit in its tails, which 
are of greatest interest and happen to be the easiest to study. There, the 
only question is whether or not my L-stable model is a good first approxi­
mation. 

At one of the few places where numbers are mentioned, some [ratios of the 
scale foctors of the distribution of monthly price changes to that of daily price 
changes] are dismissed as "absurdly large," and "corrected," and in the new data, 
a number, 18, is accepted as reasonably close to another number which should be 
somewhere between 21 and 31. 

This is a crucial issue. The end of M 1963b{EI4} states specifically that 
successive price changes foil to be independent. Unfortunately, when vari­
ance is infinite, one cannot use correlations to measure the degree of 
dependence. I tried out a promising alternative, by defining the 
"effective" number Neff of trading days in a month as the ratio of scale 
factors ya for months and for days. To accept the observed ratio Nef/Ntrue 
as "reasonably close" to 1, as I did, was simply to conclude that it seemed 
legitimate to postpone the study of dependence. A ratio NefflNtrue > 1 
would imply "persistence," i.e., a positive dependence between price 
changes; a ratio Nef/Ntrue < 1 would imply "antipersistence," i.e., negative 
dependence. Not until much later (as seen in Chapter El) did 
multifractals extend the scope of scaling to cover this form of dependence. 
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Multifractals introduce a second descriptive exponent 17, and lead to the 
relation Neff - (Ntru)'?' Values of 17 < 1 (resp., 17 > 1) would characterize 
negative (resp., positive) dependence. 

As to the words "absurdly large," they are easy to explain. As read 
off my Figure 5, the distribution of monthly changes for the period 
1880-1940 had a scale factor 10 times larger than the distribution of daily 
changes for the period around 1950. To obtain a scale change of 10 with a 
between 1.6 and 1.7 would require between 101.6 = 40 and 101.7 = 50 days. 
This huge value is indeed "absurdly large," yet it was expected in 1963, 
that the two periods do not overlap. M 1972b{E14}, reproduced as 
appendix I of M 1963b{E14} describes the honest but gross misreading of 
data sent by the U.s. Department of Agriculture that led me to think that, 
around 1900, cotton was traded 7 days a week. (It is distressing that 
someone with Cootner's expertise in commodities did not identify this 
clear mistake on my part.) In 1963, everyone took it for granted that price 
variability had gone down between 1900 and 1950. It seemed eminently 
reasonable, therefore, to compare the months for the 1880-1940 period with 
the days within a period of a few years haphazardly chosen somewhere in 
the middle of the 1880-1940 span. After the United Stated Department of 
Agriculture sent better data, the value of 18 days that infuriated Cootner 
turned out to be an underestimate. 

Mandelbrot asserts that the data on cotton spot prices are supported by 
research into wheat spot prices as well, [but the slope is] 'too close to 2 for 
comfort.' 

The assertion concerning wheat is documented in M 1967b{E15}. 
Instead of "too close to 2 for comfort," I should have written "too close to 
2 for easy estimation of a from the graph and for use as a prime example 
of a radical theory." 

A very interesting, but questionable, proposition about stock price index 
numbers, that large changes in them are generally traceable to one or a small 
number of components, is said to be "obviously" correct without any empirical 
evidence at all. 

Touche. This form of concentration remains to this day a nice topic 
for study. Other forms of concentration are beyond argument, but this 
particular form is affected by the fact that index numbers may be domi­
nated by market factors that affect every component of the index. 

Most of Mandelbrot's data deal with commodity spot prices. These are not, 
and I repeat, not the kind of data that we would expect to display Brownian 
motion in the first place. 
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M 1963b{E14} does not argue about Brownian motion, but seeks a good 
description of certain prices' variation. 

Anyhow, theory should never blind one to the evidence. 

If successive stock price changes were L-stable and independent, the 
observed ran~e between the highest and lowest observed prices would increase at 
a rate of TI a instead of at a rate TI12, where T is the period of observation. 
Since the evidence if Stieger and Cootner suggests that the range increases at a 
rate slower that TIl, if stock prices are distributed in L-stable fashion, they must 
be even more dependent than in the Gaussian case, and thus be an even poorer 
approximation to a true random walk. 

This is an excellent remark, and it is astonishing that it was not taken 
up strongly enough to draw everybody's attention. The exponent of T 
combines tail and dependence effects, and Cootner's observation fits per­
fectly in the program of investigation I had already mapped out in 1963 
(see the comment by W. S. Morris in Section 3) and carried out on and off 
over the years. 

2. COMMENTS BY EMANUEL PARZEN (1962), PRINTED IN ITALICS, 
AND FOLLOWED BY THE EDITOR'S RESPONSES 

• Parzen, best known for a textbook on probability theory and for work 
on spectra and other methods of analyzing time series, was Professor of 
Statistics at Stanford, and later moved to SUNY Buffalo, and on to Texas 
A&M. • 

Mandelbrot makes three important contributions. 
Its probabilistic contribution is to make us even more aware than we may 

have been that the "frequently encountered" probability distributions (Parzen, 
1960, pp. 218-221) must be enlarged. . .. Along these lines, it is of interest to 
quote the view of Gnedenko & Kolmogorov 1954 (p. 11). 'There is no doubt that 
the arsenal of those limit theorems which should be included in future practical 
handbooks must be considerably expanded in comparison with classical standards. 
Of course, it is necessary to make some choice. For example, "normal" conver­
gence to the non-normal L-stable laws undoubtedly must already be considered in 
any comprehensive text in, say, the field of statistical physics' 

The Gnedenko-Kolmogorov line on applications to "statistical physics" 
caught the attention of many readers and my advance response to Parzen 
is found in M 1963e{E3}. But it deserves being repeated. In 1958, I was 
about to publish M 1958p and Kolmogorov was visiting Paris, so I asked 



E17 0 0 ... AND RESPONSES 463 

him to elaborate. He answered that he knew of no actual application. His 
surviving students do not, either. This quote may merely demonstrate 
that the most famous pure mathematician in the USSR of 1949 sometimes 
needed to invoke hypothetical applications to be left alone. 

As further clue, Parikh 1991 describes a visit to Moscow in 1935 by 
Oskar Zariski. We read that "one evening, Pontryagin and Kolmogorov 
were putting forward the Marxist view that only applied mathematics had 
any importance. Zariski [who called himself a Marxist at that time] broke 
in .... 'Don't you find it difficult to write about topology?' Skillfully side 
stepping the issue, Kolmogorov answered: 'You must take the term appli­
cation in a wide sense, you know. Not everything must be applied imme­
diately. Almost every view of mathematics is useful for the development 
of technology, but that doesn't mean that every time you do mathematics 
you must work on a machine.'" 

Its empirical contribution consists in pointing out economic phenomena 
which may satisfy L-stable laws, and in developing various heuristic principles 
(such as the principles of aggregation and disaggregation) for testing ... 

After thirty years during which the idea of scaling grew to conquer 
several branches of science, it is interesting to see that there was a time 
when the principle of scaling in economics could be described as 
"heuristic." 

Its statistical contribution consists of pointing out the need for analytical 
work on various problems of statistical inference, of which I shall describe two. 

First, I would like to see a more theoretical treatment of Mandelbrot's doubly 
logarithmic graphs, and in particular of the [estimation of] the value of u. 

I second this wish wholeheartedly. There is already a good beginning. 

Secondly, I cannot agree that such statistical techniques as the method of 
moments and spectral analysis have been shown to be without value for economic 
statistics. Statisticians realize that ... to cast a real problem into one of the well 
analyzed theoretical frameworks, one may have to manipulate the observed data by 
a transformation, such as ... square root or logarithm [ or x - Cx2]. Such trans­
formations [can] yield random variables with finite higher moments. 

Chapter E5 argues that in finance the most important data are the so­
called "outliers." Therefore, "stabilization" through a nonlinear change of 
variable is self-defeating. Such transforms bury under the rug all the 
special features relative to high values of x. The widely condemned graph­
ical methods, when done carefully, are more sensitive to the details of the 
evidence. 
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5. COMMENTS BY WILLIAM S. MORRIS (1964): CAN ECONOMICS 
BE SCIENTIFIC? 

"[Mandelbrot's work] is likely to produce profound changes in economics 
and related social sciences. The tight interplay between theory and objec­
tive data found in the ... physical sciences is, I am sure we must all admit, 
conspicuously absent in economics. This, I believe, is due mainly to the 
fact that our methods of inductive reasoning ... work nicely when the dis­
tributions encountered conform to ... the framework of our present statis­
tical techniques, but break down when we try to force these statistical 
techniques to function in areas where it is impossible for them to do so .... 
I should like to suggest a manner in which a wealth of important, worth­
while information about economic processes might be gained .... 

"I. That we restrict ourselves to raw source data which have not been 
doctored or averaged in any way. Such data manipulations [usually hide] 
the extreme values. 

"2. That we abandon the ... preconceived notions about how data 
ought to behave .... The ubiquitous assumption that economic decisions 
are affected by the difference between the actual value of an economic var­
iable and some theoretically normative or equilibrium value seems to con­
flict not only with the behavior of economic data but with the degree of 
human stimulus-response adaptability indicated in numerous 
psychometric studies. 

"3. That we find the simplest stochastic process that can be fit reason­
ably well. [Chance mechanisms give] us a somewhat greater a priori idea 
of permissible tolerances than one would have when fitting an algebraic 
hypothesis. 

"A forbidding amount of basic research will have to be done ... [and 
one needs] compact computer subroutines .... 

"While there may be quite a number of special problems for which ... 
[suffice independent events we need] a less restrictive class of stochastic 
processes .. , support prices, options, pro-ration, liability limitations and the 
like soon lead to critical factors so inconsistent with the simple random 
walk that one would expect this approach to break down. 

"In the field of stochastic processes, one seems to pass so sharply from 
the random walk into terrifyingly limitless possibilities ... We shall prob­
ably not be able to restrict ourselves to stationary Markov processes, .... 

"The criterion by which people of our culture normally judge the 
success or failure of a scientific discipline is that it provides techniques 
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that work. We reject the ponderous compendium of loosely organized bits 
of wisdom and search for a unifying principle or technique which 
somehow brings the entire discipline within the understanding of or, 
better yet, the control of, the scientist. If his theory works we accept it, 
however violently it may contradict the unmistakable testimony of our 
five senses and our common sense as well. The economist who shares this 
predilection has, I believe, good reasons to hope that in the L-stability pre­
serving Markov process he will find the unifying principle that will put an 
end to the frustrations and humiliations that have heretofore attended our 
attempts to invade the mysteries of economic time series." 

About William S. Morris and computers on Wall Street. This text con­
firms that, as already mentioned in the Preface, the author of this text and 
I were close. He articulated our common concerns very early and very 
clearly. Born in Canada in 1916, Morris graduated from Princeton with an 
AB with honors in mathematics. This is why we communicated so easily, 
and why he sat in the Visiting Committee of the Princeton Mathematics 
Department when Fine Hall was moving. He was an actuary, joined the 
Army, and worked for the First Boston Corporation. After he went in 
business for himself in 1959, his saga was marked by headlines in the First 
Business page of The New York Times. August 17, 1961: Surprise Bid Wins 
California Bonds; 100 Million Involved. August 20, 1961: Small Concern led 
by Mathematician in Wall Street Coup. September 14, 1961: Second Large 
California Issue Won by "Insurgent" Bond House. Wall Street Lauds Bid. 
August Sale Had Drawn Resentment in Trade. November 21, 1961: Bond 
House Installs Own Computer. May 9. 1963: 'Maverick' Investment Concern 
Wins 122 Million Bond Issue. Surprise Bid. May 12, 1963: Two Large Bond 
Issues Falter Despite Big Supplies of Money. May 12, 1963: Bonds: Morris 
Sells 62 Million of Washington Power's Dormant Issue at a Discount. Balance 
Still Unsold. September 6, 1963: Man Who Outbid Big Syndicates For Bonds 
Quits the Business. January 17, 1964: Morris Bidding Again, But Loses. 
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Computation of the L-stable distributions 

.. Abstract. The first tables, M & Zamfaller 1959, were quite difficult to 
compute, and the resulting figures were drawn by hand. Today, several 
dependable programs are available. This brief and casual chapter is 
neither a systematic discussion nor a full bibliography, only a collection of 
hopefully useful odds and ends that are close at hand. .. 

WHILE THIS BOOK WAS BEING PLANNED, a stage that lasted many 
years, it seemed indispensable to include a chapter devoted to numerical 
evaluation of the L-stable densities. Early on, this topic was difficult and 
technical, and the M 1963 model that created the need to know was the 
only scaling model. Today, the computational difficulties have been 
tamed and new scaling models "compete" with L-stability. Those reasons, 
and a suddenly increased pressure of time, led me to reduce this chapter 
to modest bits of history and references. 

1. Books on the L-stable distributions 

The parametrization of the L-stable distributions. A "comedy of errors," to 
which I made an unfortunate contribution, is described in Hall 1981. The 
notation has not reached consensus, for example, Zolotarev gives five dif­
ferent sets of parameters. 

Gnedenko & Kolmogorov 1954. This remains the most widely available 
reference. A comment on it, by E. Parzen, is reproduced in Chapter E17, 
with a response. 

Zolotarev 1983-1986. This wide-ranging and excellent mathematical 
survey appeared in Russian as Zolotarev 1983. It was surprising and 
interesting that the introduction of this book from the Soviet era should 
observe that "In our times there has been a sharp increase of interest in 
stable laws, due to their appearance in certain socio-economic models". 
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Section 1.3 elaborates, with reference to my work. And the Introduction 
ends with these words: "It is still comparatively rare to encounter multi­
dimensional stable laws in application (other than Holtsmark's work). 
However, there is reason to expect that this situation will change in the 
near future (due first and foremost to applications in economics.) 

Most unfortunately, the English translation, Zolotarev 1986, is clumsy 
and marred by serious misprints in the formulas. Prudence suggests that 
even the reader who finds Russian to be completely incomprehensible 
should consider checking the translated formulas against the original ones. 
The American Mathematical Society told me (a while ago!) that they 
would welcome a List of Errata. If someone comes forth and volunteers to 
put one together, I would be delighted to provide a xerox of the long out­
of-print Russian original. 

Recent books. Books on L-stable processes also contain information on 
the distributions. They include Samorodnitsky & Taqqu 1994, Janicki & 
Weron 1994, and the forthcoming Adler, Feldman & Taqqu 1997. 

2. Selected printed sources of tables and graphics 

The oldest, M & Zarnnfaller 1959 (see Section 3), contained both tables and 
graphics for this maximally skew case with 1 < a < 2). A few were pub­
lished in M 1960HE10} and, in a different format, in M 196Oj{Appendix to 
E10}. As to the symmetric case, the tables corresponding to the Figure 3 
of M 1963b{E14} were never published. 

The next set of tables and graphics was by Holt & Crow 1973. 

The recent books listed in Section 1 are alternative sources. 

3. Computer access to current on line programs and worked out tables 

When the need arises, my contacts are the following individuals, who 
have also made many contributions to the theory of L-stability and its 
applications in finance (for example, by contributing to. Adler et al. 1997.) 

J. H. McCulloch (mcculloch.2@osu.edu) Department of Economics, 
Ohio State University, Columbus, OH 43210-1172. 

D. B. Panton (panton@Uta.edu) Department of Finance and Real Estate, 
University of Texas, Arlington, TX 76019-1895. 

• The tables due to the preceding two authors are described in 
McCulloch & Panton 1997 and are available in computer readable form by 
anonymous FTP at the following two sites: 
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ecolan.sbs.ohio-state.edu/pub / skewstable 

ftp.uta.edu/pub/projects/skewstable. 

Web page: http://www.econ.ohio.state.edu/jhm/ios.html. 

J. P. Nolan (jpnolan@american.edu) Department of Mathematics and 
Statistics, American University, Washington, D.C. 20016-8050 . 

• The Nolan program can be found on his web page, which is 

http:// www.cas.american.edu/njpnolan. 

4. A look far back in time: the preparation of M & Zarnfaller 1959, and 
scientific computing before the age of FORTRAN 

The computer entered my life shortly after I joined IBM in 1958. M 1958p, 
reporting on a lecture given in 1957, was about to appear. That paper was 
meant to be a manifesto to advocate the use of L-stable distributions 
(under the name of "Levy laws") in the social sciences. The good thing is 
that my arguments were to pass the test of time. The bad thing is that M 
1958p had absolutely no effect. It did not help that it was written in 
remarkably clumsy French, was not proofread (!), and appeared in a news­
letter mailed to psychologists. 

But this failure had deeper reasons. In science (contrary perhaps to 
politics), a manifesto is rarely effective until it is already buttressed by 
achievement. This is why M 1982F{FGN} was to combine a manifesto with 
a casebook of clear successes. In 1958 and even today, an immediate and 
intrinsic obstacle to the acceptance of L-stable distributions was that the 
most useful ones cannot be expressed analytically. I felt that, aside from 
possible use in science, those distributions were known very incompletely 
by mathematicians, and that closer numerical and visual acquaintance 
would be a boon to both the mathematical and the scientific uses. 

From a distance, IBM Yorktown seemed the dream location to prepare 
the required computations, which is one reason why I came as a summer 
visitor in 1958. (No one dreamed at this time that this visit would extend 
into thiry-five years of employment.) 

Before I left Paris, a French expert told me of a marvelous new 
invention named FORTRAN, which was expected to revolutionize computer 
programming. As a matter of fact, this expert asked a special favor: to 
try and provide him with access to FORTRAN. 

However, FORTRAN was not yet generally used at the IBM Research 
Center, and my first contact with computers was disappointingly old-
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fashioned. The programmer assigned to my application, Frederick J. 
Zamfaller, was young in years, but already a veteran of programming in 
machine language. Therefore, the computations that led to our joint work 
were, by the new standards that were already emerging, extraordinarily 
clumsy and interminable. 

After the fact, however, it is a reason for some pride that my roots as 
a user of computers should reach before the creation of even the most 
basic tools. As described elsewhere, the same is true of my roots in com­
puter graphics. 

The tables that appeared as M & Zarnfaller 1959 (an IBM Report) pro­
vided the basis for M 1960HE10}. The full tables were not detailed, hence 
not bulky. Naively, I thought they were worth publishing and would 
interest the probabilists and practical and theoretical statisticians. But I 
was wrong: no journal expressed the slightest interest in them. At that 
point in time, interest in the theory of L-stable distributions was at a low 
point, witness the fact that most of my references, for example Levy 1925, 
were already ancient. The only useful textbook on the subject was 
Gnedenko & Kolmogorov 1954. The standard textbook of probability was 
then Loeve 1955; it was satisfied with devoting a few rushed pages to a 
topic that altogether lacked generality. 



PART V: BEYOND THE M 1963 MODEL 

Most pages of my contribution to price variation concerned series that are domi­
nated by the long-tailedness of the distribution of changes or of the "correlation." 
For the latter, much of my work centered around RIS analysis, whose asset is 
extreme robustness with respect to non-Gaussian margins. Soon after 1965, as 
seen in this part, I began to face diverse classes of prices in which long-tailedness 
and long-dependence are intertwined indissolubly. This stage continues to this 
day, as seen in Parts I and II, and this book did not wait for it to be completed. 

&&&&&&&&&&&&&&&&&&&&&&&&&&& 

Journal of Business: 39, 1966,242-255. 

Nonlinear forecasts, rational bubbles, 
and martingales 

E19 

• Chapter foreword. Two terms are found in the title of this reprint, but 
not of the originals, namely, "nonlinear" and "rational bubble." They 
express the two main points of this paper in words that were not available 
to me in 1966. 

The main substantive finding was that rational behavior on the part of 
the market may lead to "wild" speculative bubbles of the form illustrated 
in Figure 1. The randomness of these bubbles is called "wild" in my 
present vocabulary, because they can be extremely large, and their sizes 
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and duration follow a scaling distribution. This distribution is closely akin 
to the L-stable distribution introduced in the model of price variation pre­
sented in M 1963b{E14}. 

Today, the existence of very large bubbles in actual market records is 
known to everyone: both to the economists and to the newspaper-reading 
public from New York to Tokyo. But it may be interesting that neither the 
term bubble nor the behavior it describes were known to me when I wrote 
this paper. Hence, my argument can be viewed as a genuine prediction. 

A basic mechanism that is part of my argument was rediscovered in 
Blanchard & Watson 1982. But the bubbles examined by these authors are 
very different from those I predicted. They are not "wild" at all and can 
even be called "mild" because the distribution of size and duration is not 
scaling but exponential. (This is a possibility this paper considers briefly 
but then dismisses.) The duration of exponentially distributed bubbles 
would have a small scatter, and the largest among such bubbles would not 
be sufficiently distinct to be observed individually. In addition, Blanchard 
& Watson 1982 predicts that all bubbles end by a rise or a fall of the same 
size. This conclusion is closely akin to Bachelier's original idea that price 
changes are Gaussian, but is in disagreement with reality, which is alto­
gether different. 

Now we move on to the term "nonlinear" that was also added to the 
title. It does not concern the economics substance, but a mathematical 
technique. Wild bubbles appear when forecasting is nonlinear. Linear 
forecasting yields altogether different results investigated in M 1971e{E20}. 

Given that both themes in this paper were ahead of their time, one 
hears with no surprise that it was originally viewed with trepidation and a 
certain fear. It was submitted to the Journal of Political Economy, but they 
pressed me to allow it to be transferred to the end of a special issue of the 
Journal of Business. The editor of that special issue, James H. Lorie, con­
tributed Comments that remain interesting, and include statements that can 
serve as substitute to the Abstract that was lacking in my paper. • 

.. In lieu of abstract: Comments by J. H. Lorie. "[This] interesting 
article ... is almost purely theoretical and has no direct application to the 
selection of investments or the management of portfolios; however, it 
should prove to be very important. In the last few years a significant 
controversy has developed over whether the prices of stocks follow a 
"random walk." The proponents of this view - primarily academicians -
have presented an impressive body of evidence, although it is by no 
means definitive. If they are to be believed, knowledge of the history of 
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movements of the prices of stocks is of no value. Strongly opposing this 
view are the technicians who believe that knowledge of the movement of 
stock prices, properly interpreted and usually considered in conjunction 
with information on volume, can yield extraordinarily high profit. The 
technicians have to believe that "tomorrow's" prices depend to some 
extent and in some way on "yesterday's" prices. There is some evidence 
of weak dependence. The random walkers say that it is too weak to be 
meaningful, while the technicians would assert the contrary ... Mandelbrot 
[shows] that it is theoretically possible for dependence to exist without 
knowledge of such dependence being valuable or capable of producing a 
profit. 

"Of the work in progress on [diverse aspects of finance], much has 
had the effect of discrediting beliefs - and even some relatively sophisti­
cated ones - about the behavior of security prices. Much of the work now 
in progress centers on the careful testing of more such beliefs, and I feel 
safe in predicting that the majority of the findings will be of the same 
general sort." .. 

THE BEHAVIOR OF SPECULATIVE PRICES has always been a subject 
of extreme interest. Most past work, including M 1963b{E14} emphasized 
the statistics of price changes. The present paper goes one step farther, 
and relates my earlier findings concerning the behavior of prices to more 
fundamental economic "triggering" quantities. This effort is founded on 
an examination, one that is simplified but demanding and detailed, of the 
roles that anticipation and expected utility play in economics. 

1. INTRODUCTION AND SUMMARY OF EARLIER 
INVESTIGATIONS 

My findings will depend on both the behavior of the underlying 
"triggering" variable and the relationship between the "triggering" vari­
able and the price. It is possible to conceive of models where the price 
series follows a pure random walk, that is, price changes are independent. 
It is also possible to conceive of models where successive price changes 
are dependent. When prices do not follow a random walk, but the depend­
ence cannot be used to increase expected profits, probabilists say that 
prices follow a "martingale process." Before exploring these intriguing 
possibilities, however, it is appropriate to begin with a brief review of the 
current state of affairs in the field. 
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When examining prices alone, one assumes implicitly that all other 
economic quantities are unknown and that their effects on the develop­
ment of the price series Z(t) are random. The stochastic mechanism that 
will generate the future values of Z(t) may, however, depend on its past 
and present values. Insofar as the prices of securities or commodities are 
concerned, the strength of this dependence has long concerned market 
analysts and certain academic economists, and remarkably contradictory 
conclusions have evolved. 

Among the market analysts, the technicians claim that a speculator can 
considerably improve his prospects of gain by correctly interpreting 
certain telltale "patterns" that a skilled eye can help him extract from the 
records of the past. This naturally implies that the future development of 
Z(t) is greatly, although not exclusively, influenced by its past. It also 
implies that different traders, concentrating on different portions of the 
past record, should make different estimates of the future price Z(t + D. 

Academic economists tend to be skeptical of systematic trading 
schemes. An example is found in Section VI of M 1963b{E14} and its con­
tinuation in Fama & Blume 1966. These economists like to emphasize that, 
even if successive price changes were generated by tossing a fair coin, 
price series would include spurious "patterns." One should therefore 
expect that more elaborate probabilistic generating mechanisms could 
account for some other patterns as well and possibly even for all patterns. 
As a result, the basic attitude of economists is that the significance of any 
pattern must always be evaluated in the light of some stochastic model. 

The earliest stochastic treatment of price behavior is found in the 1900 
dissertation of Louis Bachelier. Bachelier 1900 conceived several models, 
of varying generality and complexity. His most general and least devel­
oped model states that the present price is an unbiased estimator of the 
price at any moment in the future. Bachelier's second-level model asserts 
that, for every t and T, the increment Z(t + D - Z(t) is independent of the 
values of Z up to and including time t. This assumption is best referred to 
as the "random walk." Bachelier's third-level model, the only one to be 
fully developed, asserts that Z(t + D - Z(t) is a Gaussian random variable 
with zero mean and a variance proportional to T. The present term for 
such a Z(t) is "Brownian motion." 

Despite its popularity, the Gaussian model clearly is contradicted by 
the facts. First of all, M 1963b{E14} focussed on the distribution of price 
changes and showed that price increments which are stable-Levy accounts 
surprisingly well for many properties of extremely long price series. The 
present paper strives for an even better model, one generated by an 
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explicit economic mechanism. The marginal distribution of price incre­
ments will be scaling, but the increments will not be independent. To be 
perfectly honest, an assumption of independence will creep in by the back 
door, through the hypotheses that will be made concerning the intervals 
between the instants when the weather changes. It would be easy to make 
less specific probabilistic assumptions but very hard to carry out their 
implications. 

We shall find that the sample variation of price exhibits a variety of 
striking "patterns" but that these not benefit the trader, on the average. 

The stochastic process Z(t) to be examined will be a martingale. To 
define this concept, denote by t, t + T and ~ the present instant of time, a 
future instant and an arbitrary set of past instants. Z(t) is a martingale if 

E[Z(t + n, given the values of Z(t) and of all the Z(~) J = Z(t). 

One immediate result of this definition is that E[Z(t + n, given the 
value of Z(t) J = Z(t). However, much more is implied in the martingale 
equality. It demands statistical independence between future anticipations 
and all past values of Z. Thus, one can define a martingale in two stages. 
(A) It is possible to speak of a single value for E[Z(t + n I Z(t)], without 
having to specify by which past values this expectation is conditioned. (B) 
One has E[Z(t + n I Z(t) J = Z(t). This two-stage definition should underline 
the central role that martingales are likely to play in the problem to which 
the present work is devoted: that of the usefulness of a knowledge of past 
prices for purposes of forecasting. 

It should also be stressed that the distribution of Z(t + n, conditioned 
by known values of Z(t) and of the Z(~), may very well depend upon the 
past values Z(~). The expectation is unique in being unaffected by the Z(~). 

The application of martingales to price behavior gives meaning to the 
loose idea that prices are somehow "unbiased." This idea goes back at 
least to Bachelier, in whose mind "unbiasedness" meant that price deter­
mination in active speculative markets is governed by a linear utility func­
tion. 

However, let us consider some nonlinear function F of the price. In 
general the expectation of F[Z(t + nJ will not equal the present value 
F[Z(t)]. This means that, if our speculator's private utility function is not 
linear in Z, playing on Z may be advantageous or disadvantageous for 
him. Moreover, individual speculators need not be led by the same utility 
as the market considered as a whole. They may, for example, either seek 
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or avoid a large dispersion of possible future prices Z(t + D. Even in the 
case of a martingale, an increasingly detailed knowledge of the past may 
be useful for such purposes. 

Similarly, if log Z is a martingale, playing on Z will be advantageous 
to speculators having a linear utility function. The fact that unbiasedness 
is linked to a choice of scale for Z is well known to mathematical statisti­
cians. 

Interest in martingales among pure probabilists is such that an 
immense variety of martingale processes has been described. If we dealt 
with a single economic series, namely the price, the choice among this 
wealth of possibility could only be directed by purely mathematical cri­
teria - a notoriously poor guide. Hence, the present step beyond the 
random walk was undertaken only within the context of a "fundamental 
analysis," in which the price attempts to follow "value." That is, the 
present price Z(t) is a function of past prices, and of the past and present 
values of the exogenous trigger Y(t). In the present paper, the process gen­
erating value will be such that, as T increases, the expectation of Y(t + D 
will tend fairly rapidly toward a limit. Taking that limit to be the present 
price Z(t), will achieve two results. (1) Price and value will occasionally 
coincide. (2) Price will be generated by a martingale stochastic model in 
which the present Z(t) is an unbiased estimator of Z(t + D. Moreover, for 
large enough values of T, Z(t) is an unbiased estimator of Y(t + D. 

If, however, the process generating Y has other properties, the forecast 
future value E[Y(t + infinity)] need not be a martingale. An example to 
the contrary is given in Section IIG. Therefore, the fact that forecasting the 
value leads to a martingale in the price tells us something about the struc­
ture of the value as well as the structure of the market mechanism. If the 
forecasted value does not follow a martingale, price could follow a 
martingale only if they fail to follow forecasted value. 

The above considerations are linked with the often-raised question of 
whether one can divide the speculators into several successive groups 
where members of the first group know only the present and past values 
of Z; members of the next group also know the present and past values of 
the single series Y, and know how the price will depend upon the vari­
ation of Y; members of further groups also know the temporal evolution 
of various series that contribute to Y, and again know how these series 
affect the price. In the model of the present paper knowing anything 
beyond the present Z(t) brings no advantage, on the average. 

Martingales are naturally closely related to other techniques of time­
series analysis that involve conditional expectations, such as regression 
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theory, correlation theory, and spectral representation. In particular, if Z(t) 
is a martingale, its derivative is spectrally "white" in the sense that the 
covariance C(T) between Z'(t) and Z'(t + T) vanishes if T '# o. It follows that 
the expected value of the sample spectral density of Z'(t) will be a con­
stant independent of frequency. A market that can associate such a series 
Z(t) with the exogenous Y(t), can be called a "whitener" of the derivative 
Y'(t). However, one must keep in mind that spectral methods are con­
cerned with measuring correlation rather than statistical dependence. Spec­
tral whiteness expresses lack of correlation, but it is not synonymous with 
independence, except in one important but atypical case: when the mar­
ginal distribution and the joint distributions of prices at different times are 
Gaussian. Clearly, the examples I have constructed for this paper, are not 
Gaussian. In fact, whiteness is even weaker than the martingale identity. 

II. THE FORECASTING FUNCTION OF EXCHANGE MARKETS AND 
THE PERSISTENCE OF PRICE MOVEMENT IN AGRICULTURE 
COMMODITIES 

II.A. Statement of the problem 

The present section will be devoted to the series of equilibrium prices for an 
agricultural commodity. Consideration of fluctuations around this series, 
due to temporal scatter of supply and demand, will be postponed until 
Section III. Here, the price Z(t) will be equal to the expected value of the 
future crop, which in tum only depends upon past and future weather, 
according to the following five rules: (1) Weather can only be good, bad, 
or indifferent. (2) One is only interested in deviations of the price from 
some "norm," so that it is possible to neglect the price effects of indifferent 
weather. (3) When there were g good days and b bad days between 
moments t' and t" within the growing season, the size of crop will have 
increased by an amount proportional to g - b. (4) Under the conditions of 
rule (3), the "value" Y(t) of a unit quantity of the crop will have decreased 
by an amount proportional to g - b. (5) At any instant t, there is a single 
price of a unit quantity for future delivery, equal to 

lim E[Y(t + T)]. 
T-co 

Units will be so chosen that the price will increase by 1¢ when the ulti­
mate expected value Y(t) increases by the effect upon the crop of one day's 
bad weather. These rules are very simplified, and they do not even take 
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into account the effect upon future prices of the portions of past crops that 
are kept in storage. 

The total problem is so complex, however, that it is best to begin by 
following up each of its aspects separately. 

It is readily acknowledged that the rules would be much more realistic 
if they referred to log Z instead of Z, and similarly to the logarithms of 
other quantities. This transformation was avoided, however, in order to 
avoid burdening the notation. The interested reader can easily make the 
transformation by himself. 

Our rational forecast of Y naturally depends upon the weather fore­
cast, i.e., upon the past of Y, the probability distribution of the lengths of 
the weather runs, and the rules of dependence between the lengths of suc­
cessive runs. 

The crudest assumption is to suppose that the lengths of the runs of 
good, bad, or indifferent weather are ruled by statistically independent 
exponential variables - as is the case if weather on successive days is 
determined by independent random events. Then the future discounted 
with knowledge of the past is exactly the same as the future discounted 
without knowledge of the past. In particular, if good and bad days are 
equally probable, the discounting of the future will not change the prices 
based upon the present crop size. This means that the process ruling the 
variation of Z(t) is the simplest random walk, with equal probabilities for 
an increase or a decrease of price by 1¢. 

Our "intuition" about the discounting of the future is of course based 
upon this case. But it is not necessary that the random variable U, desig­
nating the length of a good or bad run, be exponentially distributed. In all 
other cases, some degree of forecasting will be possible, so that the price 
will be influenced by the known structure of the process ruling the 
weather. The extent of this influence will depend upon the conditional 
distribution of the random variable U, when it is known that U ~ h. The 
following subsection will therefore discuss this problem. 

II.B. The distribution of random variables conditioned by truncation 

Exponential random variables. To begin with, let us note that the impos­
sibility of forecasting in the exponential case can be restated as being an 
aspect of the following observation: Let U be the exponential random var­
iable for which P(u) = Pr{U ~ u} = exp( - bu), and let U(h) designate the 
conditioned random variable U, conditioned by U ~ h > O. The Bayes 
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theorem, then, yields the following results: If u < h, one has 
Pr{U(h) ~ u} = 1; if u > h, one has 

exp( - bu) 
Pr{U(h) ~ u} = Pr{U ~ u I U ~ h} = = exp[ - b(u - h»). 

exp( - bu) 

This means that U(h) - h is a random variable independent of h, but 
having a mean value I/b determined by the original scale of the uncondi­
tioned U. 

Uniformly scaling random variables. Assume now that the distribution 
of U is scaling. That is, two positive parameters u and a are given. If 
u < U, one has Pr{U ~ u} = 1; if u> U, one has Pr{U ~ u} = (u/u)-a. In the 
present case, Bayes's theorem yields the following results: If h < u, one 
has Pr{U(h) ~ u} = Pr{U ~ u}; if u < u < h, one has Pr{U(h) ~ u} = 1; finally, if 
U < h < u, one has 

Pr{U(h) ~ u} = Pr{U ~ u I U ~ h} = (u/U)-: = (u/h)-a. 
(h/u)-

It is clear that the typical values of U(h), such as the quantiles or the 
expectation, are proportional to h. For example, hq-l/a gives the value of 
U(h) that is exceeded with the probability q. 

The mean of U(h) is finite only if a > 1. In that case, one has 

E[U(h) _ h] = h = E[U(h)] 
(a-I) a 

This last quantity is smaller or greater than h according to whether a 
is smaller or greater than 2; if a = 2, one finds E[U(h) - h] = h. 

As to the marginal probability that h < U < h + dh (knowing that h < U) 
it is equal to ah-(a+l)dh/h- a = adh/h, which decreases with h. 

In order to fully assess the above findings, it is helpful to contrast 
them with the result valid in the Gaussian case. As a simplified interme­
diate case, consider the random variable U for which 
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Pr{U ~ u > O} = exp( - bu2). Then the arguments developed above show 
that, for u > h, one has 

Pr{U(h) ~ u} = Pr{U ~ u I U ~ h} = exp[ - b(u2 - h2)] 

= exp[ - b(u + h)(u - h)]. 

It follows that all the typical values of U(h) - h, such as the expected value 
or the quantiles, are smaller than the mean, and are smaller than the 
quantiles of an auxiliary exponential variable wD(h) such that 
Pr{wD(h) ~ w} = exp( - 2hbw). This shows that the mean of U(h) - h is 
smaller than l/2hb, and therefore tends to zero as h tends to infinity. 

Results are very similar in the Gaussian case, but the algebra is com­
plicated and need not be given here. 

An important property of the present conditioned or truncated vari­
able U(h) is that it is scale-free in the sense that its distribution does not 
depend upon the original scale factor u. One may also say that the ori­
ginal scaling law is self-similar. Self-similarity is very systematically 
exploited in my studies of various empirical time series and spatial pat­
terns. In particular, runs whose duration is scalingly distributed provide a 
very reasonable approximation to the "trend" component of a number of 
meteorological time series; and this is, of course, the motivation for their 
use in the present context. 

Proof that the property of self-similarity uniquely characterizes the scaling 
distribution. Indeed, it means that the ratio Pr {X ~ u}/Pr {X ~ h} be the 
same when X is the original variable U or the variable U divided by any 
positive number k. For this condition to be satisfied, the function 
P(u) = Pr {U ~ u} must satisfy P(u) / P(h) = P(ku) / P(kh). Let R = log P be con­
sidered as a function of v = log u. Then, the above requirement can then be 
written as 

R(v) - R(vo) = R(v + log k) - R(vo + log k). 

This means that R = log P must be a linear function of v = log u, which is, 
of course, the definition of the scaling law through doubly logarithmic 
paper, in the manner of Pareto. 

II.C. Prices based upon a forecast crop size 

Keeping the above preliminary in mind, let us return to the crop­
forecasting problem raised in Section IIA, and assume that the lengths of 
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successive weather runs are statistically independent random variables fol­
lowing the scaling distribution. It is clear that a knowledge of the past 
now becomes useful in predicting the future. The results become espe­
cially simple if one modifies the process slightly by assuming that weather 
alternates between "passive runs" or indifferent behavior, and "active 
runs" when it can be good or bad with equal probabilities. Then, as long 
as one is anywhere within a "passive run," prices will be unaffected by 
the number of indifferent days in the past. But if there have been h good 
or bad days in the immediate past, the same weather is likely to continue 
for a further period whose expected value is h/(a -1). (Things are actually 
slightly more complicated, as seen in the Comment at the end of this Sub­
section.) 

Recall that the crop growth due to one day of good weather decreased 
the price by 1¢. A good day following h other good days will then 
decrease the price by the amount [1 + l!(a -1)]¢ = [a/(a -1)]¢, in 
which the l/(a -1)¢ portion is due to revised future prospects. But, when 
good weather finally turns to "indifferent," the price will go up by 
h/(a -1), to compensate for unfulfilled fears of future bounties. It should 
be noted that h/(a -1) is not a linear function of the known past values of 
Y. This implies that the best linear forecast in not optimal. 

As a result, the record of the prices of our commodity will appear as a 
random alternation of three kinds of period, to be designated as "flat," 
"convex," and "concave," and defined as follows. During flat periods, 
prices will very little and "aimlessly." During concave periods, prices will 
go up by small equal amounts every day, yet, on the last day of the period 
they will fall by a fixed proportion of their total rise within the whole 
period. Precisely the opposite behavior will hold for convex periods. 

Examples of these three kinds of periods have been shown in Figure 1. 
If a run of good weather is interrupted by a single indifferent day, the 
pattern of prices will be made up of a "slow fall, a rapid rise, a slow fall, 
and a rapid rise." Up to a small day's move, the point of arrival will be 
the same as if there had been no indifferent day in between; but that 
single day will "break" the expectations sufficiently to prevent prices from 
falling as low as they would have done in its absence. 

Near the end of the growing season, the above forecasts should of 
course be modified to avoid discounting the weather beyond the harvest. 
If the necessary corrections are applied, the final price will precisely corre­
spond to the crop size, determined by the difference between the number 
of days of good and bad weather. These corresponding corrections will 
not, however, be examined here. 
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Comment. Let us return to h/(a -1) for the expected value noted at the 
end of the first paragraph of this subsection. In fact a positive scaling 
random variable must have a minimum value u > 0; therefore, after an 
active run as started, its expected future length jumps to u/(a-l) and 
stays there until the actual run length has exceeded u. Such a fairly spu­
rious jump will also appear in the exponential case if good weather could 
not follow bad weather, and conversely. One can, in fact, modify the 
process so as to eliminate this jump in all cases, but this would greatly 
complicate the formulas while providing little benefit. 

It is also interesting to derive the forecast value of E[Y(t + T) - Y(t)], 
when T is finite and the instant t is the hth instant of a bad weather run. 
One readily finds that 

~ E[Y(t + T) - Y(t)] = a(a -l)-ll- (1 + T /h)l-a] -1. 

This shows that the convergence of E[Y(t + T)] to its asymptote is fast 
when h is small, and slow when h is large. 

• •• 
•• •• 

• • 

FIGURE E19-1. The abscissa is time for both the dotted and the bold lines; the 
ordinate is Y(t) for the dotted line; The ordinate is Z(t) for the bold line. 
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11.0. The martingale property of forecasted prices 

The random series yet) is not a martingale. To prove this fact, it suffices to 
exhibit one set of past values of Y for which the martingale property is not 
verified. We shall show that there is a nonvanishing conditioned expecta­
tion 

E[Y(t + 1) - Y(t), knowing the number h of past good days]. 

Proof. Y(t + 1) - Y(t) = 0 if and only if the run of good weather breaks 
today. The probability of that event is [h- a - (h + I)-a]/h- a - a/h. Other­
wise, Y(t + 1) - Y(t) = - 1. Thus, the expectation of Y(t + 1) - Y(t) equals the 
probability that Y(t + 1) - Y(t) = - 1, which is 1 - 0./ h, a nonvanishing func­
tion of the past weather (whose history is fully represented for our present 
purpose by the duration of the current good weather run). 

The price series Z(t) is a martingale. To begin with, let us assume that h 
is known and evaluate the following conditioned increment: 

- Z(t) + E[Z(t + 1), given the value of Z(t) and given that 

the number of preceding good days was exactly h]. 

Let h be sufficiently large to avoid the difficulties due to the existence 
of a lower bound to the duration of a weather run. Two possibilities arise. 

If weather continues to be good today, the price will go down by an 
amount equal to 0./(0. -1). This event has a probability of 
(h + l)-a /h- a -1- a/h. 

If today's weather is indifferent, an event of probability a/h, the good­
weather run is over and that the advance discounting of the effect of 
future weather was unwarranted. As a result, the price will climb up 
abruptly by an amount equal to h/(a -1). 

The expected price change is thus approximately 

(1 - ~ ) _0. __ ~ _h_ = l 0.2(0. - 1), 
h a-I h a-I h 

which is approximately zero. The more involved rigorous derivation of 
the expected price change yields a value exactly (and not just approxi­
mately) equal to zero. 
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Now take into account the fact that one's actual knowledge of the past 
is usually not represented by the value of h but by some past values Z(~) 
of Z(t). The number of good days in the current run is then a random var­
iable H, and D(h) = Pr{H < h} is a function determined by the values of the 
Z(~). It follows that 

E[Z(t + 1), given the value of Z(t) and the past prices Z(~)] 

= I dD(h)E[Z(t + 1), given the value of Z(t) and the value of h] 

= I dD(h)Z(t) = Z(t). 

One shows very similarly that E[Z(t + 1')] = Z(t) when T exceeds 1, 
showing that Z(t) is indeed a martingale process. 

Variance of Z(t + 1) - Z(t). If the number of preceding good days was 
exactly h, this variance is equal to 

which becomes proportional to h when h is large. Now suppose that h is 
not a known number, but is generated by a random variable H, that is 
conditioned by some known past prices Z(~). Then the variance of 
E(t + 1) - Z(t) is proportional to E(R). 

If no past price is known, and 1 < <l < 2, one can show that E(R) = 00, 

and one falls back upon the infinite-variance property in M 1963b{EI4}. 

Comment. We have reached the climax of this story, and this is appro­
priate to comment again upon some observations made in the Introduc­
tion. If the price Z were generated by a random walk, then, whichever 
measure of risk has been adopted, no knowledge of the past should influ­
ence estimates of the risks involved in trading in Z. If, on the contrary, Z 
is generated by the present martingale, then the only "risk" that is not 
influenced by the past is constituted by the expectation of Z. A martingale 
is thus a "fair game." But, as h increases, so do the expected deviations 
from the expectation of Z(t + I), and so do all other measures of "risk." 
This was to be expected, since, as h increases, so does the relative contrib­
ution to Z of anticipated changes in Y. Clearly, all traders, both risk­
seekers and risk-avoiders, will want to know how the market value of a 
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crop is divided between its present value and the changes anticipated 
before harvest time! 

Also note the following: If the market is influenced more by risk­
avoiders than by risk-seekers, the martingale equality should be replaced 
by E[Z(t + n] - Z(t) > 0, the difference increasing with the variance of 
Z(t + n. As a consequence, prices would increase in time, on the average, 
especially during the periods of high variance. However, this "tendency 
toward price increase" would be of significance only for traders who seek 
risk more than does the average trader on the market. 

II.E. The distributions of price changes 

This distribution is symmetric, thus it will suffice to derive it when 
llZ = Z(t + 1) - Z(t) is positive or zero. We will denote by W' the mean 
duration of an indifferent weather run, and by W" the mean duration of a 
good or bad weather run. Moreover, (for simplicity's sake) it will be 
assumed that W' and W" are both large when measured in days. 

The most significant price changes are those that satisfy 
llZ> a/(a -1). These occur only on the last days of good weather runs, so 
that their total probability is 1/2(W' + W"). Their precise distribution is 
obtained by simply rescaling the law ruling the duration of good weather 
runs. Therefore, for z > a(a -1), (one has) 

Next, consider the probability that Z' = o. This event occurs when t is 
anywhere within a run of indifferent weather, so that its probability is 
W' /(W' + W"). 

Finally, consider llZ = a/(a -1) when the instant t is within a bad 
weather run but is not the last instant in that run. This event has the 
probability (W" -1)/2(W' + W"). 

The overall distribution of daily price changes is thus a "bell" with 
two scaling tails. It is shaped very much like a L-stable distribution, in 
this sense, the present model may be considered to provide a further elab­
oration of the process first proposed in M 1963b{E14}. 

It is now safe to mention that the martingale property of forecast 
prices holds independently of the distribution P(u) of bad weather runs, as 
long as runs are statistically independent. However, any non-scaling form 
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of P(u) would predict a marginal distribution of price change that is in 
conflict with the evidence brought forth in M 1963b{E14}. 

II.F. A more involved agricultural commodity 

Although still very crude, the preceding model seems more realistic than 
could have been expected. It can be further improved by taking into 
account the possibility of crop destruction by a natural calamity, such as 
hail. I have found that at least some natural calamities have scaling dis­
tributions. The extent of such calamities is presumably known only grad­
ually, and they may therefore give rise to "patterns" similar to those we 
have studied above. The main interest of a mixture of several exogenous 
variables, however, is that it is unrealistic to believe that there is a propor­
tionality between the distribution of large price changes and that of the 
time intervals between them. Such a proportionality holds in the case of a 
single trigger yet), but not in the case of many triggers. 

II.G. Best linear forecasts cannot be used to define prices 

The following results, which I state without proof can be omitted without 
interrupting the continuity of the present work. Let us suppose that, 
instead of being ruled by the process yet) that we have described, the 
value is ruled by a process Y(t) with the following properties: 
dY(t) = yet + 1) - yet) is a stationary Gaussian process whose covariance 
function is equal to that of dY(t). If so, the best extrapolate E[Y(t + n, 
knowing yet) for s ::;; t] is linear, and identical to the best linear extrapolate 
of yet + n. As T -+ 00, this extrapolate tends to infinity therefore cannot 
define a price series Z(t). 

The above example suffices to show that, in order that the price based 
upon a forecast value need not be martingale. {P.S. 1996: This topic is dis­
cussed in M 1971e{E20}.} 

III. PERSISTENCE OF PRICE MOVES FOR INDUSTRIAL SECURITIES 

III.A. First approximation 

The arguments of Section II can be directly translated into terms of "fun­
damental analysis" of security prices. Suppose, that the market value of a 
corporation is equal to the expected value of its future size X, computed 
while taking account of current and past values of its size yet). If the rules 
of growth are of the form that we shall presently describe, it is meaningful 
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to specify "the" expected future size by a single number, independent of 
the moment in the future to which one refers, and independent of the ele­
ments of the past history available for forecasting. The resulting theory is 
again greatly simplified (note the omission of all reference to current 
yield). 

Our rules of growth are such that the lengths of periods of growth 
and decline are random, independent, and scaling. Thus, the longer a 
company has grown straight up, the more the outsiders should justifiably 
expect that it will grow in the future. Its market value Z should therefore 
justifiably increase by the multiple 1 + 1/(0. -1) of any additional growth 
actually observed for Y(t). If, however, the growth of Y ever stops suffi­
ciently for everyone to perceive it, one should observe a "break of 
confidence" and a fall of Z equal to the fraction 1/0. of the immediately 
preceding rise. If the growth of Y is stopped by "breathing spells," the 
growth of Z will have a sawtooth pattern. If a long growth period of Y, 
ending on a breathing spell, is modified by the addition of an intermediate 
breathing spell, the ultimate value of the company would be unchanged. 
But a single big tooth of Z would be replaced by two teeth, neither of 
which attains equally dizzying heights. In the absence of breathing spells, 
the price can go up and up, until the discounted future growth would 
have made the corporation bigger than the whole economy of its country, 
necessitating corrections that will not be examined in this paper. 

Most of the further developments of this model would be very similar 
to those relative to the commodity examined in Section ne. There is, 
however, a difference in that, if a. is small, the expected length of the 
further growth period may be so long that one may need to discount the 
future growth at some nonvanishing rate. 

III.B. Second approximation 

Let us now examine the case of an industrial security whose fundamental 
value X(t) follows a process of independent increments: either Bachelier's 
process of independent Gaussian increments, or the process in which the 
increments are L-stable (M 1963b{E14}. In both models, the rate of change 
of X may sometimes be very rapid; in the latter model it may even by 
instantaneous. But it will be assumed that the market only follows X(t) 
through a smoothed-off form Y(t) for which the maximum rate of change 
is fairly large, but finite. (In some cases, the establishment of an upper 
bound i1 to the changes of Y may be the consequence of deliberate 
attempts to insure market continuity.) 
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In order to avoid mathematical complications, we will continue under 
the simplifying assumption that time is discrete. (The continuous time case 
is discussed at the end of this subsection.) In addition, assume that the 
maximum rate of change il is known. It is clear that, whenever the market 
observes Y(t) - Y(t - 1) < il, it will be certain that there was no smoothing 
off at time t and that X(t) = Y(t). If il is large enough, the equality X = Y 
will hold for most values of t. Thus the market price Z(t) will be equal 
most of the time to the fundamental value X(t). Every so often, however, 
one will reach a point of time where Y(t) - Y<t - 1) = il, a circumstance that 
may be due to any change X(t) - X(t - 1) ~ il. At such instants, the value 
of X(t) - X(t - 1) will be greater than the observed value of Y(t) - Y(t -1), 

and its conditional distribution will be given by the arguments of Section 
nB; it will therefore critically depend upon the distribution of 
X(t) - X(t - 1). 

If the distribution of the increments of X is Gaussian, and il is large, 
the distributions of X(t) - X(t - 1), assuming that it is at least equal to il, 
will be clustered near il as will the distribution of X(t + 1) - X(t -1). 
Hence, there will be a probability very close to 1 that X(t + 1) - X(t - 1) 
will be smaller than 2il and X(t + 1) - X(t) will be smaller than il. As a 
result, Y(t + 1), will equal X(t + 1) and Z(t + 1) will be matched to X(t + 1). 
In other words, the mismatch between Z and Y will be small and short­
lived in most cases. 

Suppose now that the distribution of tJ,.X has two scaling tails with 
a < 2. If Y(t) - Y(t - 1) = il, while Y(t - 1) - Y(t - 2) < il, one knows that 
X(t) - X(t -1) > il has a conditional expectation that is independent of the 
scale of the original process equal to o.il/(o. -1). The market price incre­
ment Z(t) - Z(t -1) should therefore amplify, by the factor 0./(0. - 1), the 
increment Y(t) - Y(t - 1) of the smoothed-off fundamental value. 

Now, proceed to time t + 1 and distinguish two cases: If 
Y(t + 1) - Y(t) < il, the market will know that X(t + 1) = Y(t + 1). Then the 
price Z(t + 1) will equal X(t + 1) = Y(t + 1), thus falling from the inflated 
anticipation equal to X(t -1) + o.il/(o. -1). But if Y(t + 1) - Y(t) = il, the 
market will know that X(t + 1) - X(t - 1) = Y(t - 1) + 2il. 

It follows that the conditioned difference X(t) - X(t - 1) will be close to 
following a scaling distribution truncated to values greater than 2il. Thus 
the expected value of X(t + 1) - which is also the market price Z(t + 1) -
will be 

Z(t -1) + 2uo./(o. - 1) = Z(t) + uo./(a. -1). 
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After Y(t) has gone up n times in succession, in steps equal to il, the 
value of Z(t + n -1) - Z(t -1) will approximately equal nila/(a -1). Even­
tually, however, n will reach a value such that Y(t + n - 1) - Y(t - 1) < nil, 
which implies X(t + n - 1) - X(t - 1) < nil. The market price Z(t + n - 1) will 
then crash down to X(t + n -1), losing all its excess growth in one swoop. 

As the size of the original jump of X increases, the number of time 
intervals involved in smoothing also increases, and correction terms must 
be added. 

Let us now discuss qualitatively the case where the value of the 
threshold il is random. After a change of Y(t), the market must attempt to 
determine whether it is a fully completed change of fundamental condi­
tions, equal to a change of X(t), or the beginning of a large change. In the 
first case, the motion need not "persist," but in the second case, it will. 
This naturally involves a test of statistical Significance: A few changes of 
Y in the same direction may well "pass" as final moves, but a long run of 
rises should be interpreted as due to a "smoothed-off" large move. Thus, 
the following, more complicated pattern will replace the gradual rise fol­
lowed by fast fall that was observed earlier. The first few changes of Z 
will equal the changes of Y, then Z will jump to such a value that its 
increase from the beginning of the rise equals a/ (a - 1) times the increase 
of Y. Whenever the rise of Y stops, Z will fall to Y; whenever the rise of Y 
falters, and then resumes, Z will fall to Y and then jump up again. 

In a further generalization, one may consider the case where large 
changes of Yare gradually transmitted with probability q and very rapidly 
transmitted with probability 1- q. Then the distribution of the changes of 
Z will be a mixture of the distribution obtained in the previous argument 
and of the original distribution of changes of Y. The scaling character is 
preserved in such a mixture, as shown in M 1963e{E3}. 

Remark on continuous-time processes. Let us return to the condition of 
discrete time made earlier in this subsection. Continuous-time processes 
with independent increments were considered in M 1963b{E14}. It was 
shown that in the L-stable case, X(t) is significantly discontinuous, in the 
sense that if it changes greatly during a unit time increment, this change is 
mostly performed in one big step somewhere within that time. Therefore, 
the distribution of large jumps is practically identical to the distribution of 
large changes over finite increments. In the Gaussian case, to the contrary, 
the interpolated process is continuous. More generally, whenever the 
process X(t) is interpolable to continuous time and its increments have a 
finite variance, there is a great difference between the distributions of its 
jumps (if any) and of its changes over finite time increments. This shows 
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that the case of infinite variance - which in practice means the scaling case 
- is the only one for which the restriction to discrete time is not serious at 
all. 

III.C. More complex economic models 

There may be more than one "tracking" mechanism of the kind examined 
so far. It may, for example, happen that Z(t) attempts to predict the future 
behavior of a smoothed-out form Y of X(t), while X(t) itself attempts to 
predict the future behavior of X(t). This would lead to zigzags larger than 
those observed so far. Therefore, for the sake of stability, it will be very 
important in every case to examine the driving function Y(t) with care: is 
it a smoothed-off fundamental economic quantity, or is it already influ­
enced by forecasting speculation. 

Suppose now that two functions Z1 (t) and Z2(t) attempt to track each 
other (with lags in each case). The zigzags will become increasingly 
amplified, as in the divergent case of the cobweb phenomenon. All this 
hints at the difficulty of studying in detail the process by which "the 
market is made" through the interactions among a large number of 
traders. It also underlines the necessity of making a detailed study of the 
role that the SEL assigns to the specialist, which is to "insure the conti­
nuity of the market." 

IV. COMMENTS ON THE VALUATION OF OIL FIELDS 

Another illustration of the use of the results of Section lIB is provided by 
the example of oil fields in a previously unexplored country. 

"Intuitively," there is a high probability that the total oil reserves in 
this country are very small; but, if it turns out to be oil-rich, its reserves 
would be very large. This means that the a priori distribution of the 
reserves X is likely to have a big "head" near x = 0 and a long "tail"; 
indeed, the distribution is likely to be scaling. Let us now consider a fore­
caster who only knows the recognized reserves Y(t) at time t. As long as 
the reserves are not completely explored, their expected market value Z(t) 
should equal a.Y(t)/(a. -1). The luckier the explorers have been in the 
past, the more they should be encouraged to continue digging and the 
more they should expect to pay for digging rights in the immediate neigh­
borhood of a recognized source. Eventually, Y(t) will reach X and will 
cease to increase; at this very point, Z(t) will tumble down to Y(t), thus 
decreasing by Y(t)/(a -1). 
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If the distribution of X were exponential, Z(t) would exceed Y(t) by an 
amount independent of Y(t): the market value of the entirely unexplored 
territory. If Y(t) were a truncated Gaussian variable, the premium for 
expected future findings would rapidly decrease with l/Y(t). 

It would be interesting to study actual forecasts in the light of those 
three possibilities. But the main reason for considering oil fields was to 
demonstrate how the variation of prices can be affected by unavoidable 
delays in the transmission of information about the physical world. 
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t 

C(t) = I L(t - s)N(s), 
5 =-00 

the quantities N(s), called "innovations," are random variables with finite 
variance and are orthogonal (uncorrelated) but are not necessarily 
Gaussian. Knowing the value of C(s) for s < t, that is, knowing the present 
and past "innovations" N(s), the optimal least squares estimator of C(t + n) 

is the conditional expected value EcC(t + n). In terms of the N(s), 

t 

EcC(t + n) = I L(t + n - s)N(s), 
5=-00 

which is a linear function of the N(s) for s::5 t. This paper that the large n 

behavior of EcC(t + n) depends drastically on the value of A = I: = oL(m). 

When A < 00, then limn_ oo EcC(t + n) is defined and non-degenerate. 

When A = 00, then limn_ oo EcC(t + n) does not exist. 

This paper interprets C(t) as being a price series that remains to be 
arbitraged. Hence, limn -00 EcC(t + n) is a linear least square extrapolation 
over an infinite horizon using zero interest rate. 

When A < 00, this extrapolate can serve to define a fully arbitraged 
price that is a martingale. 

When A = 00, this form of arbitraging diverges; it cannot produce a 
martingale. • 
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A COMPETITIVE MARKET OF SECURITIES, commodities or bonds may 
be considered efficient if every price already reflects all the relevant infor­
mation that is available. The arrival of new information causes 
imperfections, but it is assumed that every such imperfection is promptly 
arbitraged away. When there is no risk aversion and the interest rate is 
zero, it can be shown that the arbitraged price must follow a "martingale 
random process." P(t) will designate a price at time t, so P(t + s) - P(t) is 
the random price change between the present time t and the future time 
t + s. The martingale model asserts that, knowing the present price and/or 
any number of past prices, the conditional expectation of P(t + s) - P(t) 
vanishes. This simply expresses that no policy exists for buying and 
selling that has an expected return above the average return of the market. 

However, as I propose to show in this paper, there exists a class of 
important cases where useful implementation of arbitraging is impossible. 
The principal purpose of this paper is to show why these cases are inter­
esting. Numerous related issues will be considered along the way. 

In addition, to avoid extraneous complications, I assume, first, that the 
process of arbitraging starts with a single, well-defined price series Po(t) -
which is not itself a martingale. The idea is that Po(t) summarizes the 
interplay of supply, demand, etc., in the absence of arbitraging. Specif­
ically, I shall assume that the increments of Po(t) form a stationary finite 
variance process. Further I assume that the purpose of arbitraging is to replace 
Po(t) by a different process P(t) that is a) a martingale and b) constrained not to 
drift from Po(t) without bound. Had not P(t) and Po(t) been constrained in 
some such way, the problem of selecting P(t) would have been logically 
trivial and economically pointless. Our goal will be to achieve the 
smallest possible mean square drift: the variance of P(t) - P o(t) must be 
bounded for all t's and be as small as possible. In addition, we shall 
assume that the martingale P(t) is linear, that is, related to Po(t) linearly 
(we shall explain how and why). 

This being granted, this paper makes three main points: 

1) A necessary and sufficient condition for the existence of the 
required P(t) is as follows: as the large s increases, the strength of statis­
tical dependence between Po(t) and Po(t + s) must decrease "rapidly," in a 
sense to be characterized later on. If an arbitraged price series P(t) exists, 
its intertemporal variability depends upon the process Po, and may be 
either greater or smaller than the variability of Po(t). In the majority of 
cases, arbitraging is "destabilizing," but under certain circumstances, it can 
be stabilizing. Note that a market specialist, in order to "insure the conti-
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nuity of the market," must stabilize the variation of price. Under the cir­
cumstances under which perfect arbitraging would thus be destabilizing, 
the specialist prevents arbitraging from working fully and prevents prices 
from following a martingale. 

2) When the strength of statistical dependence of Po(t) decreases very 
slowly, the situation is very different: the common belief is that perfect 
arbitraging is possible and leads to a martingale, but this belief is 
unfounded. Contrary to what one might have thought, such cases are 
much more than mathematical curiosities. Indeed, most economic time 
series exhibit a "Joseph Effect," a colorful way of saying that they seem 
ruled by a hierarchy of "cycles" of different durations (see Figure 1.) (M 
& Van Ness 1968, M & Wallis 1968, M & Wallis 1969a, M & Wallis 1969b.) 

The simplest way of characterizing such processes is to assume that 
their spectral density at zero frequency is infinite, or at least extremely 
large. When the spectral density of Po(t) at zero frequency is infinite, it 
can be shown that the distribution of the daily changes of the arbitraged 
price P(t) would have to be some known distribution scaled by an infinite 
constant; this outcome is absurd and demonstrates the impossibility of 
arbitraging. 

When the spectral density of Po(t) at zero frequency is finite but very 
large (i.e., its memory is long, in a sense to be described, but not global,) a 
finite P(t) can be defined, but it would not be acceptable because the vari­
ance of P(t) - Po(t) would have to increase without bound. 

An interesting feature of the above syndrome ("Joseph Effect") is that 
it is intimately related to the "infinite variance syndrome" ("Noah Effect") 
which M1963b{E14} shows to be characteristic of price changes. A full 
empirical description of prices must take account of both Effects. 

3) Imperfect arbitraging never leads to prices following a martingale. 
We shall gradually increase imperfection, and describe the effect on 
arbitraged prices, especially when perfect arbitraging is impossible. 

INTRODUCTION 

Classical preliminary definitions. The random-walk model asserts that the 
probability distribution of P(t + 5) - P(t) is independent of the current price 
P(t) and of all past prices. That is, in selecting investments, knowledge of 
past prices is of no assistance. One additional assumption which is almost 
always made, states that the expectation E[P(t + 5) - P(t)] vanishes. If it 
does not, one speaks of a "random-walk with a drift." 
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The 111Ilrtingale model is less demanding: it does allow the actual distrib­
ution of P(t + s) - P(t) to depend on past and present prices, and therefore 
it does not deny that past and present prices can serve in the selection of 
portfolios of different desired degrees of riskiness. For example, the 
martingale model allows for buying and selling policies which have much 
better than an even chance of being superior to the average of the market, 
but also have a highly appreciable chance of being enormously worse. 

A correct distinction between the concepts of martingale and random­
walk is made in Bachelier 1900, where one finds an informal statement of 
the modem concept that price in an efficient market is a martingale, and a 
near definitive statement of the Gaussian random-walk. A correct dis­
tinction is also made in Mandelbrot (M 1963b{E14}, M 1966b{E19}, M 

FIGURE E20-1. Either of these graphs may be a record of precipitation (M & 
Wallis 1969b), a computer simulated fractional Gaussian noise (M & Wallis 
1969a), or an economic record interpretable as a function of causes. 

This uncertainty underlines conveniently the striking resemblance that 
exists between those possible sources. The low frequency components show 
in each case through an astonishing wealth of "features" of every kind. These 
functions oscillate, either irregularly or near-periodically. In the latter case, 
the apparent wavelength of the "slow cycles" is about a third of the sample 
size: about 10 in a sample of 30, but 100 in a sample of 300, etc. 

H fractional Gaussian noise is indeed the source of these graphs, the 
clear-cut cycles can only be viewed as "perceptual artifacts." 
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1967j{E15}), in Samuelson 1965, and in Fama 1969. Fama 1965 had claimed 
that evidence supports the random-walk model, but this was unwarranted. 

Less special than random-walks but more special than general 
martingales are processes with uncorrelated ("orthogonal") increments. 
When E[P(t + s) - p(t)]2 is finite for all t and s, and P(t) is a martingale, 
price increments are uncorrelated and spectrally "white." If in addition, 
the process P(t) is Gaussian, orthogonality becomes synonymous with 
independence and a Gaussian martingale can only be a Gaussian random-walk. 

Combining the last result with the definitions that precede it, it is clear 
that every random-walk without drift is a martingale. The converse is also 
true in a Gaussian universe. But these results do not exhaust the problem 
of the relation between random-walks and martingales. 

Attainment of complete or approximate market efficiency. One reason 
why the problem remains open is that market efficiency is an aspect of 
economic equilibrium. It is widely agreed among economists that it does 
not suffice to affirm that equilibrium must be realized and to study its 
properties; one must also show how equilibrium is either achieved or 
approached. Compromising between generality and tractability, studies of 
this type must be addressed to some fully specified model of a compet­
itive market, which combines two assumptions. (A) An assumption about 
the prices that would have prevailed in the absence of arbitraging. These 
prices are thought to be determined by the exogenous variables. We shall 
assume they would have followed a finite variance stationary process -
not necessarily Gaussian but nondeterministic. (B) An assumption about 
the chosen criterion of arbitraging. We shall assume the martingale is 
linear and the mean square drift is minimized. We shall only briefly 
comment upon other methods. Now that a model has been specified, 
several questions arise. 

First, as was already mentioned, in all the cases where our form of 
perfect arbitraging does lead to well-defined prices, such prices necessarily 
follow a martingale. But it does not follow that a specific method of 
arbitraging necessarily leads to well-defined prices. Roughly speaking, 
fully arbitraged prices are well defined, if and only if, price changes before 
arbitraging Po(t) satisfy a certain special condition expressing that statis­
tical dependence decreases rapidly. In addition, the drift of the fully 
arbitraged prices around Po(t) has a finite variance, if and only if, Po(t) sat­
isfies a second special condition: rapidly decreasing dependence. 

One must also investigate the partly arbitraged prices prevailing when 
anticipation is less than perfect. Assuming linear least squares arbitraging 
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with a finite horizon, one would expect that arbitraging is generally less 
than perfect. And indeed, the changes of the arbitraged prices generally 
remain correlated, so prices do not follow a martingale. As anticipation 
improves, the correlation between successive arbitraged price changes 
decreases and the changes come ever nearer to being uncorrelated, but the 
process does not necessarily have a finite limit. 

Increments of a martingale process are spectrally "white," so perfect 
anticipation can be called "spectrally whitening." I increasingly anticipated 
prices to be increasingly close to whiteness. But we shall see that, in 
general, an improvement in the perfection of the anticipation leads to an 
increase in the variance of price changes. Such a "variance increasing" 
transformation can be considered "destabilizing." 

Last, but not least, it is important to investigate the actual process of 
arbitraging, but I am not qualified for this task. 

Market efficiency and the syndrome of infinite variance and global 
dependence. The preceding reasons for being concerned about the 
approach to efficiency through arbitraging lie in the mainstream of con­
ventional finite variance or Gaussian econometrics. But there is another, 
more personal reason for my interest. I wish to find out what arbitraging 
can tell us about the relations between two syndromes in which I am 
greatly interested: the Infinite Variance Syndrome (the Noah Effect) and 
the Global Dependence Syndrome (the Joseph Effect). 

The term Joseph Effect is, of course, inspired by the Biblical story of the 
seven fat years followed by the seven lean years (Genesis 6:11-12). 
Pharaoh must have known well that yearly Nile discharges stay up and 
then down for variable and often long periods of time. They exhibit strong 
long-run dependence and a semblance of "business cycles," but without 
either visible or hidden sinusoidal components (Figure 1). The total size 
of crops in Egypt closely depends on the Nile levels. Thanks to the Biblical 
Joseph's ability to forecast the future by interpreting Pharaoh's dream and 
to arbitrage through storage, crop prices did not plummet during the 
seven fat years, and did not soar during the seven lean years. Unfortu­
nately, political economists lack Joseph's gift, so the question arises, how 
does perfect anticipation perform when the exogenous variables and the 
resulting nonarbitraged prices exhibit the kind of long-run dependence 
described by the familiar intuitive notion of "nonsinusoidal business 
cycles"? I showed elsewhere (M & Wallis 1968a) that such dependence 
expresses a very slow decay of statistical dependence between Po(t) and 
Po(t + 5). In this paper, I will show that, if anticipation is perfect least 
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squares, the distribution of the arbitraged price changes rescaled by an 
infinite constant, for example, is a Gaussian with divergent variance, which 
is absurd. Therefore, under the stationary finite variance model of unantic­
ipated prices, perfect linear least squares arbitraging leads nowhere. 

One way to resolve this problem is to be content with imperfect (finite 
horizon) least squares arbitraging. This option will be explored in this 
paper. A different route was investigated in M 1966b{EI9}, which assumed 
a scaling exogenous variable with a finite variance. In that case, I showed 
that perfect least squares arbitraging is not linear and that absurd diver­
gence of P(t) is avoided. That is, perfectly arbitraged prices are well 
defined and their changes follow a nondegenerate non-Gaussian distrib­
ution with an infinite variance, exhibiting a "Noah Effect." This last result 
brings us to the finding in M 1963b{EI4} that the actual distributions of 
price increments tend to be L-stable, with infinite variance. In this paper, 
further pursuit of this line of thought would be out of place. 

My original discovery of the Noah Effect for prices resulted from the­
oretical insight and from empirical study of commodity prices (cotton, 
wheat and other grains), security prices (rails) and various interest and 
exchange rates. Fama 1965 extended the L-stable model to a case study of 
the thirty securities of the Dow Jones index. The empirical evidence in 
favor of the reality of the infinite variance syndrome has continued to 
broaden considerably since then. 

Digression concerning the use of the logarithm of price. Both the random­
walk and the martingale models of price variation conflict with the basic 
fact that a price is necessarily positive. Perhaps the most obvious such 
conflict is that a price that follows a stationary random-walk would almost 
surely eventually become negative, which is an impossibility. Another 
conflict involves the martingale model itself. Suppose it were rigorously 
true that price itself is positive, and follows the martingale model. If so, 
the "martingale convergence theorem" which is described in Doob 1953, p. 
319, allows one to conclude that such a price would almost surely eventu­
ally converge. A commodity or security such that its price converges must 
eventually cease to fluctuate, hence cease to be the object of speculation. 
That feature is acceptable in the special case of finite horizon commodity 
futures (Samuelson 1965), but in general is too stringent. 

The first of the above examples of conflict is well known and has sug­
gested to many authors that the random-walk model should not be 
applied to price itself, but rather to some nonlinear function of price that 
can tend to either plus or minus infinity - usually the logarithm of price. 
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This function also avoids the second conflict. But reliance on log price 
raises many issue. In particular, one can write price = exp (log price) and 
the exponential function is convex, so when log price is a martingale, price 
itself increases on the average. How could all the prices in an economy 
increase on the average? 

The issues relative to log price are very interesting, but are entirely 
distinct from those tackled in this paper. Therefore, for the sake of nota­
tional simplicity, all arguments will be carried out in terms of price itself. 

PERFECT ARBITRAGING 

Nonarbitraged prices and the function of causes. In order to study the 
mechanism of arbitraging, we shall assume that the price Po(t) that would 
have prevailed in the absence of arbitraging is well defined. This assump­
tions is admittedly artificial. The function 

M'o{t} = Po(t) - Po(t - 1) = C(t) 

will be called the "function of causes", it is supposed to summarize in 
dollar units all the effects of supply and demand and of anything else that 
can conceivably affect price - with the exception of arbitraging itself. For 
a heavily traded security, C(t) may be dominated by significant informa­
tion. For a lightly traded security, timing of large block sales and a 
variety of other comparatively insignificant circumstances we may call 
"market noise," may be dominant. In order to avoid mathematical com­
plications, our discussion will be carried out under the assumptions that 
the cause C(t) appears in discrete integer-valued time, and that the price 
change M'(t) - P(t) - P(t - 1) follow immediately. 

Independent causes and the random-walk of prices. If successive causes 
are independent, the arbitraged price P(t) satisfies P(t) = Po(t) and 
M'(t) = C(t). Successive increments of the price P(t) are independent and 
P(t) follows a random-walk. 

Dependent causes with finite variance and no deterministic component. In 
general, successive causes of price change cannot be assumed inde­
pendent. At any moment, "something" about the future development of 
C(t) - although of course, not everything - may be extrapolated from 
known past and present values. But an efficiently arbitraged market 
should eliminate any possibility that a method of buying and selling based 
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on such extrapolation be systematically advantageous. When setting up 
prices, everything that is extrapolable from present values of the causes 
should be taken into account. To study such extrapolation, assume that 
the process C(t) is generated as a moving average of the form 

t 

C(t) = L L(t - s)N(s). 
5=-00 

The quantities N(s) in this expression, called "innovations," are random 
variables with finite variance and are orthogonal (uncorrelated) but are not 
necessarily Gaussian. The "lagged effect kernel" L(rn) must satisfy 

00 

L L2(rn) < 00, 

m~O 

which implies that L(rn) -+ 0 as rn -+ 00. If L(rn) = 0 for m > mO' the moving 
average is finite. (N is the initial of "new," and L, of "lagged.") 

Moving average processes are less special than it might seem, since 
every "purely nondeterministic" stationary random process is of this form 
(see Fama 1965, Section 12.4.). The definition of "nondeterministic" is clas­
sical and need not be repeated. Our assumption about C(t) implies only 
that deterministic elements have been removed from C(t). We write 

00 00 [ 00 ]2 
A= ~oL(rn) and V= ~ ~uL(rn) . 

For the random function C(t), define EcC(t + n) as the conditional 
expected value of C(t + n), knowing C(s) s < t, that is, knowing C(s) for 
s < t, in other words knowing the present and past causes. EcC(t + n) is 
also known to be an optimal "least squares" estimator of C(t + n). Wold 
has shown that, in terms of the N(s), 

t 

EcC(t + n) = L L(t + n - s)N(s) 
5=-00 

which is a linear function of the N(s) for s:::; t. 

Wiener and Kolmogorov have given an alternative expression of 
EcC(t + n) as a linear function of the past and present values of C(t) itself. 
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However, the Wiener-Hopf technique used in implementation requires 
that A < 00; this assumption of convergence is not innocuous; in fact, the 
most interesting case to be studied in this paper is when A < 00. "Control­
theoretical" tools have begun to draw the economists' attention. Their 
basic ideas are borrowed from the Kolmogorov-Wiener theory. 

We shall now study the effect of this EcC(t + n) on arbitraging. 

Search for the arbitraged price series P(t). A linear function of the values 
of Po(t) or llPo(t) for 5 < t can always be expressed as a linear function of 
the past values of N(s), and conversely. Therefore, the prices series P(t) 
we seek must be such that llP(t) is a linear function of the values of N(s) 
for 5 < t. For P(t) to be a finite variance martingale, and a linear function of 
past Po(t), is it necessary that llP(t) be proportional to N(t). We shall now 
present an indirect argument that yields the value of this coefficient of 
proportionality. . 

Formalism of infinite horizon linear least squares arbitraging that yields 
a martingale. At time t, potential arbitragers will know that, for all time 
instants in the future, EcC(t + n) = E~o(t + n) - E~o(t + n - 1). We suppose 
an infinite arbitragers' horizon, zero interest rates and no risk aversion. 

The fact that EcC(t + n) is non-zero for some n implies that prices are 
expected to go up or down. On the average, arbitragers will bid so at to 
make expected arbitraged prices changes vanish. One may argue that an 
arbitrager should take account of the value of EcC(t + n) at any instant in 
the future as if it were a current cause. That is, he should add up the 
expected future lagged effects of each innovation N(t). Clearly, the total 
lagged effect of N(t) is N(t)A, where 

00 

A= IL(m). 
m=O 

That is, our arbitrager will attempt to achieve prices that satisfy 

(*) llP(t) = N(t)A. 

Many questions arise: Can this attempt be successful; in other words, 
does the preceding formal expression have meaning? If it has meaning, 
then P(t) is a martingale, but how does P(t) - Po(t) pehave with increasing 
time? Is the mean square price drift E[P(t) - Po(t)] bounded for t -+ 00, -

and among martingales - does P(t) minimize this drift? And a more basic 
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but less urgent question: are the assumptions of the present discussions 
realistic? All the answers will be shown to be in the affirmative if the 
moving average is finite, that is, if L(m) = 0 for large enough values of m. 
Otherwise, the answers depend upon the rapidity of the decrease of L(m) 
as m -+ 00. Three cases must be distinguished: 

• The general case where V = L~= lL2(s) < 00. 

• The more restricted but classical case where V = 00, but I A I < 00. 

• The special case where I A I = 00. 

The classical case defined by I A I < 00. This condition is necessary and 
sufficient to make (*) meaningful and finite. If so, the succession of price 
changes b.P(t) is a sequence of orthogonal random variables with zero 
expectation and a finite and positive variance. These properties charac­
terize the most general martingale for which the increments have a vari­
ance. In summary: Under infinite horizon least squares anticipation in a finite 
variance universe, arbitraged prices ordinarily follow a martingale whose incre­
ments have finite variance, hence they are orthogonal. 

Subcase of the classical case: Gaussian causes. In a Gaussian universe, 
orthogonality is synonymous with independence. Therefore, infinite 
horizon least squares anticipation in a Gaussian universe ordinarily generates 
prices that follow the prototype martingale, namely, the Gaussian random-walk 
without drift. 

Observe that in the special case A = 0, P(t) is identically constant, hence 
a degenerate martingale. 

Mutual price drift P(t) - Po(t) in the classical case. For all t, 

t t t-s 

P(t) - Po(t) = I N(s)A - I N(s) I L(m) 
s=-oo s=-oo m=O 

t 00 

= I N(s) I L(m). 
s=-oo m=t-s+l 

2 
As a result, E[P(t) - Po(t)] is independent of t and equal to the previously 
defined quantity V, with the following definition (note that the dummy 
variable t - s + 1 is rewritten as u): 
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This expression introduces a second criterion. 

If V < 00, the martingale pet) wanders on both sides of poet), but does 
remain in a band of finite variance. If pet) is replaced by any other 
martingale, that is, by any martingale proportional to pet), the mean 
square drift is increased, which shows that if Pct) is defined, it is a linear 
lease squares martingale. 

If V = 00, on the contrary, Pct) - Poet) will drift away without bound, 
which according to our criteria is not admissible. 

The "nonclassical case" defined by A = 00. In this case, the perfectly 
arbitraged price changes should have an infinite variance, because the 
total price changes triggered by each innovation should be infinite. This 
conclusion means that perfect arbitraging case is impossible. 

Discussion: role of the fractional noises. Of the two conditions V < 00 

and I A I < 00, the condition V < 00 is the more demanding one. And both 
are more demanding than the condition'LL 2(rn) < 00 that Urn) must satisfy 
in order to be acceptable as a kernel. One might ask, however, why go 
through this complicated series of conditions? Will not every decent and 
useful Urn) satisfy any condition one might demand? The answer is no: 
for example, there exist processes called fractional noises (see M & Van 
Ness 1968), for which either or both conditions fail, and which are 
encountered widely. 

One specific subfamily of these processes is called discrete fractional 
Gaussian noises (dfGn) and is characterized by the covariance 

where the parameter H lies between 0 and 1. The value H = 0.5 corre­
sponds to the independent Gauss process, so the interesting cases are H 
between 0 and 0.5, and H between 0.5, and 1. If poet) is a dfGn with 
0.5 < H < 1, L(rn) is such that A = 00, so perfect arbitraging is impossible 
even if the drift is allowed to be infinite. If PaCt) is a dfGn with 
0< H < 0.5, then it follows that A = 0 but V = 00, so perfect arbitraging is 
possible only if the drift is allowed to be infinite. 
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Since nonarbitraged prices are - by definition - not directly observ­
able, it is impossible to verify the claim that any actual poet) function 
behaves like the above mentioned dfGn. But there is much indirect evi­
dence of such behavior not only in economic time series, but also in 
branches of physics such as meteorology, hydrology, etc., which provide 
many among the more important exogenous economic variables. An 
excellent example is provided by the fluctuations in the level of the Nile 
River. Although they are devoid of sinusoidal components, the series I 
have in mind typically exhibit a multitude of different cycles of different 
apparent wavelengths: short cycles, middle cycles, and long cycles whose 
wavelengths have the same order of magnitude as the total sample dura­
tions. In many fields, the most economical model for such behavior is 
dfGn, as shown in M 1970e, M & Van Ness 1968{H}, M & Wallis 1968{H}, 
1969b{H}). To be on the safe side, let me simply say that all this suggests 
that economic poet) series resembling fractional noise behavior are not 
exceptional. Hence, the fulfillment of the conditions A and V < 00 is not 
trivial. Exceptions to martingale behavior for Pet) should be expected. 

IMPERFECT ARBITRAGING 

The need for discounting of the distant future. Even in the classical case 
A < 00, long-range predictions are so risky that infinite horizon least 
squares arbitraging would give excessive weight to future lagged effects of 
past innovations. Unless L(rn) vanishes or becomes negligible when rn is 
still small, one must assume that the interest rate is positive and that the 
horizon is finite. The horizon decreases with increased risk aversion. Let 
us now show that under these more restrictive conditions, market effi­
ciency must cease to coincide with the martingale condition. 

Finite horizon anticipation. In the present section, the lagged effect of 
each innovation in the causes C(t) will be followed up to some finite 
horizon, beyond which it will be neglected. This expresses that, for every 
past innovation N(s), one only adds up its lagged effects up to time t + f, 
with t designating the present and f the depth of the future. Thus, the 
total effect of the innovation N(s) will be considered equal to 

t+f-s 

N(s) I L(n). 

n=O 

The resulting price Pf (t) satisfies 
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I l+f-5 1-1 l-l+f-5 

APP) = I N(s) I L(m) - I N(s) I L(m) 
5=-00 m=O 5=-00 m=O 

f 1-1 

= N(t) I L(m) + I N(s)L(t + f - S). 
m=O 5=-00 

Since limn _ oo L(n) = 0, it is easy to verify that as f- 00, APft) - AP(t) 
and P ft) - P fO) - P(t) - P(O). 

This behavior expresses that the martingale process P(t) of the pre­
ceding section can be considered identical to P oo(t). But for finite f, AP/t) 
is a new moving average of the form 

t 

APP) = I N(s)Lr(t + 1- s). 
5==-00 

The function Lf (n) is defined as follows 

f 
Lr(n) = I L(m) for n = 0; 

m=O 

Lr(n) = Lif+ n) for n ~ 1. 

The relationship between the two kernels L(n) and L (n) is illustrated in 
figure 2. The formula for Lfn) shows that the effect 07 finite horizon antic­
ipation takes different forms depending upon whether or not the lagged 
effect function becomes strictly zero for large enough lags. 

Suppose that the after-effects have a finite span 10, meaning that L(n) 
vanishes for all lags n satisfying n > 10. Then we have 

Lr(n) = Lif+ n) = ° for all n ~ 1 andf>/o, 

Therefore, f > 10, suffices for Pf (t) to become identical to the martingale 
P(t) = P oo(t). 

Recall that the assumption of nearly independent causes appears most 
reasonable when such causes are dominated by "market noise." This sug­
gests that, among arbitraged markets, those closest to efficiency are of two 
kinds. In some, the anticipatory horizon is infinite. In others, the "market 
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noise" is so overwhelming that prediction is impossible and the assump­
tion of efficiency cannot be disproved! 

Suppose now that lagged effects continue indefinitely, meaning that -
however large the value of f - there exists at least one value of n > f such 
that L(n) :t; O. Then, the arbitraged price Pt(t) is not a martingale. That is, it 
remains possible to forecast that the price will increase or decrease on the 
average. Good market analysts would obviously know of such instances, 
and they could trade accordingly, but they will be tempted to do so only 
if their horizon of forecasting exceeds that of the rest of the market; that is, 
only if the degree of risk they find acceptable - and hence the resources 
available to them - exceeds those of the rest of the market. 

A danger is that one may proceed to partial arbitraging of an already 
arbitraged price; this would involve a longer horizon and greater risks 
than are wished. (One is reminded of Keynes's sarcastic remark about 
competitive prices being based on expectations about expectations, or on 
expectations about expectations about expectations.) 

n 

Ol2l45671910111213 n 

FIGURE E20-2. This is an illustration of the relationship between an original lag 
effect kernel L(n), and the lag effect kernel Ls(n) corresponding to finite 
horizon arbitraging of horizon f = 5. The heights of the bars equal the values 
of the kernels; areas of contours linked by arrows are identical. 
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Mutual drift of Pf (t) versus Po(t). For all t, 

t t-s t t-s 

Pf(t) - Po(t) = I N(s) I Ir(m) - I N(s) I L(m) 
s=-oo m=O s=-oo m=O 

t t-s 

= I N(s) I [Ir(m) - L(m)]. 
s=-oo m=O 

Thus, E[P/t) - PO(t)]2 is again independent of t and equal to 

If u >f, the uth term of this infinite series reduces to [L~:tu-2L(m)]2, 
which is also the uth term of the infinite series yielding E[Po(t +f> - po(t)f 
For every acceptable L(m), that is, for every L(m) satisfying I.L 2(m) < 00, the 
latter series converges, so that one has Vf < 00. This proves that the drift of 
Pf (t) from Po(t) is bounded without any additional assumption. Of course, 
as f- 00, Vf - V, a quantity we know may be either finite or infinite. 

Alternative forms of finite-horizon anticipation. One could also consider 
the lagged effects of all past and present innovations up to a lag of f. This 
leads to a price series P; (t) = N(s)rtn = oL(m), which means that P; (t) is a 
martingale. But as t - 00, the mutual drift, now defined as Pf (t) - P(t), 
increases without bound for every L(m). 

A third form of imperfect anticipation may attribute a decreased weight 
WlfJ - for example, an exponential discount factor - to the lagged effect 
the innovation N(s) will have at the future instant t + f. Then, at time t the 
innovation N(s) has a total weighted effect equal to 

In this case, P(t) does not diverge even if r.L(m) = 00. With this exception, 
the spirit of the conclusions in preceding subsections remains unchanged. 
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EFFECT OF ARBITRAGING UPON VARIANCES, CORRELATIONS 
AND SPECTRA 

The effect of arbitraging on the variance of price changes. Under the three 
basic conditions, namely infinite horizon least square anticipation, finite 
horizon anticipation, and absence of anticipation, the prices 
P oo(t) = P(t), Pt<t) and Po(t) satisfy 

E1: AP(t) l' = L ~ L(n) r E(N'l. 

E[APf(t)y = {~q<n) }E(N2), and 

E[APo(t)y = {~L 2(n) }E(N2). 

These formulas show that the effect of arbitraging depends on the shape 
of the function L(n). 

Case where the lagged effect kernel L(n) remains positive tor all values of 
n and decreases monotonically to O. If so, arbitraging is variance 
increasing and can be called "destabilizing." 

On the one hand the variance of finite horizon anticipatory price 
changes APt<t) increases from a minimum for Po(t) if= 0) to an asymptotic 
maximum for f = 00. Indeed, 

00 00 

I rf(m) = I L 2(m) + 2 I L(p)L(q). 
n=O m=O oSp<q<O 

The second term on the right-hand side takes the form of a sum to which 
new elements are added as f increases. 

On the other hand, the lag correlation of Pf (t + 1) - Pf (t) decreases 
monotonically with f ; that is, price increments become less and less strongly 
interdependent as the horizon of forecasting lengthens. The proof is 
tedious and those not interested will skip to the end marked by QED. 

In terms of the covariance 
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the lag correlation is written as 

We have already shown that the denominator Cov/O) increases, therefore, 
it suffices to prove that the numerator Cov/1) decreases. Observe that 

00 { f} 00 Covf(1) = ~Lr(n)Lr(n + 1) = f;oL(m) Llf+ 1) + n~l[L(n)L(n + 1)], 

where 

00 00 

+ I L(n)L(n + 1) - I L(n)L(n + 1). 

n=f+l n=f 

Rearranging the terms, the preceding expression equals A + B, where 

{
f- 1 

} 
A = f;O L(m) [Llf + 1) - L(t)J, and 

Term B vanishes, and term A is proportional to Llf+ 1) - L(t), which is 
negative, as asserted; QED. 

An important distinction. When A < 00, the limit of P (t) for f= 00 is an 
independent process, but when A = 00, Pf (t) remains forever correlated. 
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Therefore, one should expect to find that many actual price series - even 
on actively arbitraged markets - are correlated. This prediction represents 
one of the main results of this paper. 

Case where I:=oL(n) is smaller than L(O). If so, arbitraging is variance­
decreasing and can be called "stabilizing." Price variability is decreased 
by infinite horizon anticipation, but as f increases from 0 to 00, the vari­
ance of !J.Pf (t) does not vary monotonically, it oscillates up and down. An 
example where I: = oL(n) < L(O) occurs is when the lagged effects of inno­
vation begin with a nearly periodic "seasonal" before they decay for larger 
lags. A high seasonal is then present in unarbitraged prices, but - as one 
would hope - perfect arbitraging eliminates it. 

Special example. When I::' = oL(n) = 0, perfect arbitraging cancels price 
variability completely. If unavoidable effects (like spoilage of a seasonal 
commodity) enter and impose a finite horizon, the seasonal effects in price 
variance are attenuated but not eliminated. 

The viewpoint of "harmonic" or "spectral" analysis. The preceding 
results can be expressed in terms of spectra. The spectral density of 
Pf (t + 1) - Pf (t) = C(t + 1) is known to be equal to 

2 
00 

S(A) = I It(n) exp(2TTnAi) 
n=O 

In particular, its value 5'(0) at zero frequency A is equal to [I:=oLt<n)]2. 
Now observe that the definition of Lf (n) from L(n) (see Figure 2) implies 
that I::'=oLf(n) = I:=oL(n), independently of the value of f It follows that 
the spectral density of Pf(t + 1-Pf(t» at A = 0 is independent of the value 
off 

Recall that a process is called "white" if its spectral density is inde­
pendent of the frequency. The values of a white process are mutually 
orthogonal; if the process is Gaussian, they are independent. Now 
examine P/t + 1) - P/t) for f varying from 0 to 00. We start with 
Po(t + 1) - P/t) = C(t + 1), which was assumed nonindependent, and hence 
nonwhite. We end up with P(t + 1) - P(t) = P oo(t + 1) - P oo(t), which is inde­
pendent (white). Hence, perfect arbitraging whitens the spectral density. But 
the value of the spectral density at f = 0 is invariant, and thus constitutes a 
kind of "pivot point." As f increases from 0 to 00, and anticipation 
improves, the spectral density of P/t + 1) - Pf(t) becomes increasingly flat. 
But arbitraging can do absolutely nothing to the amplitude of the very low 



E20 0 0 LIMITATIONS OF EFFICIENCY AND OF MARTINGALE MODELS 511 

frequency effect. If I,L(m) = 00, the spectrum of the arbitraged price should 
be expected to remain unavoidably "red," that is, to include large amounts 
of energy within very low frequency components. 

Let us now consider some of our special cases more closely. When 
L(n) > 0 for every value of n and Un) decreases as n -+ 00, the spectral 
density of P/t + 1) - P/t), considered for A > 0, increases monotonically 
with f In other words, the only way in which arbitraging can decrease 
the correlation of Pf (t + 1) - Pf (t) is by making its high frequency effects 
stronger. This is what makes prices more variable. Some authors have 
proposed to call the expression fAS'(A)dA/fS'(A)dA the average frequency 
of a process. In this case, we see that this quantity increases with 
improved anticipation. 

When I,Um) < L(O), improving arbitraging decreases the high frequency 
effects, and the average frequency decreases. In particular, in the special 
example where L: = oL(n) = 0, the spectral density of Pf (t + 1) - Pf (t) for 
A ~ 0 tends to zero as f-+ 00, though not necessarily monotonically. (For 
A = 0, we know that S'(A) is identically zero for all f ) 

Time increments T longer than 1. The spectral density of Pf (t + n - Pf (t) 
at A = 0 equals T2[I,Um)f, also independently of f This means that the 
argument about the origin as "pivot point" continues to hold. But other­
wise things are too complicated to be worth describing here. 

Alternative definitions of imperfect arbitraging. In all the instances I 
have examined, the above argument about the pivot at A = 0 continues to 
hold true. 

PRICE CONTINUITY AND THE ROLE OF THE SPECIALIST 

Continuity and discontinuity are often invoked in the study of prices, but 
of course these mathematical terms should not be interpreted literally. 
Transactions occur at discrete instants of time and are quoted in discrete 
units, so mathematically speaking a price series is never continuous. But a 
series that only moves by small steps may be interpolated by a continuous 
function without violence, while series that move by big steps cannot. So 
the concepts of continuous and discontinuous price variation - if tackled 
cautiously - are useful. Roughly speaking, one can say that improvement in 
anticipation, through the resulting increase in high frequency energy, makes 
price variation less smooth, less "continuous." 
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Let us now turn briefly to the role of the specialist. If he attempts to 
insure the "continuity of the market" (to use the words of the Securities 
Exchange Commission (S.E.C.», he will necessarily try to smooth away the 
high frequency price fluctuations. This acts against good arbitraging, as 
we have seen. In other words, the S.E.C.'s prescription creates opportu­
nities for systematic gain. 

At this time, it may be appropriate to recall the effect of price 
smoothing by the specialist in those cases where price changes are not 
Gaussian, but have infinite variance. M1963b{E14} shows that the big 
expected gains promised by Alexander's "filter method" hinged entirely 
on the assumption that price is "continuous," from which it follows that 
one can buy or sell at any price one has prescribed in advance. My 
L-stable model of price behavior predicts, to the contrary, that price is 
violently discontinuous. If combined with the smoothing effect of the spe­
cialist, my model predicts that every so often prices will go up or down 
very steeply. Alexander assumed that one could buy or sell, at a price 
prescribed in advance, during these periods of steep variation, but of 
course this possibility is not open to ordinary buyers and sellers, so 
Alexander's results are not in contradiction with market efficiency. 

The role of the specialist deserves more study along the above lines. 

Acknowledgement. This paper was read at the Annual Winter Meeting of 
the Econometric Society on December 28, 1969. Later, I became aware that 
considerable literature - including contributions by M. Friedman, W. J. 
Baumol, and 1. Telser - concerns the question of whether or not specu­
lation is stabilizing. Between these works and my own there are obvious 
similarities and differences, but this is not the place to survey the field. 
This text has benefited greatly from discussions with Murad Taqqu. 

&&&&&&&&&&&& ANNOTATIONS &&&&&&&&&&&& 

In the original title of this paper, the word limitation unaccountably came 
out as limit. This was corrected when the title was shortened. The ori­
ginal footnotes were incorporated in the text or an Appendix. 
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Self-affine variation in fractal time 
(section 1 is by H. M. Taylor) 

E21 

• Chapter foreword. Since the number of transactions in any time period 
is random, different distributions are needed to represent price changes 
over fixed numbers of transactions and fixed time periods. It appears that 
the former follow a Gaussian distribution, while the latter follow a 
L-stable distribution. M & Taylor 1967 shows that those two distributions 
are by no means contratictory: a scenario based on a fractal subordination 
time is proposed by Taylor (Section I), then shown by Mandelbrot (Section 
2) to be intimately related to an earlier discussion of the specialists' func­
tion of "ensuring the continuity of the market." Note that this scenario is 
only compatible with the M 1963 model restricted to a symmetric distrib­
ution of price changes. Section 3 - reproducing M 1973c - elaborates by 
responding to Clark 1973. 

The "Panorama" provided by Chapter E6 describes steps that led from 
the M 1967 model to a fuller model in which "trading time" changes from 
being fractal to being multifractal. This change is far-reaching and is 
extensively discussed in Annotations at the end of this chapter. • 

THERE ARE AT LEAST FOUR SCHOOLS OF THOUGHT concerning the 
stochastic models for stock prices. 

In terms of number of followers, by far the most popular approach is 
that of the so-called "technical analyst" phrased in terms of short term 
trends, support and resistance levels, technical rebounds, and so on. 

Rejecting this technical viewpoint, two other schools agree that 
sequences of prices describe a random walk, where price changes are sta­
tistically independent of previous price history, but these schools disagree 
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in their choice of the appropriate probability distributions and/or in their 
choice of the appropriate "time" parameter (the physical time - days, 
hours - or a randomized operational time ruled by the flow of trans­
actions). Some authors find price changes to be Gaussian (Bachelier 1900, 
Brada et al. 1966, Laurent 1959 and Osborne 1959), while the other group 
find them to follow a L-stable distribution with infinite variance (M 
1963b{E14}, 1967j{E15}, Fama 1963b{E16}, 1965). Finally, a fourth group 
(overlapping with the preceding two) admits the random walk as a first­
order approximation but notes recognizable second-order effects. (M 
1966b{E19}, 196ge, Niederhoffer 1959 and Osborne 1962.) 

Sections 1 and 2 of this chapter show that Brownian as motion as 
applied to transactions is compatible with a symmetric L-stable random 
walk as applied to fixed time intervals. Section 3 elaborates. 

Review of L-stable distributions. Let {Z(t), t ~ O} be a stochastic process 
with stationary independent increments, that is, random walk. Z(t) 
follows a L-stable distribution if (Gnedenko & Kolmogorov 1954, p. 164) 
its characteristic function takes the form: 

a 
CPz(t)(u) = E[ exp{iuZ(t)}] = exp{i<5tu - yt I u I [1 + i{j(u/ I u I )w(u, a)]}, 

where I (j I ~ 1, 0 < a ~ 2, y > 0 and 

w(u, a) = tan(rra/2) if a:#: 1, and w(u, a) = (2/rr) log I u I if a:#: 1. 

In general, a is called the characteristic exponent of the L-stable distrib­
ution (Gnedenko & Kolmogorov 1954, p. 171.) When a = 2, one gets the 
Gaussian, and Z(t) is a Brownian motion process. The Cauchy corre­
sponds to a = 1 and {j = O. When 1 < a < 2, one has a finite mean but infi­
nite variance and is the L-stable distribution. It is positive if and only if 
a < 1, {j = 1, and <5 ~ 0, and it is symmetric when {j = O. 

1. THE "SUBORDINATION" RELATION BETWEEN THE GAUSSIAN 
AND THE L-STABLE DISTRIBUTIONS (BY HOWARD M. TAYLOR) 

Let {X(v), v ~ O} be a Gaussian stochastic process with stationary inde­
pendent increments, E[X(v)] = 0 and E[X(u)X(v)] = cr min{u, v}. The charac­
teristic function is given by 
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<Px(t)(~) = E[ exp{i~X(t)}] = exp{ - ~ ~2crt}. 

Let {T(t), t ~ O} be a positive L-stable stochastic process with character­
istic function 

a 
<PT(t)(1J} = exp{ - yt 1111 [1 + i(11 /1111) tan(TTa/2)]}, 

where 0 < a < 1 and we have taken 8 = 0, f3 = 1 in the general form, 
equation (1). Define a new process Z(t) = X[T(t)]. Following Solomon 
Bochner, this process is said to be subordinated to {X(v)} and the process 
{T(t)} is called the directing process (Feller 1950, Vol. II, p. 335). 

We interpret {X(v), v ~ O} as the stock prices on a "time scale" meas­
ured in volume of transactions, and consider T(t) to be the cumulative 
volume or number of transactions up to physical (days, hours) time t. 
Then Z(t) is the stock price process on the physical time scale. The key 
fact is that Z(t) is a L-stable process with independent increments and 
with characteristic exponent 2a < 2 (Feller 1950, Vol. II, p. 336, example 
(c». This property may be shown by computing the characteristic function 

<Pz(t)(~) = E[ exp{i~X(T(t))}] = E[ E[ exp{i~X(T(t»} I T(t)]] 

= E[ <PX(T(t)}(~)] = E[ exp{ - ~ ~2crT(t)}]. 

Formally, this becomes 

1 2-2 -2 a 2a 
<Pz(t)(~) = <pT(t)( "2 i~ 0-) = exp{ - y(o- /2) t I ~ I [1- tan(TTa/2)]} 

1\ 2a 
= exp{ - yt I ~ I }, 

where y = y(cr /2)a[1- tan(TTa/2)]. We have thus obtained the symmetric 
L-stable distribution with characteristic exponent a < 2 for which the f3 
and 8 terms in equation (1) are zero. (The preceding step is called formal 
because it substitutes a complex variable in a characteristic function 
formula developed for a real argument. But this substitution step is 
readily justified, see Feller 1950, Vol. II. 
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2. THE DISTRIBUTION OF STOCK PRICE DIFFERENCES 

2.1. Introduction 

As in M 1963b{EI4}, successive price changes over fixed time periods are 
approximately independent and their distribution is approximately 
L-stable. This means in particular that their population variance is infi­
nite. Defining T(t) to be cumulative number of transaction up to t, one 
can write Z(t) = X[T(t)]. Taylor notes in Section 1 that, when the distrib­
ution of Z(t) is symmetric and T(t) is a special random function called 
"subordinator," the observed behavior of Z(t) is compatible with the 
assumption that price changes between transactions are independent and 
Gaussian. (This representation of Z appears due to S. Bochner.) 

Other authors have recently shown interest in the relations between 
price changes over fixed numbers of transactions and over fixed time 
increments. However, Granger 1966 only points out that it is conceivable 
that X(D be Gaussian even when Z(t) is extremely long-tailed, without 
noting that this requires T(t) to be approximately a subordinator. Brada et 
al. 1966 belabor the fact that the price changes between transactions are 
short-tailed and approximately Gaussian, a feature that is ensured by the 
S.E.C's instructions to the specialists. 

As H. M. Taylor noted in Section 1, the subordinator is itself a non­
Gaussian L-stable random function, with an infinite mean and a foriori an 
infinite variance. His remark, therefore, does not belong to the category of 
attempts to avoid L-stable distributions and to "save" the finite variance. 
Basically, he suggests an alternative way of introducing the infinite­
moment hypothesis into the study of price behavior. This alternative is 
illuminating although restricted to the symmetric case, and as yet devoid 
of direct experimental backing. It deserves to be developed. Another 
alternative was developed in M 1966b{EI9}. 

T(t) being an integer, it cannot be exactly a subordinator, but Taylor's 
conclusion is practically unaffected if one quantizes T. In the first approxi­
mation, we shall assume the jumps of T have been quantized but not 
smoothed out. Similarly, X(D must be a process in discrete time. Its 
independent Gaussian increments will be assumed to have zero mean and 
unit variance. 
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2.2. Actual and "virtual" transactions 

The subordinator function is (almost surely almost everywhere) discontin­
uous and varies by positive jumps whose size U is characterized by the 
following conditional distribution 

)
-al2 

for each h > 0 and u > h, Pr (U ~ u I U ~ h) = ( ~ . 

These jumps mean that Taylor implicitly suggests that, if U> I, trans­
actions are performed in "bunches." Let the last transaction in the bunch 
be called "final" and the other "virtual." 

If the amounts traded in "virtual" transactions were negligible, the 
price change between successive final transactions would be the sum of U 
independent reduced Gaussian variables. The variance of the price change 
would be equal to the expectation of U, which is infinite; more precisely, 
one can easily verify that the distribution of price changes between final 
transactions is identical to the distribution of the sizes of the jumps of the 
infinite variance L-stable process. 

Thus, Bochner's representation of the L-stable process brings nothing 
new unless the amounts are traded on the so-called "virtual" transactions 
are nonnegliglible. 

2.3. Specialists' trades 

Section VI.B of M 1963b{EI4} pointed out that the discontinuities of the 
process Z(t) were unlikely to be observed by examining transaction data. 
They are either hidden within periods when the market is closed or the 
trading interrupted, or smoothed away by specialists who, in accordance 
with S.E.C. instructions, "ensure the continuity of the market" by per­
forming transactions in which they are party. 

It is tempting to postulate that virtual transactions and the specialists' 
transactions are identical, though the latter presumably see where the 
prices are aimed and can achieve the desired llZ in less than U inde­
pendent Gaussian steps. Thus, the Bochner representation is plausible and 
suggests a program of empirical research of the role of Specialists. 

The method of filters. The distribution of price changes between trans­
actions has a direct bearing upon the "method of filters," discussed in 
Section VI.C of M 1963b{EI4}. 
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Observe that the specialist can interpret the "continuity of the market" 
in at least two ways. First, smooth out small "aimless" price drifts, so that 
the expression Zj + 1 - Zj is equal to zero more often than would have been 
the case without him. Second, replace most large price changes by runs of 
small or medium-sized changes, whose amplitudes will be so interde­
pendent that almost all will have the same sign. On some markets, this is 
even ensured by the existence of legal "limits." (These are imposed on the 
price change within a day, but they naturally also impose an upper bound 
on price changes between transactions.) On other markets, limits are not 
fixed by distribution. Suppose, however, that right after transaction is per­
formed at time tj with price Zj' a major piece of information dries out all 
supply of that security below a price Zoo Then the specialist is supposed to 
sell from his own holdings and he will be one of the parties in the next 
few or many transactions. As a by-product of the "time for reflection" 
thus provided, such smoothing will surely affect the distribution of the 
quantity Zj + 1 - Zj by eliminating most large values. The only large values 
that will surely remain are those corresponding to the cases where tj is 
either the instant of the last transaction within a session, or the instant of 
the last transaction before an interruption of trading. Although such cases 
are extremely important, their effect upon the statistics of Zj + 1 - Zj will be 
swamped out by the huge number of transactions performed within any 
trading session. 

2.4. Difficulty of using in practice the data relative to price changes 
between successive transactions 

Let Zj and Zj + 1 be successive quotations. The fact that the distribution of 
Zj + 1 - Zj is short-tailed (or even Gaussian) is now seen to be fully compat­
ible with the L-stable behavior of Z(t + n - Z(t). However, even if indi­
vidual investors had "transaction clocks," which they do not, they cannot 
insure that their transactions would be the next to be executed on the 
market, or the 50th or lOOth after the next. A buy or sell order registered 
when price is Zj will be executed at a price ZO such that ZO - Zj is some 
complicated mixture (carried over all values of J) of quantities of the form 
Zj + j - Zj" Mixtures of Gaussian distributions are known to have fatter tails 
than the Gaussian, and these tails can be very fat indeed. 

Similarly, it is difficult to see how transaction data can be used by 
economists who are not primarily concerned with the activities of the spe­
cialists. For example, if stock price changes are just one of the variables in 
a time series model, it would not make sense to measure the price changes 
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over a transaction interval (and thus a variable time interval) if the other 
variables are measured over fixed intervals of time. 

The criticism expressed in the preceding paragraph should not be 
interpreted as implying that the problem of trading on the NYSE is fully 
solved by describing the function Z(t) in natural (uniformly flowing) time, 
because the instant when one's transaction will be executed is also impos­
sible to fix in advance. Therefore, some kind of mixture will again appear. 
In Bachelier's original model, zet + n - Z(t) being a Gaussian random vari­
able, one encounters the same difficulties as when mixtures of Zj + j - Zi are 
considered. On the other hand, the L-stable scaling model has the inter­
esting property that the asymptotic behavior of the distribution is the 
same for a mixture of Z(t + n - Z(t) (carried over a set of values of n, and 
for each Z(t + n - Z(t) taken separately. Thus, mixing has no effect upon 
considerations related to the asymptotic behavior. 

3. COMMENTS ON A SUBORDINATED STOCHASTIC MODEL WITH 
FINITE VARIANCE ADVANCED BY PETER K. CLARK 

• Abstract. Clark 1973 reports on experimental findings about price 
changes, which I view as useful, novel, and worth pursuing. It also 
advances yet possible alternative to the M 1967 model, in particular to my 
infinite variance hypothesis. This is a response to Clark. • 

3.1. Introduction 

Both M & Taylor 1967 and Clark 1973 represent price variation by 
stochastic processes subordinated to Brownian motion. The subordinators 
follow different formulas, but happen to be surprisingly dose numerically. 
Consequently, adopting Clark's viewpoint would bring no real difference 
in most concrete predictions. 

However, Clark raises again an issue of scientific judgment I have 
often encountered. On the one hand, he agrees with numerous earlier 
critics in believing that infinite variance is undesirable per se. In order to 
paper it over, he thinks the economist should welcome a finite-variance 
reformulation, even when otherwise undesirable features are present. On 
the other hand, I believe that scaling is both convenient mathematically 
and illuminating of reality. In order to achieve it, I believe that econo­
mists should learn to live with infinite variance. Clark's scholarly effort 
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brings up the issue from a novel angle, which deserves a fairly detailed 
discussion. 

3.2. The use of subordination 

M & Taylor and Clark agree that price change would reduce to the 
familiar Brownian motion, if only it were followed in an appropriate 
"trading time," different from "clock time." Taylor and I had thought that 
trading time might coincide with transaction time, while Clark links it 
with volume. However, it should be kept in mind that if price variation is 
to proceed smoothly in trading time, then trading time itself must flow at 
a random and highly variable rate. Consequently, as long as the flow of 
trading time remains unpredictable, concrete identification of the appli­
cable trading time leaves the problems of economic prediction unaffected. 

3.3. Two possible subordinators 

There is no longer any disagreement among economists that the distrib­
ution of speculative price changes is extremely long-tailed. Applied statis­
ticians have long noted that such distributions can be described by using 
mixtures of Gaussian distributions with different variances. Price change 
distributions being nearly symmetric, these Gaussian components can have 
zero means. The concept of subordination of stochastic processes is 
"merely" a concrete interpretation of such mixing. In the present instance, 
it is agreed that the mixing distribution of the variance is unimodal, with 
low probability for very small values of variance and appreciable proba­
bility for very large values of variance. The question is, which is the 
precise form of this mixing distribution? 

The 1963 model was shown by M & Taylor to be strictly equivalent to 
postulating that the mixing distribution is the "positive L-stable distrib­
ution of exponent a/2" - with a usually near 2. Clark proposes to replace 
it with a lognormal distribution. 

The conflict between the scaling and lognormal distributions. The pre­
ceding observation rephrases my disagreement with Clark in terms of a 
very old story, since the positive L-stable and the lognormal distributions 
have already clashed repeatedly in the past, notably in such contexts as 
the distribution of personal incomes, of firm sizes, and of city populations. 
In this instance, Clark 1973 (Footnote 14) concedes that "it is not clear the­
oretically why operational time should be lognormally distributed." As 
might be suspected from the very fact that each alternative has found sen­
sible statisticians to defend it, their actual graphs look alike. In fact, dif-
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ferent choices of fitting criteria may leave the field to different contenders. 
Therefore, not only do I have numerous reservations about Clark's statis­
tical techniques - especially about the estimation of a, but his statistical 
scores also leave me unimpressed. They will be mentioned again, but 
dwelling upon them would distort priorities. 

Scientific model-making is not primarily a matter of curvefitting. When 
the statistician chooses to fit distinct aspects of the same phenomenon sep­
arately, the best fits tend to be both mutually incompatible, and unman­
ageable outside of their domain of origin. Hence, a combination of 
simultaneous fits of several aspects is unavoidable. For example, theories 
centered upon the Gaussian distribution are used in physics even in cases 
where it is recognized that each specific aspect of the same phenomenon 
could be fitted better by some alternative. The reason is that the Gaussian 
has special virtues: it is linked with the classical central limit theorem; it is 
L-stable, meaning the sum of any number of independent Gaussians is 
itself Gaussian; and it is analytically simple. Therefore, a Gaussian theory 
is considered satisfactory as long as it fits everything reasonable well. 

While I have often argued against specific Gaussian theories, I do con­
sider the above stance to be correct, because the virtues listed are real. 
Stability is linked with the potent scientific method of "invariances". In 
other words, I believe one should make it a principle not to give up the 
listed virtues of the Gaussian without necessity. 

An added virtue of the Gaussian is that its moments are finite. This 
should not matter, though, because after all, moments are an acquired 
taste. In this light, let me run through several comparisons between my 
model and Clark's alternative. 

3.4. Motivations for the two subordinators 

A motivation for the M 1963 model. My original motivation can be trans­
lated in terms of mixing distributions, even though it was originally 
expressed in terms of the resulting price change distributions. Among 
mixing distributions of the right general shape, the positive L-stable is the 
only one to be (i) L-stable - meaning that the mixing distributions corre­
sponding to time spans T of one day, one week, etc., are identical except 
for scale - and (ii) related to a nonclassical but usable form of the central 
limit theorem. Since the implementation of fast Fourier transform 
methods, L-stable probability densities have become easy to calculate. 

Motivation for the lognormal alternative. Clark 1973 (in the already cited 
footnote 14) concedes that he has none. Many candidates were tried, and 
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the lognormal scored best. If this guess is correct, the tests used by Clark 
would be questionable, because they were designed to test between two 
hypotheses, not between a hypothesis and the best of several alternatives. 

3.5. Statistical tests of the two subordinators 

Tests of the M 1963 model. They have been fairly rough and graphical (less 
so in recent work than in M 1963b{E14}), but covered diverse prices over 
diverse time spans. 

Test of the lognormal subordinator alternative. It is less rough than in M 
1963b{E14}, but is limited to one series, the prices of cotton futures aver­
aged over different dates of delivery. If fit is indeed improved by using 
Clark's model for this particular series, the largest changes in this series 
would be smaller than predicted by my model. Even if this finding is 
confirmed, it may be of limited validity, since the government imposes a 
ceiling on maximum change of the prices of cotton futures. Therefore, 
cotton futures are not good material for a study of large price changes. 

3.6. Finite variance - pro and con 

I suspect that the above arguments would have settled the issue in favor 
of the M 1963 model, were it not for the matter of finiteness of moments. 
The variance is infinite in the L-stable distributions applicable to the price 
changes, and even the mean is infinite for the positive L-stable distribution 
used in the subordinator. In Clark's alternative, all moments are finite. 
Infinite variance was once called a "radical departure," but I do not 
believe it should continue to be shunned. The issues are discussed at 
length in my papers and those of E.F. Fama, but may bear repetition. 

Since practical sample sizes are never very large, practical sample 
moments are only affected by the bulk of the distribution and not by its 
tail. Since we know that in their central portions all reasonable alterna­
tives are very close to each other, the same should be true of the corre­
sponding distributions of sample moments. If sample sizes could grow 
indefinitely, then in one case (L-stable) the distribution of sample moments 
would drift out to infinity, while in the other case (lognormal) it would 
thin down to a point. But those familiar asymptotics of the lognormal tell 
us nothing about distributions of small sample moments. When the 
lognormal is very skewed, its "small sample" properties are extremely 
erratic, and calculations of sample distributions are very complicated. 
Thus, the reputed "tameness" of the lognormal is entirely based on its 
asymptotics, and in practice it has little value. The L-stable distribution's 
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asymptotics, to the contrary, are a precise image of its finite sample 
behavior. As to the moment behavior of the data (which a careful student 
cannot avoid and which he must describe), it is indeed very erratic, so the 
reputed "wildness" of the L-stable behavior is realistic. 

3.7. Comment on Clark's empirical power law 

Clark shows that the daily increments of trading time vary proportionately 
to the daily volume raised to the power of 2.13. This empirical discovery 
seems very interesting and deserves careful thought. 

&&&&&&&&&&&& ANNOTATIONS &&&&&&&&&&&& 

Editional changes. The first few sentences of Section 3 were rephrased to 
provide an Abstract. Section numbers and titles were added for the sake 
of clarity. "Local time" was changed to "trading time." 

How Sections 1 and 2 came to be written. A very brief mathematical 
paper was submitted by Howard M. Taylor to the journal Operations 
Research. Called to act as referee, I strongly endorsed it and proposed to 
the same journal a follow-up paper concerned with the economic aspects 
of the problem. The editors suggested that we combine the two texts, and 
we agreed: they are reprinted here as Sections 1 and 2. Not until several 
years later did the co-authors actually meet in person. 

Technical comments on Section 3. A fresh look at Clark 1973 confirms 
that it was a valuable follow-up to M & Taylor 1967. Unfortunately, 
reading that paper again revived an old disappointment since this direct 
filiation is acknowledged near-invisibly and incompletely. 

In any event, M & Taylor 1967 and Clark 1972 barely scratch the 
problem of subordination and compounding. I intended to return to this 
problem with a paper describing the M 1972 model, which was conceived 
at about the same time as M 1973c. However, my attention was drawn 
away from finance to multifractals and fractals in physics. The present 
status of the M 1972 model is sketched in Chapter E6, and the comments 
that follow are intended to help tie it up that chapter with the present one. 

A) In terms of empirical analysis, there is no head-on disagreement. Clark 
1973 deals with cotton futures, while M 1963b{E14} deals with cotton spot 
prices. Trading limits set an upper bound on future price changes, there-
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fore shorten the distribution tails. They also introduce serial dependence, a 
topic that was not tackled by Clark but will be examined momentarily. 

B) The availability of explicit formulas, or lack thereof. This issue deserves 
comment. In the M 1967 representation, both the subordinator and the 
compounding function are L-stable, hence no explicit formula is available 
for either. However, a great deal of knowledge is available. 

In Clark 1973, the subordinator has a very simple lognormal density, 
but the distribution of the compound increment is given by an unmanage­
able formula, about which hardly anything is known. For periods longer 
than one day, Clark's proposal becomes even more unmanageable. 
Against this background, the L-stable looks almost straightforward, con­
trary to the criticism it often receives. 

C) A subordinator must allow interpolation. Clark reproduces many 
standard results and formulas from the literature, but fails to check 
whether or not the lognormal is suitable as a subordinator in continuous 
time. In fact, it is, but only due to a fact that was not discovered until 
later, namely, the proof in Thorin 1977 that the lognormal is infinitely 
divisible. However, the variables that add to a lognormal are even more 
unmanageable than sums of lognormals. 

D) Subordination requires the subordinator's increments to be independent. 
While the M 1963 model deals with sums of a fixed number N of inde­
pendent random variables, Clark quotes many papers on sums of a 
random number N of addends. However, the assumption of independence, 
already made by M & Taylor, is preserved, as required by the definition of 
subordination. 

To the contrary, the key step from the M 1967 to the M 1972 model is 
to replace subordination by a form of compounding that implies a specific 
form of dependence. 

E) A possible remote relation between lognormality and multifractal com­
pounding; how Clark's evidence might be reclaimed and reintrepreted. The 
lognormal distribution plays a central but very delicate role in the study of 
multifractals. This is why the end of Section 8.6 of Chapter E1 uses a 
sequence of lognormals to demonstrate that, as the differencing interval 
increases, the tails of the distribution of price changes can become shorter. 

An historical near-coincidence must now be injected. The lognormals 
postulated in that illustrative example were also put forward in the 
context of turbulence, in Kolmogorov 1962. Unfortunately, that paper 
hastily implied that sums of lognormals are themselves lognormal. Cor­
recting this error proved difficult: it required the extensive work pre-
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sented in M 1972j{N14}, M 1974f{N15} and M 1974c{N16}, and was the 
source of the notion of multifractal. Lognormality plays a role in M 
1972j{N14b}, but only as a rough first approximation. However, more 
importantly, independence is replaced by strong serial dependence; hence, 
subordination is replaced by a more general form of compounding. 

The data in Clark 1973 may provide unwitting evidence for the M 
1972 compounding model. However, a fresh look at those old data would 
be less valuable than extensive tests carried on better data from scratch. 

An earlier short version of Section 3, published as M 1968i. "Granger 
1968, Section 3, attempted to represent the long-tailed distribution of price 
changes by arguing that the price changes between transactions are short­
tailed, but the number N(t) of transactions during the time t is a very 
long-tailed random variable. 

"Regrettably, Granger's argument only shifts the point at which a non­
Gaussian limit theorem is required. 

"To represent price data correctly, the instants of transaction must 
indeed be such that Granger's function N(t) remains a widely scattered 
random variable even when t is large. To account for my observation that 
Z(t + T) - Z(t) has infinite variance, N(t) must have an infinite expectation. 
But N(t)/E[N(t)] rapidly tends to 1 whenever the Gaussian central limit 
theorem applies to the instants of transaction. Thus, those instants cannot 
satisfy the Gaussian central limit theorem. A process for which N(t) 
remains widely scattered even when t is large is studied in M & Taylor 
1957; it is identical to, therefore in no way less "strange" than, the infinite­
variance L-stable processes. 

"Economists interested in applying the Gaussian central limit theorem 
to dependent variables may ponder the following, still timely, quotation 
from Grenander & Rosenblatt 1957 (p. 181): " ... the experimentalist would 
argue that in most physically realizable situations where a stationary 
process has been observed during a long time interval, compared to time 
lags for which correlation is appreciable, the average of the sample would 
be asymptotically normally distributed .... Unfortunately none of the exten­
sions of the central limit theorem of dependent variables seems to answer 
this problem in terms well adapted for practical interpretation." 

One may add that, if the interdependence between addends is suffi­
ciently (but not unrealistically) strong, their weighted sum will not con­
verge to a Gaussian limit. For example, M 196ge describes a process with 
a Gaussian marginal distribution whose long-term average is not Gaussian 
but L-stable - as the M 1963 model postulates in the case of prices. 



Cumulative Bibliography, 
including copyright credits 

EB 

Foreword to the Bibliography. Contents. This list puts together all the references of the 
reprinted and new chapters in this book. The sources being very diverse and some being known to few 
readers, no abbreviation is used and available variants are included. 

In this list, the Selecta volumes are flagged by being preceded by a mention of the form *N, 
which refers to Volume N. Publications reprinted in this or other Selecta volumes are flagged by 
being preceded by a mention of the form *N16, which refers to Volume N, Chapter 16. Those items 
are followed by the name of the original copyright holder. In references to publications scheduled for 
reprint in future Selecta, chapter indications are tentative or omitted. Finally, the papers and unpub­
lished reports that are not reprinted as such but whose contents are incorporated in a chapter of this 
book are marked by that chapter's number preceded by an asterisk ... 

Style. Once again, in absolutely no way does this book claim to provide a balanced exposition of 
the publications that are based on my work: either challenge it, or praise it by adopting and 
expanding its conclusions. Extensive discussions with many references are found in Mirowski 1990, 
1996 and McCulloch 1996, but I never managed to read more than a few of those articles. 

I can only beg those denied adequate credit for understanding and forgiveness, and ask them to 
educate me when they have a chance. 

ADELMAN, 1. 1958. A stochastic process analysis of the size distribution of firms. Journal of 
the American Statistical Association: 58, 893-994. 

ADELMAN, 1. 1965. Long cycles: fact or artifact? American Economic Review: 60,444-463. 

ADLER, R., FELDMAN, R. & TAQQU, M. (eds) 1997. A Practical Guide to Heavy Tails: Statis­
tical Techniques for Analysing Heavy Tailed Distributions. Boston: Birkhiiuser. 

AITCHISON, J. & BROWN, J. A. C. 1957. The Lognormal Distribution. Cambridge: Cambridge 
University Press. 

ALEXANDER, S. S. 1961. Price movements in speculative markets: trends or random walks. 
Industrial Management Review of M.l.T.: 2, Part 2, 7-26. Reprinted in Cootner 1964: 199-218. 

ALEXANDER, S. S. 1964. Price movements in speculative markets: No.2. Industrial Manage­
ment Review of M.l.T.: 4, Part 2, 25-46. Reprinted in Cootner 1964: 338-372. 

AROV, D. Z. & BOBROV, A. A. 1960. The extreme members of samples and their role in the 
sum of independent variables. Theory of Probability and Its Applications: 5, 415-435 of the 
Russian original (377-396 in the English translation.) 



EB ~ ~ CUMULATIVE BIBLIOGRAPHY 527 

ARMITAGE, P. 1952. The statistical theory of bacterial populations subject to mutation. 
Journal of the Royal Statistical Society: B 14, 1-40. 

ARMITAGE, P. 1953. Statistical concepts in the theory of bacterial mutation. Journal of 
Hygiene: 51, 162-184. 

ASTROM, K. J. 1962. Analysis of a First-Order Linear System ... IBM Nordiska Laboratorier 
Report: TN 18.073. 

AUERBACH, F. 1913. Das Gesetz der Bevolkerungskonzentration. Petermans Mitteilungen: 
59,74-76. 

AYRES, H. 1963. Risk aversion in the warrant markets. Industrial Management Review: 5, 
45-54. Reprinted in Cootner 1964: 497-505. 

BACHELlER, L. 1900. Theorie de la speculation. (Doctoral disertation in Mathematical Sci­
ences, Faculre des Sciences de Paris, defended March 29, 1900). Annales Scientifiques de 
[,Ecole Normale Superieure: II1-17, 21-86. Reprinted in 1995, followed by a sequel (Paris: 
Gabay). Translated into English in Cootner 1964: 17-78. 

BACHELlER, L. 1914. Le jeu, la chance et Ie hasard. Paris: Flarnmarion. 

BAILLlE, R. T. 1996. Long memory processes and fractional integration in econometrics. 
Journal of Economics: 73, 5-59. 

BARNOORFF-NIELSEN, O. & BLAESILD, P. 1983. Hyperbolic distributions, Encyclopedia of 
Statistical Sciences: New York: Wiley, 3, 700-707. 

BARNEY, W. 1964. An Investigation of Parametric Variation in a Moving Average Investment 
Rule. Unpublished S. M. Thesis, M.I.T. 

BARTLETT, M. S. 1966. An Introduction to Stochastic Processes (Second edition). Cambridge: 
Cambridge University Press. 

BARTON, C. C. & LAPOINTE, P. R. (eds) 1995. Fractal Geometry and its Uses in the 
Geosciences and Petroleum Geology. New York: Plenum. 

BATEMAN, H. 1954. Tables of Integral Transforms: 2. New York: McGraw-Hill. 

BAUER, J. 1964. A Diffusion Index as Applied to Price Movement in the Stock Market. Unpub­
lished S. M. Thesis, M.I. T. 

BEALE, R. E. 1966. Review of Cootner 1964. Journal of Political EConomy: 74,219. 

BENCKERT, L.-G. & STERNBERG, I. 1957. An attempt to find an expression for the distrib­
ution of fire damage amount. Transactions 15th International Congress of Actuaries: 2, 288-294. 
New York. 

BERAN, J. 1994. Statistics for long-memory processes. London: Chapman & Hall. 

ooN5 BERGER, J. M. & MANDELBROT, B. B. 1963. A new model for the clustering of errors 
on telephone circuits. IBM Journal of Research and Development: 7, 224-236. 

BIENA YME, J. 1853. Considerations a l'appui de la decouverte de Laplace sur la loi de 
probabilite dans la methode des moindres cams. Comptes Rendus (Paris): 37, 309-329. 

BILLINGSLEY, P. 1968. Convergence of Probability Measures. New York: Wiley. 

BLANCHARD, O. J. & WATSON, M. W. 1982. Bubbles, rational expectations, and financial 
markets. Crises in the Economic and Financial Structure. P. Wachtel (Ed.). Lexington, MA: 
Lexington Books. 

BLATTBERG, R. & GONEDES, N. 1974. A comparison of Student's and stable distributions 
as statistical models of stock prices. Journal of Business: 47, 244-280. 



528 CUMULATIVE BIBLIOGRAPHY ~ ~ EB 

BLUME, M. 1968. The Assessment of Portfolio Performance: An Application of Portfolio Theory. 
University of Chicago Dissertation. 

BLUMENTHAL, R M., GETOOR, R V. & RAY, D. On the distribution of first hits for the 
syrrunetric stable process. Translation of the American Mathematics Society: 99, 540-554. 

BONESS, A. J. 1962. A Theory and Measurement of Stock Option Value. Ph.D. Dissertation, Uni­
versity of Chicago. 

BONESS, A. J. 1962. Some evidence on the profitability of trading in put and call options. 
Cootner, 1964: 475-498. 

BOWLEY, A. L. 1933. The action of economic forces in producing frequency distribution of 
income prices and other phenomena: suggestion for a study. Econometrica: 1, 358-372. 

BRADA, J., ERNST, H. & VAN TASSEL, J. 1966. The distribution of stock price differences: 
Gaussian after all? Operations Research: 14, 334-340. 

BRAS, R F. & RODRlGUEZ-ITURBE. 1993. Random Functions and Hydrology. New York: 
Dover. 

CALVET, L., FISHER, A. & MANDELBROT, B. B. 1997. Large deviations and the distrib­
ution of price changes (to appear). 

CANTELLI, F. P. 1921. Sulla deduzione delle leggi de frequenza da considerazioni di 
probabilitit. Metron: 1, 83-91. 

CASTELLANI, M. 1951. On multinomial distributions with limited freedom: a stochastic 
genesis of Pareto's and Pearson's curves. Annals of Mathematical Statistics: 21, 289-293. 

CAUCHY, A. 1853. Sur les resultats les plus probables. Comptes Rendus (Paris): 37, 198-206. 

CHAMPERNOWNE, G. 1953. A model of income distribution. Economic Journal: 63, 
318-351. Reprinted as Appendix 6 to Champernowne, G. The Distribution of Income Between 
Persons. Cambridge, U.K.: Cambridge University Press, 1973,245-283. 

CHANDRASEKHAR, S. 1943. Stochastic problems in physics and astronomy. Reviews of 
Modern Physics: 15,1-89. Reprinted in Wax 1954, 

CIOCZEK-GEORGES, R & MANDELBROT, B. B. 1995. A class of micropulses and antiper­
sistent fractional Brownian motion. Stochastic Processes and their Applications: 60, 1-18. 

CIOCZEK-GEORGES, R & MANDELBROT, B. B. 1996. Alternative micropulses and frac­
tional Brownian motion (with Renata Cioczek-Georges). Stochastic Processes and their Appli­
cations: 

CIOCZEK-GEORGES, R & MANDELBROT, B. B. 1996. Stable fractal sums of pulses: the 
general case. 

CIOCZEK-GEORGES, R, MANDELBROT, B. B., SAMORODNITSKY, G., & T AQQU, M. S. 
1995. Stable fractal sums of pulses: the cylindrical case. Bernoulli: 1,201-216. 

CLARK, P. K. 1973. A subordinated stochastic process model with finite variance for specu­
lative prices. Econometrica: 41, 135-155. 

COOTNER, P. H. 1960. Returns to speculators: Telser vs. Keynes. Journal of Political 
Economy: 68,396-404, and RejOinder, ibid, 415-418. 

COOTNER, P. H. 1962. Stock prices: Random walks vs. finite Markov chains. Industrial 
Management Reviews of M.I.T.: 3,24-45. Reprinted in Cootner 1964: 231-252. 

COOTNER, P. H. (Ed.) 1964. The Random Character of Stock Market Prices. Cambridge, MA: 
M.I.T. Press. 

COWLES, A., 1933. Can stock market forecasters forecast? Econometrica: 1,309-324. 



EB <> <> CUMULATIVE BIBLIOGRAPHY 529 

COWLES, A. 1938. Common Stock Indexes 1871-1937. Bloomington, IN: Principia Press, 499. 

COWLES, A. 1960. A revision of previous conclusions regarding stock price behavior. 
Econometrica: 28,909-915. Reprinted in Cootner 1964: 132-138. 

COWLES, A. & JONES, H. E. 1937. Some a posteriori probabilities in stock market action. 
Econometrica: 5, 280-294. 

DARLING, D. A. 1952. The influence of the maximum term in the addition of independent 
random variables. Transactions of the American Mathematical Society: 73, 95-107. 

DARLING, D. A. 1956. The maximum of sums of stable random variables. Transactions of the 
American Mathematical Society: XX, 114-169. 

DAVIS, 1. E. 1960. The New England textile mills and the capital market: a study of indus­
trial borrowing 1840-1860. Journal of Economic History: 20, 1-30. 

DAVIS, 1. E. & HUGHES, J. R T. 1960. A dollar-sterling exchange 1803-1895. Journal of Eco­
nomic History Review: 13, 52-78. 

DEFRANCE, G. 1948. Distribution et Dispersion des Prix et Salaires en Belgique. Thesis of the 
Institute of Statistics, University of Paris. 

DOOB, J. 1. 1942. The Brownian movement and stochastic equations. Annals of Mathematics: 
43, 351-369. Reprinted in Wax 1954. 

DOOB, J. 1. 1953. Stochastic Processes. New York: Wiley. 

EINSTEIN, A. 1956. The Theory of Broumian Motion. New York: Dover (reprint). 

ELLIOTT, R N. 1994. R. N. Elliott's Masterworks: the Definitive Collection. Gainesville, GA: 
New Classics Library. 

EVERTSZ, C. J. G. 1995. Fractal geometry of financial time series. Fractals: 3,609-616. 

EVERTSZ, C. J. G., PEITGEN, H. 0., & VOSS, R F. 1996. Fractal Geometry and Analysis: The 
Mandelbrot Festschrift, Cura~ao 1995. Singapore: World Scientific. 

FAMA, E. F. 1963a. The Distribution of Daily Differences of Stock Prices: a Test of Mandelbrot's 
Stable Paretian Hypothesis. Doctoral dissertation, Graduate School of Business, University of 
Chicago. Published as Fama 1965. 

"E16 FAMA, E. F. 1963b. Mandelbrot and the stable Paretian hypothesis. Journal of Business 
(Chicago): 36, 420-429. Reprinted in Cootner 1964: 297-306. © University of Chicago Press. 

FAMA, E. F. 1965. The behavior of stock-market prices. Journal of Business (Chicago): 38, 
34-105. 

FAMA, E. F. 1970. Efficient capital markets: a review of theory and empirical work. Journal 
of Finance: 25, 383-417. Also in Frontiers of quantitative economics. (Ed.) M. D. Intrilligator. 
Amsterdam: North Holland, 1971, 309-36. 

FAMA, E. F. & BLUME, M. 1966. Filter rules and stock-market trading. Journal of Business 
(Chicago): 39, 226-241. 

FAMILY, F. & VICSEK, T. (eds) 1991. Dynamics of Fractal Surfaces. Singapore: World Scien­
tific. 

FEDER, J. 1988. Fractals. New York: Plenum. 

FELLER, W. 1936. Zur theorie der stachastischen prozesse. Mathematische Annalen: 113, 
119-160. 

FELLER, W. 1940. On the integro-differential equations of purely discontinuous Markoff 
processes. Transactions of the American Mathematical Society: 48, 488-515. 



530 CUMULATIVE BIBliOGRAPHY ~ ~ EB 

FELLER, W. 1950. An Introduction to Probability Theory and its Applications. New York: Wiley. 
NOTE. The two volumes of this classic textbook went through several editions. Volume 1, 
first edition came out in 1950. Therefore, all those books are identified as Feller 1950, partic­
ulars being added when necessary. 

FELLER, W. 1951. The asymptotic distribution of the range of sums of independent random 
variables. Annals of Mathematical Statistics: 22,427-. 

FERMI, E. 1949. On the origin of the cosmic radiation. Physical Review: 75, 1169-1174. 

FIELITZ, B. D. & ROZELLE, J. P. 1983. Stable distributions and the mixtures of distributions 
hypotheses for common stock returns. Journal of the American Statistical Association: 78, 
28-36. 

FISHER, A., CALVET, L. & MANDELBROT, B. B. 1997. The multifractality of the 
Deutshmark / US Dollar exchange rates (to appear). 

FRECHET, M. 1927. Sur la loi de probabilite de l'ecart maximum. Annales de la Societe 
Polonaise de Mathematiques (Cracovie): 6, 93. 

FRECHET, M. 1941. Sur la loi de repartition de certaines grandeurs geographiques. Journal 
de la Societe de Statistique de Paris: 82, 114-122. 

FRECHET, M. 1959. Sur la repartition des revenus. Comptes Rendus (Paris): 249,837-9. 

FRIEDMAN, J. B. 1974. The architect's compass in creation miniatures of the later middle 
ages. Tradition, Studies in Ancient and Medieval History, Thought, and Religion: 419-429. 

GmRAT, R. 1932. Les inegalites economiques. Paris: Sirey. 

GINGERICH, O. 1993. The Eye of Heaven: Ptolemy, Copernicus, Kepler. Washington DC: Amer­
ican Institute of Physics Press. 

GLEICK, J. 1986. Chaos, the Birth of a New Science. New York: Viking. 

GNEDENKO, B. V. & KOLMOGOROV, A. N. 1954. Limit Distributions for Sums of Independent 
Random Variables. English translation by K. 1. Chung. Reading, MA: Addison Wesley. 

GODFREY, M. D., GRANGER, C. W. J., and MORGENSTERN, O. 1964. The random walk 
hypothesis of stock market behavior. Kyklos: 17, 1-30. 

GRANGER, C. W. J. 1966. The typical spectral shape of an economic variable. Econometrica: 
34,150-61. 

GRANGER, C. W. J. 1968. Some aspects of the random walk model of stock market prices. 
International Economic Review: 9. 253-257. 

GRANGER, C. W. J. & MORGENSTERN, O. 1963. Spectal analysis of New York Stock 
Exchange prices. Kyklos: 16, 1-27. Reprinted in Cootner 1964: 162-188. 

GRANVILLE, J. E. 1960. A Strategy of Daily Stock Market Timing for Maximum Profit. 
Englewood Cliffs, NJ: Prentice-Hall. 

GREENE, M. T. & FIELITZ, B. D. 1979. The effect of long-term dependence on risk-return 
models of common stocks. Operations Research: 27, 944-951. 

GRENANDER, U. & ROSENBLATT, M. 1957. Statistical Analysis of Stationary Time Series. 
New York: Wiley. 

GUMBEL, E. J. 1958. Statistics of Extremes. New York: Columbia University Press. 

HAGSTROEM, K.-G. 1960. Remarks on Pareto distributions. Skandinavisk Aktuarietidskrift: 
33,51-71. 

HADAMARD, J. 1898. Les surfaces a courbures opposees et leurs !ignes geodesiques. 
Journal de Mathematiques pures et appliquees: 5 IV, 27-73. 



EB <> <> CUMULATIVE BIBUOGRAPHY 531 

HADAMARD, J. 1945. The Psychology of Invention in the Mathematical Field. Princeton Univer­
sity Press. (Reprinted, New York: Dover, 1954.) 

HALBFASS, W. 1922. Die Seen der Erde. Erganzungsheft Nr. 185 zu Petermanns Mitteilungen, 
Gotha: Justus Perthes. 

HALL, P. 1981. A comedy of errors: the canonical form for a stable characteristic function. 
Bulletin of the London Mathematical Society: 13, 23-27. 

HANNA, F. A, PECKHAM, J. A & LERNER, S. M. 1948. Analysis of Wisconsin Income: 9, 
Studies in Income and Wealth. New York: National Bureau of Economic Research. 

HANNAN, E. J. 1960. Time Series Analysis. London: Methuen & New York: Wiley. 

HART, P. E. 1902. The size and growth of firms. Economica: New series, 29, 29-39. 

HART, P. E. & PRAIS, S. 1956. The analysis of the business concentration: a statistical 
approach. Journal of the Royal Statistical Society: A 119, 150-181. 

HELPERN, S. R 1962. An Analysis of Stock Price Movements Using Stop Orders. Unpublished 
S. B. Thesis, M.LT .. 

HEYDE, C. C. 1963. On a property of the lognormal distribution. Journal of the Royal Statis­
tical Society: 25, 392-393. 

HEYDE, C. C. & SENETA, E. 1977. 1. J. Bienayme: Statistical Theory Anticipated. New York: 
Springer. 

HOLT, D. R & CROW, E. L. 1973. Tables and graphs of the stable probability density func­
tions. Journal of Research of the National Bureau of Standards (Mathematical Sciences): 77B, 
143-198. 

HOLTSMARK, J. 1919. Uber die Verbreiterung von Spektrallinien. Annalen der Physik: 58, 
577-630. 

HOUTHAKER, H. S. 1959. Education and income. Review of Economics and Statistics: 41, 
24-27. 

HOUTHAKKER H. S. 1959. The scope and limits of future trading. Allocation of Economic 
Resources, Essays in honor of Bernard Haley. M. Abramovitz (Ed.): 134-159. 

HOUTHAKKER, H. S. 1961. Systematic and random elements in short-term price move­
ments. American Economic Review: 51,164-172. 

HURST, H. E. 1951. Long-term storage capacity of reservoirs. Transaction of the American 
Society of Civil Engineers: 116, 770-808. 

HURST, H. E. 1955. Methods of using long-term storage in reservoirs. Proceedings of the 
Institution of Civil Engineers. Part I, 519-577. 

HURST, H. E., BLACK, R P., and SIMAIKA, Y. M. 1965. Long-Term Storage, an Experimental 
Study. London: Constable. 

rr6, K. 1951. On stochastic differential equations. Memoirs of the American Mathematical 
Society: 7. 

JANICKI, A & WERON, A. 1994. Simulation and Chaotic Behavior of a-Stable Stochastic Proc­
esses. New York: Marcel Dekker. 

JOHNSON, N. L., KOTZ, S. & BALAKRISHNAN, N. 1994-5. Continuous Univariate Distrib­
utions (2nd ed.) New York: Wiley. 

KATZ, R 1963. The profitability of put and call option writing. Industrial Management 
Review: 5, 56-69. 



532 CUMULATIVE BIBUOGRAPHY <> <> EB 

KENDALL, D. G. 1952. Les processus stochastiques de croissance en bio!ogie. Annales de 
/'Institute Henri Poincare: 13,43-108. 

KENDALL, M. 1953. The analysis of economic tim.e-series - Part I. Journal of the Royal Statis­
tical Society: A 116, 11-25. Reprinted in Cootner 1964: 85-99. 

KEYNES, J. M. 1939. Professor Tinbergen's method. Economic Journal: 49, 558-568. 

KEYNES, J. M. 1970. On the method of statistical business research. Economic Journal: 50, 
145-156. 

KOLMOGOROV, A. N. 1933. Foundation of Probability Theory. Berlin: Springer. 

KOLMOGOROV, A. N. 1941. The local structure of turbulence in incompressible viscose 
fluid for very large Reynolds numbers. Doklady Akademii Nauk SSSR: 30, 301-305. 
Reprinted in Friedlander & Topper 1961, 159-161. 

KOLMOGOROV, A. N. 1962. A refinement of previous hypotheses concerning the local 
structure of turbulence in a viscous incompressible fluid at high Reynolds number. Journal 
of Fluid Mechanics: 13, 82-85. Original Russian text and French translation in Mecanique de la 
Turbulence. (Colloque International de Marseille, 1961), Paris: Editions du CNRS. 447-458. 

KOOSIS, P. 1988-92. The Logarithmic Integral. Cambridge University Press. 

KORCAK, J. 1938. Deux types fondamentaux de distribution statistique. Bulletin de /'Institut 
International de Statistique: 3, 295-299. 

KRIGE, G. D. 1960. On the departure of ore value distributions from the lognormal model in 
South African Gold Mines. Journal of the South African Institute of Mining and Metallurgy: 
231-244. 

KRUIZENGA, R. J. 1956. Put and Call Options: a Theoretical and Market Analysis, Ph.D. Disser­
tation, M.I.T .. 

KRUIZENGA, R. J. 1964. Introduction to the option contract. In Cootner 1964: 377-391. 

KRUIZENGA, R. J. 1964. Profit returns from purchasing puts and calls. In Cootner 1964: 
392-411. 

LAMPERTI, J. 1966. Probability: a Survey of the Mathematical Theory. Reading, MA: W. A. 
Benjamin. 

LANGE, O. 1932. Die Preisdispersion als Mittel zur Statistischen Messung. Wirtschaftlicher 
Gleichgewichtsstorungen, Leipzig. 

LARSON, A. 1960. Measurement of a random process in future prices. Food Research Insti­
tute Studies: 1, 313-324. Reprinted in Cootner 1964: 219-230. 

LAURENT, A. G. 1957. A stochastic model for the behavior of a set of price index-numbers 
and its application. Operations Research: 5, 600-. 

LAURENT, A. G. 1959. Comments on Brownian motion in the stock market. Operations 
Research: 7, 806-807. 

LEA, D. E. & COULSON, c. A. 1949. The distribution of the number of mutants in bacterial 
populations. Journal of Genetics: 49, 264-285. 

LEVINE, S. 1962. Heuristic Determination of Optimum Filters for Use in a Rule for Speculative 
Market Action, S. M. Thesis, M.I.T .. 

LEVY, P. 1925. Ca/cul des probabiliMs. Paris: Gauthier-Villars. 

LEVY, P. 1937-54. Theorie de l'addition des variables aIeatoires. Paris: Gauthier-Villars. (Second 
edition, 1954). 

LEVY, P. 1948-1965. Processus stochastiques et mouvement brownien. Paris: Gauthier-Villars. 



EB <> <> CUMULATIVE BIBLIOGRAPHY 533 

LEVY, P. 1970. Quelques aspects de la pensee d'un mathematicien. Paris: Blanchard. 

LEVY-vEHEL, J. & WALTER, c. 1997. Les marches fractals: ejficience, ruptures et tendances sur 
les marches financiers. Paris: Presses Universitaires de France. (Collection "Finance.") 

LOEVE, M. 1955. Probability Theory. New York: Van Nostrand. (More recent editions were 
published by Springer.) 

LOTKA, A. J. 1925. Elements of Physical Biology. Baltimore, MD: Williams & Wilkins 
Reprinted as Elements of Mathematical Biology. New York: Dover, 1956. 

LOVEJOY, A. D. 1936. The Great Chain of Being. Cambridge, MA: Harvard University Press. 

LOVEJOY, S. & MANDELBROT, B. B. 1985. Fractal properties of rain, and a fractal model. 
Tel/us A: 37, 209-232. 

LURIA, S. E. & DELBROCK, M. 1943. Mutations of bacteria from virus sensitivity to virus 
resistance. Genetics: 28, 491-511. 

LYDALL, H. F. 1959. The distribution of employment income. Econometrica: 27,110-115. 

MACAULAY, F. R. 1922. Pareto's laws and the general problem of mathematically 
describing the frequency of income. Income in the United States, Its Amount and Distribution, 
1909-1919: 2. New York: National Bureau of Economic Research. 

MACAULAY, F. R. 1932. The Smoothing of Economic Time Series. New York: National Bureau 
of Economic Research. 

MACAULAY, F. R. 1936. Some Theoretical Problems Suggested by the Movements of Interest 
Rates, Bond Yields, and Stock Prices in the United States since 1856. New York: National Bureau 
of Economic Research. 

MACHLUP, F. 1960. The supply of inventors and inventions. Welwirtschafiiches Archiv: 85, 
210-254. 

MALKIEL, B. G. 1973. Random Walk Down the Street. New York: W. W. Norton. (Sixth 
edition, 1996). 

MANDELBROT, B. B. 1951. Adaptation d'un message a la ligne de transmission, I & II. 
Comptes Rendus (Paris): 232, 1638-1740 & 2003-2005. 

MANDELBROT, B. B. 1953i. An informational theory of the statistical structure of language, 
in Communication Theory. (Ed.) W. Jackson. London: Butterworth, 486-504. 

MANDELBROT, B. B. 1955b. On recurrent noise limiting coding. Information Networks, E. 
Weber (Ed.). New York: Interscience: 205-221. 

MANDELBROT, B. B. 1956g. Memorandum. University of Geneva Mathematical Institute. 

MANDELBROT, B. B. 1956m. A purely phenomenological theory of statistical 
thermodynamics: canonical ensembles. IRE Transactions on Information Theory: 112,190-203. 

MANDELBROT, B. B. 1957p. Linguistique statistique macroscopique. In Logique, Langage et 
Theorie de /'Information, by L. Apostel, B. B. Mandelbrot and R. Morf. Paris: Presses 
Universitaires de France, 1-80. 

MANDELBROT, B. B. 1957r. Application of Thermodynamical Methods in Communication Theory 
and Econometrics. Memorandum of the University of Lille Mathematics Institute. 

MANDELBROT, B. B. 1958p. Les lois statistiques macroscopiques du comportement (role de 
la loi de Gauss et des lois de Paul Levy). Psychologie Fran~aise: 3,237-249. 

"E10 MANDELBROT, B. B. 1959p. Variables et processus stochastiques de Pareto-Levy et la 
repartition des revenus, I & II. Comptes Rendus (Paris): 249, 613-615 & 2153-2155. 



534 CUMULATIVE BIBUOGRAPHY <> <> EB 

MANDELBROT, B. B. 1959s. A note on a class of skew distribution functions. Analysis and 
critique of a paper by H. A. Simon: Information and Control: 2, 90-99. 

"EIO MANDELBROT, B. B. 1960i. The Pareto-Levy law and the distribution of income. Inter­
national Economic Review: 1,79-106. © International Economic Review. 

MANDELBROT, B. B. 1961s. Final note on a class of skew distribution functions (with a 
postscript). Information and Control: 4, 198-216 & 300-304. 

MANDELBROT, B. B. 1961b. On the theory of word frequencies and on related Markovian 
models of discourse. Structures of language and its mathematical aspects. R. Jakobson (Ed.). 
New York: American Mathematical Society: 120-219. 

"Ell MANDELBROT, B. B. 1961e. Stable Paretian random functions and the multiplicative 
variation of income. Econometrica: 29, 517-543. © The Econometric Society. 

"E12 MANDELBROT, B. B. 1962q. Paretian distnbutions and income maximization. Quar­
terly Journal of Economics: 76, 57-85. © Harvard University. 

"EI4,15 MANDELBROT, B.B. 1962i. The Variation of Certain Speculative Prices. mM Research 
Report NC-87, March, 1962. 

"Eli FEP MANDELBROT, B.B. 1962c. Sur certains prix speculatifs: faits empiriques et modele 
base sur les processus stables additifs de Paul Levy. Comptes Rendus (Paris): 254, 3968-3970. 

*E14 MANDELBROT, B. B. 1963a. Abstract: Econometrica: 31, 757-758. © The Econometric 
Society. 

"E14 MANDELBROT, B. B. 1963b. The variation of certain speculative prices. Journal of Busi­
ness: 36,394-419. Reprinted in Cootner 1964: 297-337. © University of Chicago Press. 

"E3 MANDELBROT, B. B. 1963e. New methods in statistical economics. Journal of Political 
Economy: 71, 421-440. © University of Chicago Press. Reprinted in Bulletin of the International 
Statistical Institute, Ottawa Session: 40 (2), 669-720. 

"EB MANDELBROT, B. B. 1963g. A Survey of Growth and Diffusion Models of the Law of Pareto. 
mM External Research Note NC-253. 

"EtO MANDELBROT, B. B. 1963i. The stable Paretian income distribution when the apparent 
exponent is near two. International Economic Review: 4, 111-115. © International Economic 
Review. 

"EIO MANDELBROT, B. B. 1963j. The Stable Paretian Income Distribution when the Apparent 
Exponent is Near Two. Memorandum appended to a joint reprint of M 1960i and M 1963i. 

"E13 MANDELBROT, B. B. 19630. Oligopoly, Mergers, and the Paretian Size Distribution of 
Firms. mM Research Note NC-246, March 1963. 

"EB MANDELBROT, B. B. 1964. Random walks, fire damage and related risk phenomena. 
Operations Research 12, 1964, 582-585. © O.R.SA 

MANDELBROT, B. B. 1964t. Derivation of statistical thermodynamics from purely 
phenomenological principles. Journal of Mathematical Physics: 5,164-171. 

MANDELBROT, B. B. 1965b. On recurrent noise limiting coding. Information Networks, the 
Brooklyn Polytechnic Institute Symposium, 205-221. New York: Interscience. 

"H MANDELBROT, B. B. 1965h. Une classe de processus stochastiques homothetiques Ii soi; 
application Ii la loi climatologique de H. E. Hurst. Comptes Rendus (Paris): 260, 3274-7. 

"EB MANDELBROT, B. B. 1965m. Very long-tailed probability distributions and the empir­
ical distribution of city sizes. Mathematical Explanations in Behavioral Science. F. Massarik & 
P. Ratoosh (Eds.). Homewood: Richard D. Irwin, 322-332. 

"FE MANDELBROT, B. B. 1966r. Nouveaux modeles de la variation des prix (cycles lents et 
changements instantanes). Cahiers du Seminaire d'Econometrie: 9, 1966,53-66. 



EB <> <> CUMULATIVE BIBLIOGRAPHY 535 

"E19 MANDELBROT, B. B. 1966b. Forecasts of future prices, unbiased markets, and 
"martingale" models. Journal of Business: 39, 242-255. © University of Chicago Press. 
Chapter 19 takes account of important errata in a subsequent issue of the same Journal. 

MANDELBROT, B. B. 1967b. Sporadic random functions and conditional spectral analysis; 
self-similar examples and limits. Proceedings of the Fifth Berkeley Symposium on Mathematical 
Statistics and Probability: 3, 155-179. 

"E15 MANDELBROT, B. B. 1967j. The variation of some other speculative prices. Journal of 
Business: 40, 393-413. © University of Chicago Press. 

"E21 MANDELBROT, B. B. 1968i. Some aspects of the random walk model of Stock Market 
prices: comment. International Economic Review: 9,258. 

MANDELBROT, B. B. 196ge. Long-run linearity, locally Gaussian process, H-spectra and 
infinite variances. International Economic Review: 10,82-111. 

MANDELBROT, B. B. 1970a. Long-run interdependence in price records and other economic 
time series. Econometrica: 38, 122-123. 

MANDELBROT, B. B. 1970e. Statistical dependence in prices and interest rates. Papers of the 
Second World Congress of the Econometric Society, Cambridge, England. 

MANDELBROT, B. B. 1970n. Analysis of long-run dependence in time series: the R/S tech­
nique. Fiftieth Annual Report of the National Bureau of Economic Research, 107-108. 

MANDELBROT, B. B. 197Oy. Statistical Self-Similarity and Non-Laplacian Chance. 1970 
Trumbull Lectures, Yale University. 

"E20 MANDELBROT, B. B. 1971e. When can price be arbitraged efficiently? A limit to the 
validity of the random walk and martingale model. Review of Economics and Statistics: 53, 
225-236. © Harvard University. 

MANDELBROT, B. B. 1971n. Statistical dependence in prices and interest rates. Fiftyfirst 
Annual Report of the National Bureau of Economic Research, 141-142. 

MANDELBROT, B. B. 1971q. Analysis of long-run dependence in economics: the R/S tech­
nique. Econometrica: 39 (July Supplement), 68-69. 

"E14 MANDELBROT, B. B. 1972b. Correction of an error in "The variation of certain specu­
lative prices" (M 1963b). Journal of Business: 40, 542-543. © University of Chicago Press. 

MANDELBROT, B. B. 1972c. Statistical methodology for nonperiodic cycles: from the 
covariance to the R/S analysis. Annals of Economic and Social Measurement: 1, 259-290. 

"N14 MANDELBROT, B. B. 1972j. Possible refinement of the lognormal hypothesis con­
cerning the distribution of energy dissipation in intermittent turbulence. Statistical models 
and turbulence. M. Rosenblatt & c. Van Atta (Eds.). Lecture Notes in Physics 12, New York: 
Springer, 333-351. 

"E21 MANDELBROT, B. B. 1973c. Comments on "A subordinated stochastic process with 
finite variance for speculative prices," by Peter K. Clark. Econometrica: 41, 157-160. © The 
Econometric Society. 

"FE2.1 MANDELBROT, B. B. 1973f. Formes nouvelles du hasard dans les sciences. Economie 
Appliquee: 26307-319. 

"FE3.2 MANDELBROT, B. B. 1973j. Le probleme de la realite des cycles lents, et Ie syndrome 
de Joseph. Economie Appliquee: 26, 349-365. 

"FE3.1 MANDELBROT, B. B. 1973v. Le syndrome de la variance infinie et ses rapports avec 
la discontinuite des prix. Economie Appliquee: 26,321-348. 



536 CUMULATIVE BIBLIOGRAPHY <> <> EB 

"E8 MANDELBROT, B. B. 1974d. A population birth and mutation process, I: Explicit dis­
tributions for the number of mutants in an old culture of bacteria. Journal of Applied Proba­
bility: 11,437-444. (Part II was distributed privately). 

"N16 MANDELBROT, B. B. 1974c. Multiplications aleatoires iterees, et distributions 
invariantes par moyenne ponderee. Comptes Rendus (Paris): 278A, 289-292 & 355-358. 

"N15 MANDELBROT, B. B. 1974f. Intermittent turbulence in self-similar cascades: diver­
gence of high moments and dimension of the carrier. Journal of Fluid Mechanics: 62, 
331-358. 

MANDELBROT, B. B. 1975h. Limit theorems on the self-normalized range for weakly and 
strongly dependent processes. Zeitschrift fUr Wahrscheinlichkeitstheorie: 31, 271-285. 

MANDELBROT, B. B. 19750. Les objets fractals: forme, hasard et dimension. Paris: Flamrnarion. 

MANDELBROT, B. B. 198On. Fractal aspects of the iteration of z -+ Az(1- z) for complex A 
and z. Non-Linear Dynamics (New York, 1979). R. H. G. Helleman (Ed.). Annals of the New 
York Academy of Sciences: 357,249-259. 

"E14 MANDELBROT, B. B. 1982c. The variation of certain speculative prices. Current Con­
tents: 14, 20. © Institute of Scientific Information. 

MANDELBROT, B. B. 1982F (FGN). The Fractal Geometry of Nature. New York: Freeman. 

MANDELBROT, B. B. 1982t. The many faces of scaling: fractals, geometry of nature and eco­
nomics. Self-Organization and Dissipative Structures. W. C. Schieve & P. M. Allen: 91-109 
(Eds.). 

MANDELBROT, B. B. 19861. Self-affine fractals and fractal dimension. Physica Scripta: 32, 
257-260. 

MANDELBROT, B. B. 1986t. Self-affine fractal sets, I: The basic fractal dimensions, II: Length 
and area measurements, III: Hausdorff dimension anomalies and their implications. Fractals 
in Physics (Trieste, 1985). Ed. L. Pietronero and E. Tosatti. Amsterdam: North-Holland, 3-28. 

MANDELBROT, B. B. 1987r. Toward a second stage of indeterminism in science (preceded 
by historical reflections), Interdisciplinary Science Reviews: 12, 117-127. 

MANDELBROT, B. B. 1995b. Statistics of natural resources and the law of Pareto. Fractal 
Geometry and its Uses in the Geosciences and in Petroleum Geology. Edited by C. C. Barton & P. 
La Pointe. New York: Plenum, 1-12. First appeared as mM: NC-146, June 29,1962. 

MANDELBROT, B. B. 1995f. Measures of fractallacunarity: Minkowski content and alterna­
tives. Fractal Geometry and Stochastics. C. Bandt, S. Graf & M. Ziihle (Eds.). Basel and 
Boston: Birkhauser: 12-38. 

MANDELBROT, B. B. 19951. The Paul Levy I knew. Levy Flights and Related Phenomena in 
Physics (Nice, 1994). M. F. Schlesinger, G. Zaslawsky, & U. Frisch (Eds.) (Lecture Notes in 
Physics). New York: Springer, 1995, ix-xii. 

MANDELBROT, B. B. 1995n. Introduction to fractal sums and pulses. Levy Flights and 
Related Phenomena in Physics. Edited by G. Zaslawsky, M. F. Shlesinger & U. Frisch (Lecture 
notes in Physics). New York: Springer, 110-123. 

"H MANDELBROT, B. B. 1997H. Fractals & Self-Affinity: R/S, 11f, Global Dependence, Relief & 
Rivers. New York: Springer-Verlag. 

"N MANDELBROT, B. B. 1997N. Multifractals & 11f Noise. New York: Springer-Verlag. 

"FE MANDELBROT, B. B. 1997FE. Fractales, hasard et finance. Paris: Flamrnarion. 

MANDELBROT, B. B., FISHER, A. & CALVET, L. 1997. The multifractal model of asset 
returns (to appear). 



EB ~ ~ CUMULATIVE BIBLIOGRAPHY 537 

"E21 MANDELBROT, B. B. & TAYLOR, H. M. 1967. On the distribution of stock price differ­
ences. Operations Research: 15, 1057-1062. © O.R.S.A. 

"H MANDELBROT, B. B. & VAN NESS, J. W. 1968. Fractional Brownian motions, fractional 
noises and applications. SIAM Review: 10, 422-437. 

"H MANDELBROT, B. B. & WALLIS, J. R. 1968. Noah, Joseph and operational hydrology. 
Water Resources Research: 4, 909-918. 

"H MANDELBROT, B. B. & WALLIS, J. R. 1969a. Computer experiments with fractional 
Gaussian noises, Part 1, 2 & 3. Water Resources Research: 5, 228-267. 

"H MANDELBROT, B. B. & WALLIS, J. R. 1969b. Some long-run properties of geophysical 
records. Water Resources Research: 5,321-340. 

"H MANDELBROT, B. B. & WALLIS, J. R. 1969c. Robustness of the rescaled range R/S in the 
measurement of noncyclic long-run statistical dependence. Water Resources Research: 5, 
967-988. 

MANDELBROT, B. B. & ZARNFALLER, F. 1959. Five-place Tables of Certain Stable Distrib­
utions. IBM. Research Technical Report RC-42l. 

• NOTE: See also under Berger, Calvet, Cioczek-Georges, Fisher, Lovejoy. 

MANSFIELD, E. 1962. Entry, Gibrafs law, innovation, and the growth of finns. American 
Economic Review: 52, 1023-105l. 

MARSHALL, A. 1890. Principles of Economics. New York: Macmillan. The ninth (variorum) 
edition, with a second volume of annotations by C. W. Guillebaud, appeared in 1961. 

MATHERON, G. 1962. Traite de geostatistique appliquee. 1, Paris: Technip. 

MCCULLOCH, J. H. 1996. Financial applications of stable distributions, Statistical Methods in 
Finance G. S. Maddala & c. R. Rao (Eds.). (Handbook of Statistics: 14). Amsterdam: Elsevier: 
393-425. 

MCKIE, J. W. 1960. Market structure and uncertainty in oil and gas exploration. Quarterly J. 
of Economics: 74, 543-571. 

MEIDELL, B. 1912. Zur Theorie des Maximums (with thorough English and French summa­
ries). Comptes-Rendus du Septieme Congres d'Actuaires, Amsterdam: 1, 85-99 

MEIDELL, B. 1937. Zur Theorie und Praxis des Maximums in Lebensversicherung. Comptes-
Rendus du Onzieme Congres d'Actuaires, Paris, 1, 469. 

MILLER, H. P. 1955. The Income of the American People. New York: Wiley. 

MILLS, F. C. 1927. The Behavior of Prices. New York: National Bureau of Economic Research. 

MIROWSKI, P. 1990. From Mandelbrot to chaos in economic theory. Southern Economics 
Journal, 57, 289-307. 

MIROWSKI, P. 1996. Mandelbrofs economics after a quarter century. Fractals, 3, 581-196. 
Reprinted in Evertsz & al 1996: 177-196. 

MITCHELL, W. C. 1915. The making and using of index numbers. Introduction to Index 
Numbers and Wholesale Prices in the United States and Foreign Countries. U.S. Bureau of Labor 
Statistics Bulletin 173. Reprinted in 1921 as Bulletin 284. 

MOORE, A. 1962. A Statistical Analysis of Common Stock Prices. Unpublished Ph.D. disserta-
tion, Graduate School of Business, University of Chicago. 

MOORE, H. 1. 1911. The Laws of Wages. New York: Macmillan. 

MORRIS, W. S. 1962. Towards a Workable Theory of Markets. New York: W.S. Morris & Co .. 

MORLAT, G., BILLIET & BERNIER 1956. Les erues de la Haute Durance. Symposia Darcy, 
Dijon. 



538 CUMULATIVE BIBLIOGRAPHY <> <> EB 

NIEDERHOFFER, V. 1959. Clustering of stock prices. Operations Research: 13,258-265. 

NOLAN, J. P. 1996a. Numerical calculation of stable densities. Preprint. 

OFFICER, R. R. 1972. The distribution of stock returns. Journal of the American Statistical 
Association: 67, 807-812. 

THE OIL AND GAS JOURNAL 1958. Journal survey of proved reserves: Where the nation's 
oil is stored. The Oil and Gas J., January 27, 1958: 163-168. 

OLIVIER, M. 1927. Les nombres indices de la variation des prix. Paris. 

OLSEN 1996. This global reference calls for a large collection of preprints and hard-to-find 
articles from Olsen & Associates in ZUrich. The contributing authors include the following, 
listed alphabetically: B. Chopard, M. M. Dacarogna, R. D. Dave, C. G. de Vries, C. L. 
Gauvreau, D. M. Guillaume, C. Jost, C. Morgenegg, U. A. Miiller, R. J. Nagler, M. 
Oudsaidene, O. V. Pictet, R. Schirru, M. Schwarz, M. Tomassini, J. E. von Weizsiicker, J. R. 
Ward. Their works can be printed from the "web." 

OSBORNE, M. F. M. 1959. Brownian motion in the stock market. Operations Research: 7, 
145-173. Reprinted in Cootner 1964: 100-128. Reply to Comments. Operations Research: 7, 
807-811. 

OSBORNE, M. F. M. 1962. Periodic structure in the Brownian motion of stock prices. Oper­
ations Research: 10,345-379. Reprinted in Cootner 1964: 262-296. 

PARETO, V. 1896-1965. Cours d'economie politique. The second date refers to the reprint in 
Pareto: Oeuvres completes. Geneva: Droz. 

PARIKH, C. 1991 The unreal life of Oscar Zariski. New York: Academic Press. 

PARZEN, E. 1960. Modern Probability Theory and its Applications. New York: Wiley. 

QUETELET, A. 1835. Sur l'homme et Ie developpement de ses faculMs: Essai de physique sociale. 
Paris: Bachelier. 

RACHEV, S. T. 1996. Modeling Financial Assets with Alternative Stable Models. New York: 
Wiley. 

RACHEV, S. T. & MITTNIK, S. 1997. Stable Modelling in Finance. Special Issue of the journal 
Mathematical and Computer Modelling. 

RAY, D. 1958. Stable processes with an absorbing barrier. Transactions of the American Math­
ematical Society: 89, 16-24. 

REMERY, R. 1946. Distribution et Dispersion des Prix Francais depuis 1929. Thesis of the 
Institute of Statistics, University of Paris, Bulletin de la Statistique Generale de la France. 

RICHARDSON, L. F. 1922. Weather prediction by numerical process. Cambridge University 
Press. The Dover reprint contains a biography as part of the introduction by J. Chapman. 

RICHARDSON, L. F. 1960. Statistics of deadly quarrels. A chapter of Arms and Insecurity. 
Chicago: Quadrangle Books. 

ROBERTS, H. V. 1959. Stock market 'patterns' and financial analysiS: methodological sug­
gestions. Journal of Finance: 14, 1-10. Reprinted in Cootner 1964: 7-16. 

ROLL, R. 1970. Behavior of Interest Rates: the Application of the Efficient Market Model to U.S. 
Treasury Bills. New York: Basic Books. 

ROY, A. D. 1951. Some thoughts on the distribution of earnings. Oxford Economic Papers: 3, 
135-146. 



EB ~ ~ CUMULATIVE BIBLIOGRAPHY 539 

ROZELLE, J. & FIELITZ, B. 1980. Skewness in common stock returns. Financial Review: 15, 
1-23. 

RUTHERFORD, R. S. G. 1955. Income distributions: a new model. Econometrica: 23, 277-294. 

RVACEVA, E. 1. 1954. On the domain of attraction of multidimensional distributions. 
Ucenye Zapiski Lvovskogo Gosudarstvennogo Universiteta, Ser. Mekh. Mat.: 6, 5-44. 

SAMORODNITSKY, G. & TAQQU, M. S. 1994. Stable Non-Gaussian Random Processes. New 
York: Chapman & Hall. 

SAMUELSON, P. A. 1957. Intertemporal price equilibrium: A prologue to the theory of 
speculation. WeltwirtschaftIiches Archiv., 79, 181-221. 

SAMUELSON, P. A. 1965. Proof that properly anticipated prices fluctuate randomly. Indus­
trial Management Review: 6,41-49. 

SAMUELSON, P. A. 1967. Efficient portfolio selection for Pareto-Levy investments. Journal 
of Financial and Quantitative Analysis: 2, 107-122. 

SHOHAT, J. A. & TAMARKlN, J. D. 1943. The Problem of Moments. Providence, Rl: Amer­
ican Mathematical Society. 

SICHEL, H. S. 1952. New methods in the statistical evaluation of mine sampling data. 
Transactions of the institute of Mining and Metallurgy: 61, 261-288. 

SIMON, H. A. 1955. On a class of skew distribution functions. Biometrika: 42,425-440. 

SIMON, H. A. & BONINI, c. 1958. The size distribution of business firms. American Eco­
nomic Review: 48,607-617. 

SKOROHOD, A. V. 1954. Asymptotic formulas for stable Paretian laws. Doklady Akademie 
Nauk SSSR: 731-35. Or Selected Translations in Mathematics Statistics and Probability (American 
Mathematical Society): 1961, 157-161. 

STEIGER, W. 1964. A test of nonrandornness in stock price changes. In Cootner 1964: 98, 
254-61. 

STENT, G. 1972. Prematurity and uniqueness in scientific discovery. Scientific American: 227 
(December) 84-93. Also see his book, Paradoxes ofprogress, New York: W.H. Freeman. 

STIELTJES, T. J. 1894. Recherches sur les fractions continues. Annales de la Faculte des Sci­
ences de Toulouse: 8, 1-122 and 9, 1-47. Reprinted in Stieltjes 1914. 

STIELTJES, T. J. 1914. Oeuvres completes de Thomas Jan Stieltjes; 2 vols. Groningen: Noordhoff. 
Reprinted further in Collected Papers. G. Van Dijk (Ed.). New York: Springer, 1993. 

SWIFT, J. 1733. On Poetry, a Rhapsody. 

TAQQU, M. 1970. Note on evaluations of R/S for fractional noises and geophysical records. 
Water Resources Research: 6, 349-50. 

TAKANO, K. 1954. On some limit theorems of probability distributions. Annals of Statistical 
Mathematics: 6,37-113. 

TAKANO, K. 1955. Central convergence criterion in the multidimensional case. Annals of the 
Institute of Statistical Mathematics: 7. 

TELSER, 1. 1958. Future and the storage of cotton and wheat. Journal of Political Economy: 
65, 233-255. 

TELSER,1. 1960. Reply, Journal of Political Economy: 68,404-415. 

THEBAUT, J. Y. 1961. Distribution lognormale de certains caracteres de quelques 
phenomenes geologiques et ses applications. Revue de Statistique Appliquee: 9,37-87. 



540 CUMULATIVE BIBLIOGRAPHY <> <> EB 

THORIN, O. 1977. On the infinite divisibility of the lognormal distribution. Scandinavian 
Actuarial Journal: BUG 121-148. 

THURSTONE, L. L. 1947. Multiple-Factor Analysis. Chicago: University of Chicago Press. 

TINBERGEN, J. 1956. On the theory of income distribution. Welwirtschaftliches Archiv: 77, 
155-175. Also in Tinbergen, J. 1959, Selected Papers. Amsterdam: North-Holland, 243-263. 

TINTNER, G. 1940. The Variate-Difference Method. Bloomington, IN: Principia Press. 

VON SAVITSCH & BENKTANDER, G. 1953. On the variation of the risk premium with the 
dimension of the house within fire insurance. Skandinavisk Aktuarietidskrift: 26,203-214. 

VOSS, R. F. 1992. 11f noise and fractals in economic time series. Fractal Geometry and Com­
puter Graphics. J. L. Encarnacao, H.-O. Peitgen, G. Sakas, & G. Englert (Eds.). New York: 
Springer, 45-52. 

WALSH, J. 1949. Review of Zipf 1949. Scientific American. 
WALTER, C. 1994. Les structures des hasard en economie: efficience des marches, lois stables, et 

processus fractals. (PhD. Thesis in Economics, Institut d'Etudes Politiques). 

WALTER, C. 1995. Levy-stability-under-addition and fractal structure of markets: impli­
cations for the actuaries and emphasized examination of MA TIF national contract. Pro­
ceedings of the 5th AFIR Colloquium (Bruxelles): 3, 1285-1330. To be reprinted in Rachev & 
Mittnik 1997. 

WAX, N. (Ed.) 1954. Noise and Stochastic Processes. New York: Dover, 1954. 

WEISS, H. K. 1963. Stochastic model for the duration and magnitude of a deadly quarrel. 
Operations Research: 11, 101-12l. 

WESTERGAARD, H. L. & NYBOELLE, H. C. 1928. Grundziige der Theorie der Statistik. Jena: 
G. Fischer. 

WILLIS,]. C. 1922. Age and Area. Cambridge: Cambridge University Press. 

WOLD, H. 1938. A Study in Stationary Time Series. Stockholm: Almqvist & Wicksell. (Second 
edition, 1954). 

WOLD, H. & WHITTLE, P. 1957. A model explaining the Pareto distribution of wealth. 
Econometrica: 25,591-595. 

WORKING, H. 1933. Price relations between July and September wheat futures at Chicago 
since 1885. Wheat Studies: 9, 187-238. 

WORKING, H. 1934. A random-difference series for use in the analysis of time series. 
Journal of the American Statistical Association: 29, 11-24. 

WORKING, H. 1934. Prices of cash wheat and futures at Chicago since 1883. Wheat Studies 
of the Stanford Food Institute: 2, 75-124. 

WORKING, H. 1948. Theory of the inverse carrying charge in future markets. Journal of Farm 
Economics: 30, 1-28. 

WORKING, H. 1960. Note on the correlation of first differences of averages in a random 
chain. Econometrica: 28,916-918. Reprinted in Cootner 1964: 129-131. 

YOUNG, M. S. & GRAFF, R. A. 1995. Real estate is not normal: a fresh look at real estate 
return distribution. Journal of Real Estate Finance and Economics: 10, 225-259. 

YOUNG 1969. Winter meeting of the Econometric Society, New York, 1969. 

YOUNG, W. E. 1971. Random walk of stock prices; a test of the variance time function. 
Econometrica: 34, 797-812. 



ED <> <> CUMULATIVE BIBLIOGRAPHY 541 

YULE, G. U. 1924. A mathematical theory of evolution, based on the conclusions of Dr. J. C. 
Willis, F. R. S. Philosophical Traditions of the Royal Society (London): 213B, 21-87. 

ZAJDENWEBER, D. 1976. Hasard et prevision (Ph.D. Thesis in Economics, Faculte de Droit de 
Paris, December 1972). Paris: Economica. 

ZAJDENWEBER, D. 1994. Self-similarity properties of the CAC 40 index (in French, with 
English summary). Revue d'Economie Politique: 104,407-434. 

ZAJDENWEBER, D. 1995a. Business interruption insurance, a risky business. A study on 
some paretian risk phenomena. Fractals: 3, 601-608. 

ZAJDENWEBER, D. 1995b. Extreme values in business interruption insurance, The Journal of 
Risk and Insurance: 63,95-110. 

ZIPF, G. K. 1941. National Unity and Disunity. Bloomington, IN: Principia Press. 

ZIPF, G. K. 1949. Human Behavior and the Principle of Least-effort. Cambridge, MA: Addison­
Wesley. Reprint, New York: Hefner, 1972. 

ZOLATAREV, V. 1985. Stability Problems for Stochastic Models: Proceedings Uzhgorod, 1984. 
Lecture Notes in Mathematics: 1155. New York: Springer. 

ZOLOTAREV, V. 1986. One-Dimensional Stable Distributions. Providence, Rl: American Math­
ematical Society. 



a. See scaling exponent 
AN'127 
addends, portioning of. See 

concentration; evenness; 
portioning of addends 

addition 
-and convexity, 285-289 
-and Gaussian variables, 82, 

285-290,376-381,426 
-and L-stable variables, 289-

293,313-316,376-383,449-
452 

-limiting distribution, 450-452 
-and lognormal variables, 524-

525 
-weighted sums, 312-314 

affinity, diagonal, 150 
aggregation, 85,102-103,110 

-causality and randomness in, 
405-406 

-and cotton prices, 393-397 
-and income, 314-315 
-and L-stable distributions, 86 
-linear, 82, 355 
-in parallel, 405-406 
-and renormalization, 104 
-in series, 405-406 

agricultural commodities, 477-487, 
4821 

-See also cotton prices; wheat 
prices 

Alexander, S. S., 26 
Alexander's filter method, 408-

409,412-413,512 
allometry, 115--116 
anticipation 

-absence of, 508 
-finite horizon, 498, 504-505, 

508 

Index 

-infinite horizon, 501.-Q04, 507-
508 

arbitraging, 492.-Q11 
-absence of anticipation, 508 
-destabilizing, 493, 497, 508 
-effect on variances, 

correlations, and spectra, 
508-611 

-finite horizon, 498, 504-505, 
508 

-imperfect, 504-508 
-infinite horizon, 501.-QQ4, 507-

508 
--perfect, 498-604 
-ilpectral analysis, 510-511 
-iltabilizing, 493, 510 
-See also trading methods 

ARCH representations, 44, 7~74 
ARIMA representations, 72-73 
ARMA representations, 7~74 
Army conscripts, 108 
AstrOm's diffusion model, 238-240 
asymptotic Champernowne 

conditions, 309, 312, 314, 328 
asymptotic scaling distribution, 

272-275,285-289,307-310, 
316,365,448-453 

Auerbach, F., 261 
averages, as index numbers, 20 
axial interval, 181 

p,377,380,384,446,514 
B(Q,24 
B,,(Q,159 
BN'127 
Bachelier, L., 7, 24, 26,109-110, 

157,373,420-421 
background nOise, scaling, 93-98 
bacterial mutation, 223-224, 243-

251 
Bayes's theorem, 479 
Benckert, L. G., 240-241 
Berger, J. M., 20, 26, 36 
Bernoulli distribution, exponential 

of,134 
Bernoulli, J., 328 
Bernoulli random variable, 262-
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Bienayme, J., 397 
Bigelow, E. B., 438 
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-allometry, 115--116 
-genetic mutations, 222-224, 

243-251 
Blake, William, 114 
Blattberg, R., 68 
Blume, M., 412, 457 
Bochner, S., 164 
Boltzmann, L., 111 
Bolzano, B., 177 
boxes, 181 

-unibox vs. multibox, 186 
Brownian motion, 22-27 

-Bacheller's model, 17, 24, 26, 
109-110,157,373,420-421 

-inadequacies of, 28-28 
-corrections, 65--75 

-and price variation, 22-,28 
-iltochastic processes 

subordinated to, 51H25 
-Wiener distinguished from 

fractional, 24 
-See also fractional Brownian 

motion; mild randomness; 
Wiener Brownian motion 

bubbles, 471-472 
butterfly effect, 113 
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call money rates, 438-439, 4391 
Cantor devil staircase, 41, 164 
Cantor dust, 164 
cap-convexity, 132,285-289 
0,191-192 

-and M 1963/M 1965 confusion, 
148 

-mesofractal, 187, 191-192, 
196 

-multifractal, 187-188, 191-
192, 196 

-notions of mild and wild, 195-
196 

-oscillating, 165-166, 184f, 
188-190,191-192 

-unifractal, 186-187, 196 
Cauchy, A., 397 
Cauchy density, 384 
Cauchy distribution, 98, 133, 372, 

376,377,380,396-397,447, 
514 

causality, 57-58, 96, 405, 499, 
502,505 

central limit theorem, 127, 194, 
196,366 

-applied to dependent variables, 
525-526 

-and L-stable distribution, 281-
283 

Champernowne conditions, 309, 
312,314,328 

Champernowne, G., 229, 335 
Champernowne's number C, 335 
chaos, 112-113 
characteristic exponent. See 

scaling exponent 
city size, 80, 92f, 2611 

-and diffusion of log U, 230 
-and rank-size plots, 204 
-and scaling distributions, 99 

Clark, P. K., 74, 165,519-525 
coastline, and self-similarity, 150-

151 
coin tossing, 94, 96-97, 97f, 223, 

447 
compounding, 40, 42-43,162-

171,515,524-525 
-continuous, 165-166 
-defined, 162 
-discontinuous, 164-165 
-and M 1972 model, 42-43 
-Markovian, 164 
-multifractal, 165-166,524 
-rectification of increments, 

170-171 
--self-affinity of, 162 

cartoons 
-compound, 165-166, 184f, 

188-190,191-192 
-diagonal-axial self-affine, 177-

193 
-spectral properties of, 170-171 
-and subordination, 164-165 
-tau functions, 167-168 
-and trading time, 162-163 

compression of data, 20-21 
computer, Morris' use in trading, 

110 
concentration, 29,118,130-131 

-vs. Brownian dogma of 
evenness,53-55 

-concentration ratio, 123 
-industrial, 364-369 
-long-run, 118, 125-130,213-

215 
-measures of, 215-218 
-and multifractals, 167 
-and states of randomness, 

117-118,123 
-and wild scaling distributions, 

213-215 
-See a/so evenness; portioning 

of addends 
concordant behavior, 123 
conditional distribution, 386 
conditioning, 29-30, 326-327, 

478-480 
contaminators, 388, 420 
continuity 

-Brownian dogma vs. 
discontinuity,51-53 

--ensuring in the market, 511-
512,517-518 

-and multifractals, 167 
-See a/so discontinuity 

continuous-time processes, 163-
166,193-196,406-409,489 

convexity, 130-138,256,285-289, 
336 

-See a/so cap-convexity; cup­
convexity 

Cootner, P. H., 5, 9, 25, 398 
-comments of, 458-462 

correlation dimension, 171 
cosmic rays, 224-225, 237 
cost of living, 21 
cotton prices, 375f, 3911, 392f, 

394f, 422, 423f 
-behavior of variance, 427-428 
--kurtosis of, 428-429 
-and L-stability, 32--34, 387-

396 
-sample moment of, 455 
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-graph dimension of, 190-191 
-grid-boundedness of, 147, 177 
-intrinsic definition of trading 

time, 165-166, 184f, 188-19 
-and scaling, 60 

Cournot distribution, 133 
covariance function, 310 
creativity inherent in scaling, 75-

78 
critical tail exponent, 169 
crop value, forecasting, 476-487 
crossovers, 51 

-between different scaling 
regimes, 64-456 

-and scaling range, 200, 203-
205 

cup-convexity, 132, 285-289 
cutoffs, due to impenetrable 

bounds,63-64 
cycles, non-periodic, 27, 35--38, 

95--98,159,494, 495f, 497-
498,504 

6,399-406,446,450,452,493, 
496 
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0(9),318 
O(q),167 
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data collapse, 44-45 
Davis, L. E., 439, 440 
DelbrOck, M., 223, 243 
deMorgan, A., 114 
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-dependence-driven variability, 
35, 159--162 

-and fractional Brownian 
motion, 160 

-and market efficiency, 497-498 
-sequential, 457 
-serial, 165-166,409-411 
-See a/so independence; 

Joseph Effect 
determinism, well-behaved vs. 

chaotic, 113 
devil staircases, 41, 164, 165 
diachronic factor, 319, 323, 333-

334 
diachronic loadings, 319 
diagonal interval, 181 
differencing interval, 373, 393-

395,453 
diffusion 

-AstrOm's diffusion model, 238-
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240 
-Fickian, 127-128, 157, 159, 

194, 196 
--and income variation, 30&-309 
-of log U, 227-232 
-in physics, 227-230 

dimension, trail, 163 
dimension, fractal. See fractal 

dimension 
directing function, 162, 167-168, 

174,515 
discontinuity, 50-78 

-VS. Brownian dogma of 
continuity, 51-53 

--and compounding, 164-165 
--and L-stable distribution, 407, 

408,489 
--and price records, 28-27 
--and scaling, 6, 50-78 
--and subordinator function, 517 

discordant behavior, 123 
discrete fractional Gaussian 

noises, 503-504 
disorder, and history of fractal 

geometry, 112-113 
distribution of income. See income 
distributions 

-expectations of, 368 
--peakedness (kurtOSis) of, 397-

398,428-429 
-of psychological factors, 339 
-with scaling noise, 93-98 
-skew, 86,252,255,446 
-stable multidimensional, 98-99 
-two-tailed, 98-99 
-See also names of specific 

distributions 
Divisia, F., 107 
Doeblin-Gnedenko conditions, 

382-383,393-394,451-453 
double-log graphing. See log-log 

graphing 
doubling convolution, 130-131 
doubling criterion. See tail­

preservation criterion 
drift 

-estimation of, 399-406 
-of prices, 502-503, 507 
--random walk, 494 

drought, 78 
dynamics, and chaos, 112-113 

E,C(t+ n), 492 
EX, 29 
earthquakes, 116 
economic equilibrium, 496 
economic indicators, 20-21, 267 

efficiency of markets. See market 
efficiency 

Elliott, R. N., 115 
Elliott waves, 115 
embedding, and geometric 

interpretation of 0,. 190 
ergodic fluctuations, 127-128 
errors, scaling, 93-98 
evenness, 29, 131 

-VS. concentration of price 
change,53-55 

-in the long-run, 126 
--and states of randomness, 123 
-See also portioning of addends 

exchange rates, 61, 174-175, 
176f, 438-440, 440f 

exponential distribution, 478-475 
--paradoxical consequence of, 

75 
extreme randomness, 139, 141 
extreme value problem, 130 

F,206 
<1>,200-201 
f(a),168 
factor analysis 

-of L-stable vectors, 31&-319, 
323 

-of offers, 339-348 
-of rental price, 339-340 

factor loadings, 340, 35~56 
fallacies of transformations, 121-

123 
Fama, E. F., 412, 418, 429-430, 

457,498 
-1963 article, 444-456 

Feller, W., 20, 71 
Fermi, E., 224-225, 236 
Fickian diffusion, 127-128, 157, 

159,194,196 
Fickian variance, 157 
financial charts. See price records 
finite horizon anticipation, 498, 

504-505,508 
fire damage, 240-243 
firm size, 80, 85, 259--261 

--and concentration, 118 
-difficulty of computing average, 

364-365 
--and diffusion of log U, 230 
-distributions for, 99, 201-202, 
208,36~66 

--and rank-size plots, 203, 204, 
208-213 

-Yule's finite-difference model, 
233-236 
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Fisher, Michael E., 112 
Fisher-Tippett distribution, 85 
fixed point, 158, 195 
flicker noise, 44 
forecasting 

-exponential case, 478-479 
-least squares, 397, 427 
-1east-sums-of-absolute-

deviations, 427 
-linear, 486 
-nonlinear, 471-491 

-See also martingales 
foreign exchange rates, 61,174-

175, 176f, 438-440, 440f 
fractal dimension, 148-150 

--co-existing, 161 
-of self-similar shapes, 155-157 
-of trail and graph, 172-173 

fractal time, 36, 41, 165 
fractality vs. randomness, 178 
fractals 

-inspiration and history, 105-
116 

-self-affine, 41,157-176 
-self-similar, 152-157 
-word origin, 8 
-See also cartoons; 

mesofractals; multifractality; 
unifractals 

fractile ranges, 454-455 
fractional Brownian motion, 35, 

159-162,167-175 
--co-existing fractal dimenSions, 

161 
--and dependence-driven 

variability,159-162 
-Hurst-HOlder exponent, 159-

160, 182-185 
--multifractal case, 167-175 
--multiscaling property, 159 
--and llfnoise, 44,161 
-unifractal case, 159-162 
--uniscaling property, 159 
-Wiener Brownian motion as 

special case, 35 
fractional Gaussian noise, 495f 
fractional Levy flight, 39 
Frechet distribution, 85-87 
future average, 160 

y,377,446,450,452,514 
galactic super-clusters, 58 
Galileo, 115 
gamma distribution, 134, 135, 143, 

208 
gamma function, 279 



INDEX 

gamma random variable, 262-263 
gasses, 121 
Gaussian density, 380, 384 
Gaussian distribution, 29 

--characteristic lunction, 446-
447,514-515 

--convexity 01 probability 
isalines, 336 

-delocalized moments, 139-140 
-distinguished from other types, 

117 
-even short-run portioning in 

mode, 132-133 
-L-stability 01, 82, 285-290, 

376-381,426 
-()f price changes, 22-23, 474 
--sensitivity of moments, 262-

266 
--subordinator, 514-515 
-Taylor expansion of Fourier 

transform, 144 
-value ol!l, 447 

Gaussian market, contrast to L­
stable market, 454 

Gaussian noise, 94,127-128, 
495f,503-504 

Gaussian random variables, 127, 
160,373,376,381,400 

Gell-Mann, M., 112 
generator, 154, 181, 182, 185, 186 
genetiCS, 223-224, 243 
geology, 116 
Gibbs, J. W., 111 
Gibrat, R.,110, 119-121, 229, 

252,261 
glass, 121,252,255 
Global Dependence Syndrome. 

See Joseph Effect 
Gnedenko, B. V., 282, 451 
grading on the curve, 121-123 
Granger, C. W. J., 516, 525 
graph, distinguished from trail, 

161,172-173 
graph dimension, 190-191 
graphical methods 01 analysis, 17-

22,87-88,389-393,430-
432,448-449,455 

Grassberger-Procaccia algorithm, 
113 

Grenander, U., 525 
grids, 147,171-181 
Gutenberg-Richter law, 116 

H. See Hurst-HOlder exponent 
Hadamard, J., 28 
Hausdorff, F., 155 

Herfindahl's index, 215-216 
HOlder, L. 0., 160, 185 
Holtsmark's problem, 223 
Houthakker, H. S., 410, 415 
Hughes, J. R. T., 440 
Hurst, H. E., 110, 160, 185 
Hurst puzzle, 36, 71, 110 
Hurst-HOlder exponent, 35, 159-

160,182-185 
-estimation 01,173-174 
-and generator boxes, 182, 185 
-and self-affinity, 151 
-and trading time, 39-40 

hydrology, 36, 70-71, 110,504 
hyperbolic distribution, 66-70 

I" (,I", 142 
IBM Research Note NC-87, 417-

418 
IBM stock, 181 
income, 79-81 

-aggregate, 314-315 
-analysis 01 the notion of, 277-

278 
-categories, 337 
-and L-stable distribution, 119-

121, 253, 271-306 
-and Lindy Effect, 76 
-and lognormal distribution, 

119-121,253 
-maximization, 336-363 
-multiplicative variation, 307-

338 
-and Pareto's law, 337 
-rank-size plots, 203-204 
-and scaling, 99, 203-204, 253, 

336-363 
-thermodynamic models, 275-

277 
-See also occupations; offers 

independence 
-assumption of, 475 
-and subordination, 524 
-()f successive L(t, 1), 31-32, 

393,398,409-411,421 
-See also dependence 

index numbers, 2!h21, 267 
industrial concentration, 259-261, 

364-369 
industrial securities, 486-491 
industry size, 211-212 
inference theory, 93 
infinite horizon anticipation, 501-

504, 507-508 
infinite memory, 35-36, 42-43 
Infinite Variance Syndrome. See 

Noah Effect; variance 
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initiator, 154, 181 
inner cutoff, 51 
innovations N(s), 492, 500 
interest rates, 436-440, 4401 
invariance properties 

-invariance-up-to-scale, 102-
103 

-and L-stability, 315-316, 376, 
449 

-method of invariant 
distributions, 81~ 

-in physics, 103 
--stationarity and scaling, 26-32 
-()f Wiener Brownian motion, 24 

irregularity, 151-152 
island size, 96 

joint density, 385 
Joseph Effect, 27, 29, 35-38, 56-

57,95-98,159,494,495f, 
497-498, 504 

K41 spectrum, 115 
Kadanoff, L. P., 112 
Kendall, M., 430 
Keynes, J. M., 57 
Khinchin, A. la., 178,310 
Koch construction, 153f, 155 
Koch islands, 148 
Kolmogorov, A. N.,104, 115,258, 

500 
Kolmogorov theory of turbulence, 

104,258 
kurtosis, 397-398, 428-429 

A,68,252,492,502-503 
A., 45 
L(t, 1), 31-32, 376,386-389, 393, 

398,409-411,421 
L(m), 500-511, 5061 
L(u), 129 
L-stability, 31-32, 376-381 

-and addition 01 random 
variables, 289-293, 376-383, 
449 

-and cotton prices, 32-34 
--defined, 278, 311, 376, 449, 

514 
-and domain of universality, 129 
-and income variation, 307-338 
-and invariance property, 315-

316,376,449 
-L-stable motion, 31-32, 393, 

398,409-411,421 
-()rigin of term, 106 
-ruin problem, 158 
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L-stable densities, 279, 280f, 281, 
316,325,384 

L-stable distribution, 86, 283-284, 
375-386,446-450,514 

-approximations for, 429-430, 
441-443 

-Cauchy. See Cauchy 
distribution 

-and central limit theorem, 281-
283 

-characteristic function, 446, 
449-450,514-515 

-discontinuities in X(I), 489 
-evidence for, 430-440, 455-

456 
-examples, 426 
-Fama 1963 article, 444-456 
-finite vs. infinite expectations, 

367-368 
-Gaussian. See Gaussian 

distribution 
-"gray" area of, 426-430, 435 
-and income, 119-121,253, 

271-306 
-and industrial concentration, 

365-366 
-and infinite variance, 424-427, 

445 
-interest and exchange rates, 

436-440 
-kurtosis of, 397-398 
-and limiting distribution of 

sums, 450-452 
-near-Gaussian to scaling 

transition, 429-430 
-numerical evaluations 

(references),466-469 
-and offer factors, 344-346 
-positive/non -positive, 278-281 
-and railroad stocks, 435-438 
-and riskiness of market, 453 
-shape of, 380, 384, 446, 447, 

449 
-subordinator, 514-515 
-tails of, 380, 447, 449 
-and wheat prices, 429-435 
-See also scaling distribution 

L-stable processes, 31-32, 398-
411 

-causality and randomness in, 
405-406 

-in continuous time, 407 
-discontinuities in path 

functions, 407-408 
-estimation of drift, 399-406 
-functions generated by, 399-

406 

-L-stable motion, 31-32, 393, 
398,409-411,421 

-and tail-driven variability, 158 
L-stable random variables, 277-

294,311-314 
-addition and division of, 289-

293,378-383,406-407,449 
-conditioned, 326-327 
-as fixed pOints, 158 
-jOint distribution of, 385-386 
-normalized (reduced), 316-319 
-number of mutations, 244, 248 
-scalars, 316-317 
-truncated, 326-327 
-unconditioned, 326-327 
-untruncated, 326-327 
-variability of, 454-455 
-vectors, 317-324 

language, psychological power of 
words, 205-206 

law of large numbers, 127, 194, 
366 

-counterparts of, 195-196 
-and industry size, 211-212 

law of random proportionate effect, 
227-232,259,308-309,312 

least-squares method, 93, 396-
397,427,454 

least-sums-of-absolute-deviations, 
427 

leptokurtic, 27, 372 
Levy devil staircase, 41, 164, 165 
Levy distribution, 85-87 
Levy dust, 41, 164, 194 
Levy, P., 105-107,278 
lexical trees, 225-226 
limit lognormal multifractal 

measure, 166 
Lindy Effect, 76-77 
linear programming, 336, 340 
liquids, 121,252 
local time . See trading time 
log-Brownian model, 255 
log-log graphing, 87-88, 389-393, 

430-432,446-449,455 
lognormal density, 256-257 
lognormal distribution, 29, 74, 

252-269 
-and addition, 524-525 
-case against, 252-269 
-convexity of log p{u), 133-134 
-distinguished from other types, 

117 
-and glass, 252, 255 
-and income, 119-121,253 
-and industrial concentration, 

365-369 
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-middle-run behavior, 125, 129-
130 

-moments of, 140,252,256-
258,262-269 

-subordinator, 520-525 
-Taylor expansion of Fourier 

transform, 144 
long-run portioning, 118, 123-130, 

213-215,260 
long-tailed distributions, 243-251 

-kurtosis of, 397-398 
long-tailed (tail-preserving) 

randomness, 118 
-defined, 124, 143-145 
-vs. mild randomness, 130-138 
-transitional state, 138 
-See also slow randomness; 

wild randomness 
Lorenz curves, 216-218 
Lorenz, E., 113 
Lorie, J. H., comments by, 472-

473 
Low, F., 112 
Luria, S. E., 223, 243 

M(I), 42,166 
M 1963 model, 6, 20, 31, 32-34, 

39-41,79-104,158,371-
418,520 

-and Clark's fix, 74, 519-526 
-contrasllo M 1965,36-37,148 
-criticisms of, 35 
-discrepancies with evidence, 

61 
M 1965 model, 3, 6,14,20,35-39, 

149, 159-162 
-contrasllo M 1963, 36-37, 148 

M 1966 model, 26, 471-491 
M and Taylor 1967 model, 3, 6,16, 

31,39-46,165-166,419-
443,513-519 

M 1971 model, 26, 492-512 
M 1972 model, 3, 6, 14,39-46, 

149 
-contrast with ARCH, 73-74 
-experimental evidence, 174-

175 
M 1973 model, 165,519-526 
M 1982 model, 15,20,152,166 
Macaulay, F. R., 88,101 
Malkiel, B. G., 22 
market continuity, ensuring, 511-

512,517-518 
market efficiency, 26,109,492-

511 
market noise, 505 
market risk, 56, 240-243, 484-
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market specialists, 493-494, 511-

512,517--'S18 
Markovian sequences, 7~74, 164, 

309,324-334 
Marshak, J., 29 
Marshall, A., 28 
martingales, 25-26, 457, 471--'S11 

-and arbitraging, 492--'S11 
-Bachelier's formulation, 109 
-convergence theorem, 498 
-and crop value, 483-485 
-defined,475 
-and Gaussian random walk, 

496 
maximization, 83-84,102-103 
memory, infinite, 35-36, 42-43 
mesofractals, 187 
meteorology, 477-487, 504 
middle-run behavior, 125, 129-130 
mild randomness, 113, 14~141 

-and absence of structure, 121 
-borderline, 138, 141 
-and cap-convexity of log p(u), 

137 
-and gasses, 121 
-vs. long-tailed randomness, 
13~138 

-and portioning of addends, 
117-118, 123 

-and self-affine functions, 193-
196 

-short- and long-run evenness, 
123 

-and thermal noise, 127 
Mollo-Christensen, E., 113 
moment-based scaling exponents, 

167 
moments 

-delocalized, 140, 264-!265 
-finite vs. infinite, 88-89, 367-

369 
-and index numbers, 21 
-localized, 139-140, 262--269 
-moment problem, 143-145 
-of price changes, 373 
--tau functions, 167-168 
-see a/so population moment; 

sample moment; variance 
moral wealth, Bemoulli's concept 

of,328-331 
Morris, W. 5.,110 

-comments of, 464-465 
multifractal time, 42-43, 16!H66, 

184f,191-192 
multifractality 

-and compounding, 165-166, 

524 
-and concentration without 

discontinuity, 167 
--examples of, 187-188 
--extrapolation and power law 

explosion, 196-197 
-formalism, 168, 191 
-lognormal distribution, 524-

525 
-multifractal functions, 42 
-multifractal measures, 42, 166 
-and price variation, 192-193 

multiplicative exponential decay, 
67~ 

multiscaling, 45, 159 
-and tails of the compounding 

process, 169-170 
-tau functions, 167-168 

mutation of bacteria, 223--224, 
243--251 

mutual price drift, 502, 507 

N,118 
N(s),492 
National Bureau of Economic 

Research, 107 
Nile River. See Joseph Effect 
Noah Effect, 27, 37--38,165,494, 

497-498 
-See a/so L-stable distribution; 

variance, infinite 
noise 

-flicker, 44 
-Gaussian, 94, 127-128, 495f, 

503-504 
-market, 505 
-1/t. See 1lfnoise 
-scaling background, 93-98 
-thermal, 127 
--white. See white noise 

non-Fickian scaling, 
discontinuity/concentration, 6 

normal distribution. See Gaussian 
distribution 

numerical prefactor, 206--207 

occupations, 337--338, 34~63 
-asymptotic weight of, 348-351 
--elasticity of distribution, 355-

356 
-regions of acceptance of 

offers, 34~48 
-and rental price, 339-340 

offers 
-defined, 338 
-factor analysis, 339-348 
-regions of acceptance, 34~ 

348 
Ohmori's law, 116 
oil fields, 49~91 
Olsen data, 175, 176f 
1lfnoise 

-"humming" form, 161 
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-psychological power of words, 
205 

-as self-affine random variation, 
147 

-see a/so self-affine function 
Osbome, M. F. M., 26 
outer cutoff, 51 
outliers, 28,122,399,420,441-

443,463 

P(~, 493 
p(u), 119 
p(u),130 
P ... 338 
P,,(u),119 
p.(~, 493 
Pr{"event"}, 29 
Parable of the Receding Shore, 78 
Parable of the Young Poets' 

Cemetery, 76-77 
paradoxes, 73-78 
Pareto, V., 108-109, 119-121,271 
Pareto's law, 30, 76, 79-81, 109 

-asymptotic, 272--276, 337 
-and income distribution, 119-

121,337 
-Macauley's criticism of, 101-

102 
-uniform, 272--273 

Parikh, C., 463 
partition function, 171"-172 
Parzen, E., comments of, 462-463 
past average, 160 
Peano, G., 152 
Peano motion, 152, 153f, 154, 

156f 
penumbra, 398 
physics 

-chaos and disorder, 112-113 
-diffusion in, 227--228, 230 
-Invariancein, 103 
-pre-asymptotic regime, 125 
-and scaling spontaneous 

activity,95-96 
-thermodynamics, 111-113 

poets, 76-77 
Poisson distribution, 132-133 
Poisson random variables, 262-

263 
population moment, 367 

-finite vs. infinite, 367--369, 
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424-427 
-of L -stable distribution, 424-

427 
-of lognormal distribution, 256-

258,262-269 
-of near-lognormal distribution, 

252, 262-266 
portfolio value, 21 
portioning of addends 

-€ven vs. concentrated, 118, 
123, 126 

-Gaussian distribution, 123, 
132-133 

-l-stable distribution, 365-366 
-lognormal distribution, 259-

260,365-369 
-long-run, 118, 123-130,213-

215,260 
-middle-run, 125, 129-130 
-and multifractals, 167 
-Poisson distribution, 132-133 
-portioning ratio defined, 131 
-scaling distributions, 213-215, 

261, 364-369 
-short-run, 118, 123-125, 130-

134, 13!H36, 142 
-and states of randomness, 

117-118,123-125 
-See a/so concentration; 

evenness 
power-law distribution. See scaling 

distribution 
pre-Gaussian distribution, 366-369 

-See a/so Gaussian distribution; 
lognormal distribution 

pre-Gaussian randomness, 118 
~efined, 124 
-€xceptions to, 128-129 
-limit asymptotic properties, 

127-128 
-vs. wild randomness, 125-130, 

366 
pre-Gaussian variables, defined, 

368 
pre-wild randomness, examples of, 

141 
prefactor, 206-207 
price changes 

-and Brownian motion, 22-28 
-in certain speculative markets, 

371-418 
-and concentration, 118 
-and "contaminators", 388 
-in continuous time, 406-409 
-cotton, 387-396 
-€xchange rates, 61, 174-175, 

1 76f, 438-440, 440f 

-fama's 1963 article, 444-456 
-and forecasted value, 476-491 
-graphical methods, 87-88, 

389-393,430-432,455 
-industrial securities, 486-491 
-interest rates, 438-439 
-and L -stable distributions, 452 
-and M 1963 model, 371-418 
-and martingales, 25-26, 471-

491 
-over fixed number of 

transactions and fixed time 
periods, 514-525 

-possible explanations of 
multifractality,192-193 

-price drift, 502-503, 507 
..;-ailroad stock, 435-438 
..;-andomness of, 421 
-and scaling distribution, 99, 

388-389 
-sequential dependence, 457 
-serial dependence, 409-411 
-stabilizing, 493-494 
-and stationarity, 422 
-systematic changes, 422 
-and triggering variable, 473, 

476,486 
-{Jse of logarithm, 498-499 
-wheat prices, 429-435 

price records, and self-similarity, 
150-151 

price series, arbitraged, 492-511 
prices, factor loadings considered 

as,340-341 
probability density 

-Cauchy, 380 
-conditional, 386 
-€xplicit expressions for, 447 
-Gaussian, 380 
-joint, 385 
-l-stable, 279, 280f, 281, 316, 

325,384,426 
-lognormal, 256-257 
-of offers, 352-354 

projection properties of L-stable 
vectors, 318-321 

proper mild randomness, 
examples of, 140-141 

proportional growth, as explanation 
of scaling, 227-240 

psychological factors, distribution 
of,339 

q,427,497-480 
q-variation, 171-172 
Q(r),199-200 
O(u), O'(u), 382 
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queue length, 222-223 

R, RlS analysis, 37-38, 164 
r(rank),199 
railroad stocks, 435-438, 436f, 

437f 
random processes, second-order 

stationary, 31 0-311 
random proportionate effect, 227-

232,259,308-309,312 
random sequences. See 

sequences 
random variables 

-addition of. See addition 
-asymptotically scaling but not 

L -stable, 451-452 
-BernOUlli, 262-263 
-conditioned by truncation, 67-

68,326-327,478-480 
~ependent!independent. See 

dependence; independence 
-€xponential,478-479 
....fallacy of transformation into 

Gaussian, 121-123, 253 
-9amma, 262-263 
-Gaussian, 127,373,376,381, 

400 
-innovations, 492, 500 
-l-stable. See L -stable random 

variables 
-lognormal, 254f 
-Poisson, 262-263 
-pre-Gaussian, 127, 368 
-{Jniformly scaling, 479-480 

random walk, 22-27 
-contrast to fractal models, 51-

58 
-and diffusion, 227-228 
-with a drift, 494 
-GaUSSian, 109, 469 
-implications of graphical 

representation, 20 
-and income variation, 308-309 
-and independent causes, 499 
-and martingales, 496 
-and price variation, 22-25 
-and reflecting barrier, 227-229, 

231 
-stationary stable and 

Markovian sequences, 327-
333 

-See a/so Brownian motion 
randomness, 14-17, 28, 113, 117-

145,255,366-367 
-€xtreme, 139, 141 
-VS. fractality, 178 
-and grid-bound non-random 
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fractality, 147 
-long-tailed (tail-preserving). 

See long-tailed (tail­
preserving) randomness 

-mild. See mild randomness 
-pre-Gaussian, 118, 124-130, 

36s--'367 
-pre-wild,141 
-slow. See slow randomness 
-stationary, 31 
-tail-mixing. See mild 

randomness 
-tests of and Champernowne's 

number C, 335 
-wild. See wild randomness 

rank r, 199 
rank-size plots, 198-218 
rational bubbles, 471-472 
recursion, grid-bound 

constructions, 181-182 
recursive functions 

-"Noah wild" vs. "Joseph wild," 
194 

-sporadic wild, 194 
reflecting barrier, 309 
renormalization, 104, 106, 112-

113 
rental price, 339-340 
Richardson, L. F., 114-115 
Riemann zeta function, 201-202 
risk theory, 56, 240-243, 484-485, 

506 
roughness, 151 
roughness exponent. See Hurst­

HOlder exponent 
ruin problem, 158 

~,68 

cr(q),45 
s, s', 5",376 
sample moment, 25!}-260, 266-

269 
-of colton prices, 455 
-lognormal vs. L-stable 

distribution, 522-523 
-sequential, 267-269 
-and stationarity, 422 
-variance as inappropriate 

measure of variability, 454 
sample value, notation for, 199 
scaling, 5, 28-32, 50-78,105-116 

-apparent limitations, 6Q-61 
-axiom for, 2 
-in biology, 115-116, 243-251 
-under conditioning, 29-30 
-crossovers between different 

regimes, 64-66 
-cutoffs due to impenetrable 

bounds,63-64 
-errors (background noise), 93-

98 
-evidence for, 5s-59 
-explanations for, 21 !}-240 
-in geology, 116 
-and income, 203-204 
-irreducible limitations of, 62-65 
-literary references to, 114 
-and multiscaling, 44-46, 6Q-61 
-and offer factors, 342-348 
-and paradoxes, 75-78 
-strict, 342-348 
-in turbulence, 114-115 
-uniscaling, 45, 6Q-61, 159 
-See a/so Pareto's law; scaling 

distribution 
scaling distribution, 29 

-asymptotic, 84, 272-275, 285-
289,307-310,316,365,448-
453 

-convexity of probability 
isolines, 336 

--<Jefined, 80 
--<Jistinguished from other types, 

117 
-finite vs. infinite expectations, 

367-368 
-and fire damage, 240-243 
-genetic mutations, 223-224, 

243-251 
-and income, 99,253,33s--'363 
-and industrial concentration, 

364-369 
-infinite variance, 117, 367-368, 

372 
-in variance properties of, 84-67 
-vs. lognormal distribution, 520-

521 
-and oil fields, 490-491 
-and price variation, 388-389 
-and rank-size plots, 198-218 
-self-similarity of, 480 
-short-run portioning, 133 
-uniform, 272-273, 365 
-and wild randomness, 366 

scaling exponent, 80, 206, 273, 
446,514 

-for Cauchy distribution, 447 
-for city sizes, 92f 
-for coin tossing, 94, 447 
-for colton, 424f, 430, 455 
-estimations of, 441-443, 447-

449,455 
-for finite vs. infinite 

expectation, 367-368 
-for Gaussian, 447 

549 

-and income categories, 337-
338 

-for industry size, 211-213 
-for L -stable distributions, 447 
-moment-based, 167 
-values greater than 2, 337 

scaling principle 
-of economics, 147 
-of mathematical geometry, 153 
-of natural geometry, 152 

scaling range, 200, 203-205 
Securities Exchange Commission, 

512,517 
securities, industrial, 486-491 
self-affine functions 

-continuous time grid-free 
random, 193-196 

-grid-bound non-random, 193-
196 

-mild vs. wild, 193-196 
self-affinity, 5-6, 147-197 

-categories of, 149 
-of compound processes, 162 
--<Jistinguished from self-

similarity,149-151 
-forbids slow randomness, 193-

194 
-and subordination, 164 

self-similarity,147-197 
--<Jistinguished from self-affinity, 

149-151 
-examples of, 152-157 
-of scaling distribution, 480 

self-similarity dimension, defined, 
156 

sequences 
-Champernowne, 332 
-F-factor, 331 
-of L-stable variables, 322-324 
-Markovian, 309, 324-334 

short-run portioning, 118, 123-
125, 130-136, 142 

singularity spectra, 168 
skewness, 86,252,255,384,446 
slow randomness, 74 

--<Jefined, 118 
-forbidden by self-affinity, 193-

194 
-and liquids, 121 
-localized vs. delocalized 

moments, 141 
-and lognormal distribution, 252 
-and the middle run, 125, 129-

130 
-and portioning of addends, 
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117-118,123 
snowflake curve, 152 
solids, 121 
space-filling motion. See Peano 

motion 
specialists' trades, 493-494, 511-

512,517--518 
spectral analysiS 

-and arbitraging, 510--511 
-blind spot of, 163-164, 170 
-and compound process, 170-

171 
-of random time series, 398-

399 
-second moments in, 93 
-spectral whiteness. See white 

noise 
-of Z(I), 477 

speculative commodities, two­
tailed distributions, 98 

speculative prices, 471-491 
stationarity, 28-32, 422-423 

-of income variation, 308-310 
--irreducible limitations of, 62~5 
-and non-periodic cycles, 56--57 
-of Wiener Brownian motion, 24 

Sternberg, I., 240-241 
Stewart, R. W., 104, 115 
Stieltjes, T., 144 
Stirling approximation, 208-209 
stochastic integral, 317 
"stop-loss" orders, 454 
string generator, 181 
Student's distribution, 68-70 
subordination, 40,164-165,514-

525 
supply and demand, 493 
Swift, Jonathan, 114 
systematic changes, 422 

8, 162 
8,. 318 
8(1),40,162 
'D(q),167 
T, 373 
T(1),516 
f 12 law, 378, 396 
tail-driven variability, 158 
tail-mixing randomness. See mild 

randomness 
tail-preservation criterion, 118, 

130-138,141-143 
tail-preserving randomness. See 

long-tailed (tail-preserving) 
randomness 

tails, rescaling, 136-137 

Taqqu, M., 512 
tau functions, 167-168 
Taylor, H. M., 40, 514-515, 523 
telephone circuits, 96, 98 
texture, 151 
thermal noise, 127 
thermodynamics, 111-113, 275-

277 
thread, implicit dimensions, 64--65 
time 

--fractal, 36, 40-41, 165, 191-
192 

-mesofractal, 165-166, 184f, 
191-192 

-multifractal, 42-43, 166 
-physical (clock) vs. trading, 

39-40 
-See also trading time 

trading methods, 499-500, 506, 
512,517--519 

-Alexander's filter technique, 
408-409,412-413,512 

-and computers, 110 
--expected return, 493, 495 
-See also arbitraging 

trading time, 39-40 
-and compound processes, 

162-163 
-and devil staircases, 41, 164-

165 
--fractal, 40-41,191-192 
-mesolraclal, 165-166, 1841, 

191-192 
-multifractal, 165-166, 184f, 

191-192 
-related to trading volume, 513-

525 
-and white noise, 163-164 
-and Wiener Brownian motion, 

40-41 
trading volume, 513--525 
trail, distinguished from graph, 

161, 172-173 
trail dimension, preservation under 

continuous compounding, 163 
transactions, actual and "virtual," 

517 
transients, 67 
trigger, 473, 476, 486 
truncation of random variables, 

67~8,328-327,478-480 

turbulence, 42-43, 43f, 104, 114-
115 

U, 128 
U", 129,338 
U(1),308 

INDEX 

unifractals, 186-187 
uniscaling, 45, 6~1, 159 
universality, pre-Gaussian domain 

of,128-129 

V(8) ,317 

V, ,318 

V,502--503 
V(a, N, q), 427 
value forecasting, 478-491 
variability, 454-455 

-combined tail and serial 
dependence, 165-166 

-dependence-driven, 35, 15~ 
162 

-measures of, 454-455 
--tail-driven, 158 

variance 
-and arbitraging, 508 
--in Bachelier's 1900 model, 373 
-of cotton prices, 4427-428 
-Fickian, 157 
--finite, 376, 454 

-and dependent causes, 
499-500 
-Gaussian distribution, 376, 
378 
-and innovations, 500 
-pre-Gaussian, 366 
-pro and con, 522--523 

--infinite, 88-89, 372, 454 
-and Cauchy distribution, 372 
-and L-stable distributions, 
367-368,376,424-427,445, 
454 
-and market efficiency, 497-
498 
-and scaling distribution, 117, 
367-368, 372 
-subordinated stochastic 
model,519-523 

-of price increments, 484-485 
-sequential, 432-433 

volume. See trading volume 
von Koch, H., 152-153 
von Neumann, J., 105 

W, 158 
w(n),338 
Wallis, J. R., 20, 27 
Walras, L., 108 
Walsh, J. L., 108 
WBM. See Wiener Brownian 

motion 
weather, 477-487 
Weber-Fechner distribution, 275 
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weighted mixture, 82--84, 102 
wheat prices, 4311, 432f, 433f, 

434f 
-and L-stable "grayness," 429-

230,435 
White, H., 103 
white noise, 183f, 184f 

-and arbitraging, 51 0-511 
-and martingale increments, 

496-497 
-as measure of correlation, not 

dependence,477 
-and Wiener Brownian motion, 

163-164 
Widom, B., 112 
Wiener Brownian motion, 24-25 

-and Fickian diffusion, 157, 159 
-grid-free, 147 
-and multifractal time, 42-43, 

184f 
-and price changes, 24-25 
-scaling properties of, 24 
-self-affinity of, 147 

-white noise, 163-164 
Wiener, N., 24, 178,310 
Wiener-Hopf technique, 501 
wild randomness, 16,21,31,113, 

128--129,366-367 
--{jistinguished from pre­

Gaussian, 125-130,366 
-examples of, 141 
-and portioning of addends, 

117-118,123,213-215 
-and self-affine functions, 193-

196 
-and solids, 121 
-and speculative bubbles, 471-

472 
wild scaling distributions, 213-215 
Wilson, K., 112 
Wold, H., 310, 500 
wool prices, 374f 
word frequency, 199-200, 203-

205,225-226,253 
words, psychological power of, 

205-206 

Working, H., 430 

X(n, 489 
X(S),162 
X(v),514 

Y, 158 
Y{n, 476-478, 483 
Yule, G. U., 233 
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~(lIa), 201 
~n,31,40,322,373,477,483-

484 
Zariski, 0., 463 
Zarnfaller, F. J., 469 
zeta distribution, 201-202 
Zipf distribution, 200-201 
Zipf, G. K., 80,105-106,107-108, 

111 
Zip! plots. See rank-size plots 
Zip!-Mandelbrot law, 204 
Zipf's law, 111, 198--218,225-226 
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